
Verifiable Distributed Oblivious Transfer
and Mobile Agent Security∗

Sheng Zhong
Department of Computer Science

Yale University
New Haven, CT 06520-8285

sheng.zhong@yale.edu

Yang Richard Yang
Department of Computer Science

Yale University
New Haven, CT 06520-8285

yry@cs.yale.edu

ABSTRACT
The mobile agent is a fundamental building block of the mo-
bile computing paradigm. In mobile agent security, oblivi-
ous transfer (OT) from a trusted party can be used to pro-
tect the agent’s privacy and the hosts’ privacy. In this paper,
we introduce a new cryptographic primitive called Verifi-
able Distributed Oblivious Transfer (VDOT), which allows
us to replace a single trusted party with a group of threshold
trusted servers. The design of VDOT uses two novel tech-
niques, consistency verification of encrypted secret shares
and consistency verification through re-randomization. VDOT
protects the privacy of both the sender and the receiver
against malicious attacks of the servers. We also show the
design of a system to apply VDOT to protect the privacy
of mobile agents. Our design partitions an agent into the
general portion and the security-sensitive portion. We also
implement the key components of our system. As far as we
know, this is the first effort to implement a system that pro-
tects the privacy of mobile agents. Our preliminary evalua-
tion shows that protecting mobile agents not only is possible,
but also can be implemented efficiently.

Categories and Subject Descriptors
C.2.0 [Computer and Communication Networks]: General–
Security and Protection; E.3 [Data Encryption]

General Terms
Design, Security, Verification

∗This work was supported in part by the DoD Univer-
sity Research Initiative (URI) program administered by the
Office of Naval Research under Grant N00014-01-1-0795.
Sheng Zhong was supported by ONR grant N00014-01-1-
0795 and NSF grants ANI-0207399 and CCR-TC-0208972.
Yang Richard Yang was supported in part by NSF grant
ANI-0207399.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM–POMC’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-765-6/03/0009 ...$5.00.

Keywords
Secure mobile agents and mobile code, Resiliency to corrup-
tions, Oblivious Transfer, Verifiable Secret Sharing

1. INTRODUCTION
The mobile agent is a fundamental building block of the

mobile computing paradigm. The success of the mobile
agents depends on security. In the past, the focus of mobile-
agent security has been on protecting the safety and the in-
tegrity of visited hosts. To achieve this objective, researchers
have proposed novel techniques such as the Sandbox archi-
tecture [15], which restricts the access of a visiting mobile
agent, and proof-carrying code [20], which allows a host to
efficiently verify that the visiting mobile agent will not do
harm to the host.

However, in mobile agent computing, it is as important
to protect the privacy of the agent from the hosts as to pro-
tect the privacy of the hosts from the agent. Since Sander
and Tschudin’s pioneering work [23], various systems have
been designed for this purpose [24, 5, 1]. In particular,
Algesheimer, Cachin, Camenisch, and Karjoth [1] present
a nice and general solution that has provable security. How-
ever, the security of this system relies on a single trusted
party which carries out oblivious transfer (OT). If the trusted
party is compromised, the privacy of both the agent and the
hosts can be violated.

The security of [1] can be significantly strengthened if
the single trusted party is replaced by a group of threshold
trusted servers. For this end, a “threshold extension” of OT
is needed. One possible solution is to use Naor and Pinkas’s
distributed OT (DOT) [19], which involves a sender, a re-
ceiver, and a group of servers. In DOT, the sender has two
items and the receiver chooses to receive one of them. First,
the sender distributes to each server some data derived from
her items, in such a secure way that no single server can fig-
ure out any information about her items. Then the receiver
queries the servers. From the servers’ responses, the receiver
is able to reconstruct one and only one of the two items. Fur-
thermore, the receiver has no information about the other
item and the sender has no information about which of the
items the receiver has chosen.

However, DOT assumes semi-honest (i.e., honest but curi-
ous) servers. If some servers are malicious, they can mislead
the receiver to reconstruct a false item. To deal with such
malicious servers, we propose a new cryptographic primitive
called “Verifiable Distributed Oblivious Transfer,” or VDOT
for short. (Besides considering malicious servers, VDOT has

12

a few subtle differences from DOT. Detailed comparisons of
VDOT with DOT and other related works [22, 9, 4, 17, 18,
6, 16, 13, 12, 8] can be found in [27].)

The design of VDOT is technically challenging. One might
suggest that the objective of VDOT could be achieved by a
secret-sharing scheme with oblivious transfer of each share.
However, there are two main technical challenges. First, the
receiver must be able to verify the correctness of both items;
otherwise, a malicious server could violate the receiver’s pri-
vacy by tampering with its share of one item and observing
whether or not this attack is detected by the receiver. How-
ever, at the same time, in order to protect the sender’s pri-
vacy, the receiver should be able to reconstruct only one of
the two items. In summary, the first challenge is to allow the
receiver to reconstruct only one item but verify the correct-
ness of both items. Second, when the receiver detects that
some shares have been tampered with, the receiver must be
able to identify the cheating servers and accuse them with
evidence verifiable by the public. In addition, during the
identification procedure, the privacy of both the sender and
the receiver needs to be protected. In summary, the second
challenge is to allow the receiver to identify and publicly ac-
cuse the cheating servers without compromising the privacy
of either the sender or the receiver.

Our VDOT protocol uses novel techniques to address the
above two challenges. An overview of the VDOT protocol
is as follows. During initialization, Feldman’s Verifiable Se-
cret Sharing [10] (VSS) of keys is set up among the servers.
An advantage of this setup is that the consistency of se-
cret shares encrypted using ElGamal can be verified. Be-
fore each transfer, the sender distributes the shares of both
items (using a variant of the Shamir scheme [26]) among
the servers. During the transfer procedure, the receiver in-
vokes the one-round OT protocol by Bellare and Micali [2,
5], with each server in a quorum (called main servers) in
order to get the share of the item he chooses. Although
the receiver can reconstruct only one item, he can verify the
consistency of both items through the help of the remaining
servers (called verification servers), because the encrypted
shares of both items are transfered to the receiver during
the OT. If cheating is detected, the receiver can perform the
cheater-identification procedure, which uses the novel tech-
nique cheater identification through re-randomization and al-
lows the receiver to identify the cheating servers but still
protects the privacy of the sender and the receiver.

We also apply VDOT to mobile agent security and imple-
ment the key components of a mobile agent architecture. As
far as we know, this is the first effort to implement a system
that protects the privacy of mobile agents. To write an agent
in our system, the designer extracts the security-sensitive
portion of the agent into a function. Then the function is
encoded as a garbled circuit, which is carried by the agent.
Since we only apply the security mechanism to the security-
sensitive portion of an agent, our system is efficient. Since
the result of the security-sensitive portion is interpreted by
the normal portion of the agent, all that a host needs to pro-
vide is an interpreter of garbled circuits.1 As a result, our
system provides a general-purpose solution. We measure the
overhead of our system and show that the overhead is ac-

1The garbled circuit interpreter can also be carried by the
agent, in principle. However, requiring each host to provide
a garbled circuit interpreter can greatly reduce the commu-
nication overhead.

ceptable. In other words, our preliminary evaluation shows
that protecting mobile agents not only is possible, but also
can be implemented efficiently.

In summary, our contributions of this paper are as fol-
lows. First, we introduce a new cryptographic primitive,
VDOT, which can be used in situations where proxies of
OT are needed but no single proxy can be trusted. In par-
ticular, VDOT can be used to strengthen the security of
the mobile agent system designed in [1]. Second, the de-
sign of VDOT uses a novel technique to achieve consistency
verification of encrypted secret shares. Third, VDOT iden-
tifies malicious servers without compromising the privacy of
either the sender or the receiver, using consistency verifica-
tion through re-randomization. Fourth, we apply VDOT to
the problem of mobile agent security and implement the key
components of an architecture for mobile agents.

The rest of this paper is organized as follows. In Section 2,
we present the definitions; in Section 3, we present how
VDOT implements consistency verification of encrypted shares;
in Section 4, we present how VDOT implements cheater de-
tection. We prove the security properties of VDOT in Sec-
tion 5. In Section 6, we present how to apply VDOT to a
mobile-agent system. In Section 7, we present implemen-
tation issues and report initial performance evaluation. We
conclude in Section 8.

2. DEFINITIONS
We formulate the problem of VDOT as follows.
Let k be a security parameter. A VDOT protocol involves

a sender, a receiver, and a group of servers, T1, . . . , Tt, where
t = O(log(k)). Each of these parties is a probabilistic Turing
machine. We assume that the computational power of each
party is polynomially bounded in k. In the sequel, unless
specified otherwise, when we say polynomial complexity, we
mean polynomial in k. We assume an authenticated, untap-
pable channel between the sender (resp., receiver) and each
server. Let s0, s1 ∈ ZQ be the two items held privately by
the sender, where Q is a prime of length k. Let σ ∈ {0, 1}
be a private input of the receiver.

A VDOT protocol consists of an initialization stage and
a transfer stage. In the initialization stage, the sender sends
function Fj : {0, 1}∗ → {0, 1}∗ to each server Tj , where
Fj depends on (s0, s1) and the sender’s coin tosses. In the
transfer stage, in order to learn sσ, the receiver first car-
ries out the share-transfer procedure by sending query qj to
server Tj and receiving reply rj = Fj(qj) from Tj . Since
the receiver may not send his queries all at once, qj may
depend on the replies to previous queries. After receiving
replies from the servers, the receiver decides either to ac-
cept the replies (and reconstruct sσ) or to reject the replies.
In the latter case, he may further carry out the cheater-
identification procedure and interact with the servers in or-
der to identify the cheater(s). We use µ to denote the re-
ceiver’s view in the further interaction, if there is any. The
receiver finally accuses cheating servers with evidence e.

We summarize the security requirements of a VDOT pro-
tocol as follows. Below, when we say high probability (resp.,
negligible probability), we mean probability p such that for
any polynomial f , there exists k0 such that, for any k > k0,
p > 1 − 1

f(k)
(resp., p < 1

f(k)
). When we say that two

views are computationally indistinguishable, we mean that,
for any probabilistic polynomial time (PPT) distinguisher, if
the input is picked at random from the distributions of these

13

two views, respectively, the difference of the probabilities of
outputting 1 is negligible.

Definition 1. (correctness) A VDOT protocol is cor-
rect, if there exists a PPT algorithm R for the receiver that
computes sσ from (F1(q1), . . . , Ft(qt)) when all parties fol-
low the protocol.

Definition 2. (receiver’s privacy) In a VDOT protocol,
σ is private against a coalition of the sender and τ1 servers
if, for any colluding group of a dishonest sender and τ1 dis-
honest servers, there exists a PPT simulator S that can re-
place the receiver in the following sense: The view of the
above colluding group interacting with S is computationally
indistinguishable from the view of this group interacting with
the receiver.

Definition 3. (sender’s privacy) One of the two items,
s0 and s1, is private against a coalition of the receiver and
τ2 servers if, for any colluding group of a dishonest receiver
and τ2 dishonest servers, there exists a PPT simulator S′

that takes only one of the two items as input, and can re-
place the sender in the following sense: The view of the
above colluding group interacting with S′ and honest servers
is computationally indistinguishable from the view of this
group interacting with the sender and the honest servers.

We consider two types of verifiability — verifiability of re-
construction and verifiability of accusation. For verifiability
of reconstruction, we require that cheating be detected if it
may lead the receiver to compute a false sσ. On the other
hand, if the cheating behavior of some servers does not af-
fect correct reconstruction of sσ, it will be unnecessary to
detect it.

Definition 4. (verifiability of reconstruction) A VDOT
protocol is reconstruction-verifiable if there exists a PPT al-
gorithm for the receiver that accepts the replies (r1, . . . , rt)
when (r1, . . . , rt) = (F1(q1), . . . , Ft(qt)) and rejects when

R(r1, . . . , rt) �= R(F1(q1), . . . , Ft(qt)).

Intuitively, when one or more servers try to cheat, an
accusation-verifiable protocol allows the receiver to identify
at least one of the cheating servers and show convincing
evidence to the public. At the same time, an accusation-
verifiable protocol does not allow the receiver to succeed in
falsely accusing any server.

Definition 5. (verifiability of accusation) A VDOT pro-
tocol is accusation-verifiable if there exists a PPT cheater-
identification algorithm for the receiver and a PPT verifi-
cation algorithm for the public. If cheating is detected, the
cheater-identification algorithm outputs a non-empty set of
Tj such that rj �= Fj(qj) and computes e, evidence of cheat-
ing, from (r1, . . . , rt) and µ. The public’s verification al-
gorithm accepts e if and only if all servers accused by the
receiver really cheated in the accused way.2

2If for any accused Tj , rj = Fj(qj), then obviously the verifi-
cation algorithm should reject. But even if for each accused
Tj , rj �= Fj(qj), the verification algorithm may or may not
accept — it accepts only when e is valid evidence of the ac-
cused type of cheating. In other words, if a server cheats in
one way and the cheater-identification algorithm falsely ac-
cuses the server of another type of cheating, the verification
algorithm should still reject. The distinct types of cheating
are described in Sections 3 and 4.

3. CONSISTENCY VERIFICATION
OF ENCRYPTED SHARES AND
THE SHARE-TRANSFER PROCEDURE

In this section, we address the first challenge and present
the share-transfer procedure of our protocol. This section is
organized as follows. We first review an adapted version of
the Bellare-Micali OT protocol, which can be understood as
transferring both items encrypted using ElGamal. Then we
review a variant of the Shamir scheme and the Feldman VSS.
Next we show how they can be adapted to verify the consis-
tency of secret shares encrypted using ElGamal. Finally we
present the share-transfer procedure of our protocol, which
is based on the Bellare-Micali OT and the Feldman VSS.

In the sequel, let P, Q be two large primes such that P =
2Q + 1. Let GQ be the quadratic residue subgroup of Z∗

P .
Let g be a generator of GQ. The standard Decisional Diffie-
Hellman (DDH) assumption states that, for x, y, z picked
uniformly at random from [0, Q − 1] (= ZQ), (gx, gy, gz)
is computationally indistinguishable from (gx, gy, gxy) [3].
This implies that no PPT algorithm can compute the dis-
crete logarithm of a random element in GQ.

Bellare-Micali OT Assume that there exists a public ran-
dom source. In this adapted version of Bellare-Micali OT,
the receiver first picks δ ∈ GQ using the public random
source. Since the receiver has no control over the public ran-
dom source, he does not know logg δ, the discrete logarithm

of δ. The receiver then picks β ∈ ZQ and sets Gσ = gβ,
G1−σ = δ/gβ. Note that the receiver knows logg Gσ but
not logg G1−σ. The receiver sends G0, G1, δ to the sender,
along with a proof that he knows one of the two discrete log-
arithms, logg G0 and logg G1, using a result by Cramer et
al. [7]. The sender first verifies that δ has been chosen prop-
erly according to the public random source, and δ = G0G1.
Then the sender computes, for b = 0, 1, ŝb = sbG

κ
b , where

κ ∈ ZQ is the sender’s private key and gκ her public key.
This OT protocol can be understood as transferring both

shares in ElGamal ciphertexts. Recall that in the ElGamal
encryption scheme, which is semantically secure under the
DDH assumption, when cleartext s ∈ GQ is encrypted with
private key κ using random string r ∈ ZQ, the ciphertext
will be (sgκr, gr). In the Bellare-Micali OT above, ŝb can be
understood as the first element of the ElGamal ciphertext of
sb, encrypted using random string logg Gb. For convenience,
hereafter we often refer to the first element of an ElGamal
ciphertext as the ciphertext. In order to decrypt ŝb, a party
not knowing κ (e.g., the receiver) must know logg Gb, the
random string used for encryption.

The sender gives both ŝ0 and ŝ1 to the receiver. Since
Gκ

σ = (gβ)κ = (gκ)β , the receiver can reconstruct sσ by
computing sσ = ŝσ/(gκ)β, where gκ is public and β is known
to the receiver. However, since the receiver does not know
logg G1−σ, he cannot compute s1−σ.

Since a server sends its two shares to the receiver as ElGa-
mal ciphertext, our first technical challenge can be addressed
if we can verify the consistency of secret shares encrypted
using ElGamal. Before presenting our scheme, we review a
variant of the Shamir scheme and the Feldman VSS.

A Variant of the Shamir Scheme The variant of the
Shamir scheme we use is defined on GQ by applying the ho-
momorphic mapping α → gα to the original Shamir scheme
on ZQ. Therefore, with a (t, τ)-secret sharing of s ∈ GQ,

14

the jth share of the secret is s(j) = s
�τ−1

θ=1 gaθjθ

(for j =

1, . . . , t),3 where aθ’s are random coefficients.
Now consider the possibility of tampering. We say a share

is a true share if it has not been tampered with by its holder;
otherwise, we say the share is a false share. If {s(j)|j ∈ J}
are all true shares, and s(π) is also a true share, where π ∈
{1, 2, . . . , t} − J , we have

�

j∈J

s
�θ �=j

θ∈J
π−θ
j−θ

(j) = s(π). (1)

Definition 6. In the above variant of the Shamir scheme,
let s(1), . . . , s(t) be the shares submitted by the servers, which
may or may not be true. If (1) is satisfied, then we say that
s(π) is consistent with {s(j)|j ∈ J}; otherwise, we say that
s(π) is inconsistent with {s(j)|j ∈ J}.

Lemma 7. If s(π) is consistent with {s(j)|j ∈ J}, then for
any j0 ∈ J, s(j0) is consistent with {s(j)|j ∈ J −{j0}∪{π}},
and the two sets of shares, {s(j)|j ∈ J} and {s(j)|j ∈ J −
{j0} ∪ {π}}, return the same s if used for reconstructing s.
Remark Intuitively, this lemma indicates that exchanging
s(π) with s(j0) (j0 ∈ J) does not break the consistency or
change the reconstruction, provided that s(π) is consistent
with {s(j)|j ∈ J}. The proof is simple elementary algebra.

Lemma 8. One share is true if and only if it is consistent
with any set of τ true shares.

Lemma 9. Assume that the number of false shares is less
than t−τ

2
. For any J ⊆ {1, . . . , t}, |J | = τ , {s(j)|j ∈ J} is a

set of true shares if and only if more than t−τ
2

shares with
indices outside J are consistent with {s(j)|j ∈ J}.

Proof. If {s(j)|j ∈ J} is a set of true shares, then the
left hand side of (1) computes the untampered value of s(π).
Therefore, each true share s(π) is consistent with {s(j)|j ∈
J}. Because there are fewer than t−τ

2
false shares, there

must be more than t−τ
2

true shares with indices outside J .
These true shares are all consistent with {s(j)|j ∈ J}.

If more than t−τ
2

shares with indices outside J are consis-
tent with {s(j)|j ∈ J}, let

J0 = J ∪ {π|s(π) is consistent with{s(j)|j ∈ J}}.
Because |J0| > τ + t−τ

2
, and because there are fewer than

t−τ
2

false shares, {s(j)|j ∈ J0} must include more than τ
true shares. Take a set of τ true shares, and we know that
all other shares with indices in J0 are consistent with this
set of τ true shares, by Lemma 7. Therefore, all shares with
indices in J0 are true, by Lemma 8. Specifically, {s(j)|j ∈ J}
is a set of true shares.

Feldman VSS We can view the Feldman VSS as a combi-
nation of the Shamir scheme and its variant described above.
Assume s ∈ ZQ is a secret shared in the Feldman VSS, and
s(j) the jth share of s in the Feldman VSS, held by server Tj .
Then s(j) is exactly the jth share of s in the Shamir scheme,
while gs(j) , Tj ’s commitment to s(j), can be understood as

3We add a pair of parenthesis to the subscript of the jth
share, s(j), in order to distinguish it from the two private
items, s0 and s1.

the jth share of gs in the variant of the Shamir scheme us-
ing the same random coefficients. As we will see shortly,
this setup is important to the verification of the consistency
of encrypted shares.

One way to set up the Feldman VSS among the t servers
is to use a single trusted party. Note that if we use a trusted
party to set up the Feldman VSS for a protocol, the protocol
can be compromised if the trusted party is corrupted. An-
other possible solution without using a trusted party is to
use a general-purpose protocol for secure multi-party com-
putation, which is less efficient. However, we need to set up
VSS only once, and then we can reuse the set-up for mul-
tiple transfers. Therefore, both of the solutions above will
be acceptable. (Although Pedersen’s protocol [21] was pro-
posed to efficiently set up VSS without a trusted party, a
flaw has been identified [11].)

Consistency Verification on Encrypted Shares With
a setup of the Feldman VSS, we can check the consistency
of secret shares encrypted using ElGamal. The following
lemma articulates this fact.

Lemma 10. Consider an ElGamal cryptosystem using gen-
erator g. Suppose that t servers use the Feldman VSS with
threshold τ to share an implicit global private key κ. Each
server Tj regards its share κj as its own private key, and uses
the commitment to its share, gκj , as its public key. Suppose
that each server Tj encrypts cleartext s(j) using ElGamal,
where s(j) is the (possibly-tampered) jth share of a secret s
in the variant of the Shamir scheme using threshold τ . If all
servers use the same random string r ∈ ZQ for encryption,
then there exists a PPT algorithm that takes the ciphertexts
of any τ +1 shares of s as input and outputs whether or not
these shares are consistent.

Proof. The shares are consistent if and only if (1) is sat-
isfied. On the other hand, because κj is the untampered jth
share of κ in the Feldman VSS, gκj is the untampered jth
share of gκ in the variant of the Shamir scheme. Therefore,
gκj ’s are consistent, i.e., they satisfy

�

j∈J

(gκj)
�θ �=j

θ∈J
π−θ
j−θ = gκπ . (2)

Assume that the common random string used for encryption
is r. Then (2) implies that (1) ⇔

�

j∈J

(s(j)g
κjr)

�θ �=j
θ∈J

π−θ
j−θ = s(π)g

κπr. (3)

Because Tj ’s ciphertext is (s(j)g
κjr, gr), (3) can be checked

with only ciphertext.

In order to simplify formulae, we define

CShare({cj |j ∈ J}, π) =
�

j∈J

c
�θ �=j

θ∈J
π−θ
j−θ

j . (4)

Therefore, for consistency verification on ciphertexts {cj |j ∈
J} and cπ, it is sufficient to compare CShare({cj |j ∈ J}, π)
with cπ.

Building the Share-Transfer Procedure of our Pro-
tocol Given the above OT and secret sharing schemes, we
address the first challenge as follows. The Feldman VSS

15

of keys is established among the servers; the sender shares
s2
0, s

2
1 in the variant of the Shamir scheme4 and distributes

the shares among the servers; an instance of Bellare-Micali
OT of shares is invoked between each server and the receiver;
the receiver can only reconstruct one private item, but he
can verify the consistency of the shares of either item, using
the ciphertexts transfered.

In order to protect the privacy of the servers, we need to
reduce the number of shares the receiver can learn. For this
end, although there is no difference in the servers with regard
to the shares, we distinguish between two classes of servers:
the first τ servers, T1, . . . , Tτ , are called main servers, while
the rest servers are called verification servers. Only the main
server’s shares will be transfered to the receiver using the
Bellare-Micali OT. Then the receiver computes the cipher-
texts of the verification servers’ shares from the ciphertexts
of the main servers’ shares, using (4), and sends them to
the verification servers for comparison. The results of these
comparisons reflect whether or not the shares are consistent.

We summarize the initialization stage and the share-transfer
procedure of our protocol as follows.

Overall System-Initialization
A Feldman VSS of keys as described in Lemma 10 is set

up among T1, . . . , Tt.

Sender-Initialization
The sender distributes the shares of s2

0 and s2
1 ∈ GQ (in the

variant of Shamir’s scheme with threshold τ), respectively,
among T1, . . . , Tt.

The Share-Transfer Procedure

Step 1: The receiver picks δ ∈ GQ uniformly at ran-
dom according to the public random source. He also picks
β ∈ ZQ uniformly at random, and computes Gσ = gβ and
G1−σ = δ/gβ. He sends query (G0, G1, δ) to each main
server, along with a proof that he knows one of the two
discrete logarithms, logg G0 and logg G1. (Note that we as-
sume the random oracle model and all proofs we use are
non-interactive.)

Step 2: Each main server Tj first verifies that 1) there is
no previous query from the receiver in this session; 2) δ is
chosen properly according to the public random source; and
3) δ = G0G1. If all the three conditions are satisfied, Tj

computes, for b = 0, 1,

ŝb,j = sb,jG
κj

b , (5)

and sends (ŝ0,j , ŝ1,j) to the receiver, together with a receipt
of (G0, G1).

Step 3: Using the public key of main server Tj , the receiver
computes a share of s2

σ by sσ,j = ŝσ,j/(g
κj)β. Then the

receiver computes

s2
σ =
�

j∈J

s
�θ �=j

θ∈J
−θ

j−θ

σ,j , (6)

where J = {1, . . . , τ}. He further computes sσ from s2
σ.

Step 4: The receiver computes, for b = 0, 1 and π =
τ + 1, . . . , t, ŝ′b,π = CShare({ŝb,j |j ∈ J}, π). Then he sends

(G0, G1, ŝ′0,π , ŝ′1,π) to each verification server Tπ.

4We use the bijection α → α2 to map the secret from ZQ

to GQ. Note that there is an efficient algorithm to compute
the modular square root because P is a prime.

Step 5: Each verification server Tπ tests, for b = 0, 1,

ŝ′b,π = sb,πGκπ
b , (7)

and sends the results of comparisons back to the receiver,
together with a receipt of (G0, G1, ŝ′0,π , ŝ′1,π).

Step 6: If for both b = 0 and b = 1, more than half of
the verification servers reply with “yes” (i.e., reply that (7)
holds), the receiver outputs sσ and accuses those verification
servers who reply with “no” for either b = 0 or b = 1. This is
called “type-1 accusation” and the evidence consists of the
replies from all servers. The protocol finishes successfully.
If for either b = 0 or b = 1, the number of verification
servers replying with “yes” is less than half (we require t �≡
τ (mod 2) in order to avoid a tie), a cheater-identification
procedure is invoked (see Section 4).

4. CHEATER IDENTIFICATION
AND ACCUSATION

In the previous section, we have presented the share-transfer
procedure of our protocol and shown how the receiver veri-
fies the consistency of the encrypted shares. In this section,
we present a procedure that can further identify and publicly
accuse at least one of the cheating servers.

Before the cheater identification, the receiver has already
collected τ encrypted shares, {ŝb,j |j ∈ J}, for b = 0, 1.
In addition, the consistency/inconsistency of each ŝb,π =
sb,πGκπ

b (π �∈ J) with {ŝb,j |j ∈ J} has also been revealed
by Tπ, maybe incorrectly. In order to identify the cheaters,
the receiver needs to check the consistency/inconsistency of
ŝb,π (π �∈ J ′) with {ŝb,j |j ∈ J ′}, where J ′ ⊆ {1, . . . , t},
|J ′| = τ and J ′ �= J . On the other hand, in order to pro-
tect the privacy of the sender, the servers should not reveal
more shares to the receiver. That is, the above checking
of consistency should not reveal any ŝb,π for π �∈ J to the
receiver. Our solution to this problem is called consistency
verification through re-randomization.

Consistency Verification through Re-Randomization
The main idea of consistency verification through re-random-
ization is that each server Tj (j = 1, . . . , t) encrypts sb,j us-
ing r′ ∈ ZQ, a common random string that is unknown to all
parties. Specifically, each server Tj (j = 1, . . . , t) calculates

a new ciphertext of its share, (sb,jg
κjr′

, gr′
), and sends the

new ciphertext to the receiver. The receiver can then check
for consistency among the new ciphertexts.

In order to prevent servers from further tampering with
their shares (or switching back from tampered shares to true
shares), for j ∈ J , Tj should prove that its new ciphertext
s̃b,j , which is encrypted using random string r′, is just a
re-randomization of its previous ciphertext ŝb,j . For the
same reason, for π �∈ J , the receiver checks that the con-
sistency/inconsistency regarding Tπ’s new ciphertext is the
same as that regarding Tπ’s old ciphertext.

We summarize the cheater-identification procedure of our
protocol as follows.

The Cheater-Identification Procedure

Step 1: All the servers pick a common string, G ∈ GQ,
at random, according to the public random source. Each
server Tj (j = 1, . . . , t) computes, for b = 0, 1,

s̃b,j = sb,jG
κj ,

16

and sends s̃0,j , s̃1,j to the receiver. Each main server Tj

proves to the receiver, in zero knowledge [25],

log G
Gb

s̃b,j

ŝb,j
= logg gκj . (8)

Step 2: The receiver verifies all main servers’ proofs. If a
main server provides an invalid proof, the receiver aborts the
protocol and accuses the main server. This is called “type-2
accusation” and the evidence is the invalid proof provided
by the main server.

Step 3: The receiver verifies that, for b = 0, 1, and for each
Tπ (π �∈ J) that replied with “yes” for this b,

s̃b,π = CShare({s̃b,j |j ∈ J}, π), (9)

holds; he also verifies that, for b = 0, 1, and for each Tπ

(π �∈ J) that replied with “no” for this b, (9) does not hold.
If the above is not true for any b and any Tπ, the receiver
aborts the protocol and accuses Tπ. This is called “type-3
accusation” and the evidence for a type-3 accusation of Tπ

is all main servers’ replies and proofs, and also Tπ’s reply
together with s̃b,1, . . . , s̃b,τ , s̃b,π.

Step 4: The receiver searches for a set J ′ ⊆ {1, . . . , t},
|J ′| = τ such that for b = 0, 1,

s̃b,π = CShare({s̃b,j |j ∈ J ′}, π) (10)

holds for more than t−τ
2

choices of π ∈ {1, . . . , t}−J ′. (The
complexity of the search is exponential in t. However, since
t = O(log(k)), the complexity is still polynomial in k.) The
receiver accuses the Tπ’s for which Equation (10) does not
hold for b = 0 or b = 1. This is called “type-4” accusation
and the evidence consists of the replies from all servers, all
main servers’ proofs, s̃b,1, . . . , s̃b,t, and set J ′. After a type-4
accusation, the receiver uses

s2
σ =
�

j∈J′
s

�θ �=j

θ∈J′
−θ

j−θ

σ,j

to compute s2
σ, and then further computes sσ. The protocol

finishes successfully.

5. SECURITY PROPERTIES OF VDOT
Our VDOT protocol has security properties as follows.

Claim 11. (correctness) This VDOT protocol is correct.

Proof. According to the definition of correctness, we
need to show that there exists a PPT algorithm for the
receiver to compute sσ from the servers’ responses when
every party is honest. As described in the protocol, if all
parties are honest, the response from each main server Tj is
(ŝ0,j , ŝ1,j), which is computed from (5). By (5) we know

sσ,j = ŝσ,j/(Gσ)κj

= ŝσ,j/(g
β)κj

= ŝσ,j/(g
κj)β.

Because gκj is public, the receiver can easily compute sσ,j

(1 ≤ j ≤ τ) from the (main) servers’ responses. Because
sσ,1, . . . , sσ,τ are the shares of s2

σ, the receiver can further
reconstruct s2

σ from them, using formula (6). Since the mod-
ulus P is a prime number, the receiver can compute sσ from
s2

σ in polynomial time.

Claim 12. (receiver’s privacy) σ is private against a coali-
tion of the sender and all t servers.

Proof. We constructs S as follows.
First, S picks δ, G0 ∈ GQ, and sets G1 = δ/G0. Then

S sends (G0, G1, δ) to each main server, along with a proof
that it knows one of the two discrete logarithms, logg G0

and logg G1. Suppose that the response of the main server
Tj to S is (ŝ0,j , ŝ1,j), where (ŝ0,j , ŝ1,j) may not have been
computed properly because Tj may be dishonest. S com-
putes (ŝ′0,π , ŝ′1,π), the query to each verification server Tπ,

by ŝ′b,π = CShare({ŝb,j |j ∈ J}, π) and sends the query to
the verification server.

Finally, if the majority of the verification servers reply
with “yes” for both b = 0 and b = 1, S accuses the ver-
ification servers that reply with “no” for either b = 0 or
b = 1. Otherwise, S invokes the cheater-identification pro-
cedure and behaves as if it were the receiver. Note that what
S does in the cheater-identification procedure is based only
on what the servers send to S, and thus is independent of
whether S knows logg G0 or logg G1.

Claim 13. (sender’s privacy) Under the DDH assump-
tion, one of the two items, s0 and s1, is private against a
coalition of the receiver and any
 τ−1

2
� servers.

Proof. We construct a simulator, S′, for any given col-
luding group of a dishonest receiver and
 τ−1

2
� servers. Note

that it is sufficient to consider a deterministic adversary that
controls this group. (See page 22 of [14] for an argument of
considering only deterministic adversaries.) Now we con-
sider the possible strategies of this deterministic adversary.

To each honest main server Tj , the dishonest receiver will
have to prove that he knows one of the two discrete loga-
rithms, logg G0 and logg G1. Therefore, there are only two
possible cases for a given strategy and a given honest main
server Tj : (a) the receiver knows logg G0 for the G0 sent to
Tj ; (b) the receiver does not know logg G0, and thus knows
logg G1 for the G1 sent to Tj . For a given strategy, if the
number of j’s that falls into case (a) is greater than or equal
to τ

2
, we define σ′ = 0; otherwise, we define σ′ = 1. Conse-

quently, S′, which takes sσ′ as input, can be constructed as
follows.

When the simulation begins, S′ defines s′σ′ = sσ′ and picks
s′1−σ′ ∈ ZQ uniformly at random. S′ computes the shares

of s′0
2

and s′1
2
, respectively, in the variant of the Shamir

scheme, and distributes the shares among the servers, just as
the sender distributes the shares of s2

0 and s2
1 in our protocol.

Then the honest servers interact with the colluding group
just as required in the protocol.

In order to see the computational indistinguishability of
the views, we note the following fact. The shares of s′1−σ′ can

be divided into three classes: (1) at most τ
2

shares of (s′1−σ′)2

are multiplied by a value G
κj

1−σ′ with logg G1−σ′ known to

the adversary; (2) only
 τ−1
2

� shares of (s′1−σ′)2 are held by
the dishonest servers; (3) all other shares are either held by
honest verification servers, or held by honest main servers
and multiplied by a value G

κj

1−σ′ = (δ
Gσ′)κj with logg Gσ′

known to the adversary. Because δ is picked according to
the public random source, by the DDH assumption, the ci-
phertext of each share in the third class is indistinguishable

17

from a uniformly random element. On the other hand, the
total number of shares in the first two classes is less than
τ , and a set of fewer than τ shares in the variant of Shamir
scheme is indistinguishable from a set of uniformly random
elements.

Claim 14. (verifiability of reconstruction)The protocol is
reconstruction-verifiable if the number of dishonest servers
is less than than t−τ

2
.

Proof. Please see [27].

Claim 15. (verifiability of accusation) The protocol is accu-
sation-verifiable if the number of dishonest servers is less
than t−τ

2
.

Proof. Please see [27].

6. SYSTEM ARCHITECTURE AND
PROTOCOL SPECIFICATION

In this section, we apply VDOT to protect mobile agents.
Our system architecture, which is an extension to that in [1],
is shown in Figure 1.

server 1

server 3

server 2

originator

host 1 host 2 host k
agent

agent

Figure 1: System Architecture

There are three types of entities in our system architec-
ture: the originator, the hosts, and the servers. One moti-
vation for introducing the servers in this mobile computing
environment is that the originator may not always be on-
line. Furthermore, since the majority of Internet users are
still using dial-up service, they do not have persistent con-
nections. In such scenarios, the servers serve as a proxy to
the originator. Note that it is straightforward to modify our
system if the originator is always online.

Next we briefly discuss each of the entities.

• Originators The responsibility of an originator is
to create an agent and send the agent to the hosts.
To improve efficiency, we partition an agent into the
security-sensitive portion and the general portion.

• Hosts The responsibility of a host is to run the gen-
eral portion of an agent and interpret the garbled-
circuit portion of the agent. In order to interpret a
garbled circuit, the host needs to run the VDOT pro-
tocol with the servers to get the appropriate entries
from the translation table.

• Servers The responsibility of the servers is to serve
as a proxy for an originator and provide translation
tables to the hosts through the VDOT protocol.

6.1 Protocol for Security-Sensitive Computa-
tion

The crucial issue of our system is how to evaluate the
security-sensitive function of an agent. We present the eval-
uation protocol in this subsection. For clarity of presenta-
tion, we focus on main ideas. Optimizations will be included
in a more complete version of this paper.

6.1.1 Encoding of a security-sensitive function
For each host, the originator of an agent encodes the

security-sensitive function by a garbled circuit and attaches
the circuit to the agent. A garbled circuit has four transla-
tion tables:

• (table In1) A table that translates clear input 1 (the
previous state) to garbled input 1.

• (table In2) A table that translates clear input 2 (the
local input) to garbled input 2.

• (table Out1) A table that translates garbled output 1
to clear output 1 (the new state);

• (table Out2) A table that translates garbled output 2
to clear output 2 (the local output).

Among the four tables, table Out2 is attached to the agent
in cleartext so that the host can obtain its local output im-
mediately after the evaluation.

As for table In2, its content is split into secret shares and
encrypted using the public keys of the servers. The agent
carries the encrypted shares, which will be used to initialize
the VDOT protocol.

Tables In1 and Out1 encode the state of the agent. Note
that the clear output 1 at host j should be the same as the
clear input 1 at host j+1. As a result, their garbled versions
are also correlated and there is a way to enforce the state
transition without revealing these two tables. In particular,
a chaining technique is used to combine the entries of table
Out1 at host j with the corresponding entries of table In1
at host j + 1, the next host [5, 1].

ID Session identifier
GbCircuitj Garbled circuit for host j
GbIn1Host1 Garbled input 1 for host 1
GbIn1Tabj(i,b) The entry of table In1 for host j

when the i-th bit of input 1 is b
GbIn2Tabj(i,b,m) The m-th share of the entry of table

In2 for host j when the i-th bit of
input 2 is b

GbOut1Tabj(i,b) The entry of table Out1 for host j
when the i-th bit of output 1 is b

GbOut2Tabj The translation table Out2 for host j

Table 1: Notation

Figure 2 summarizes the data format carried by an agent
for a security-sensitive function (the notation is explained in
Table 1). In our protocol, we use both asymmetric encryp-
tion and symmetric encryption. We denote by PE(ek,m)
the asymmetric encryption of cleartext m with encryption
key ek. We denote by E(k, m) the symmetric encryption of
cleartext m with key k. In our protocol, we require that it
be easy to verify whether or not a ciphertext is encrypted

18

with a key in the symmetric encryption scheme. Note that
this property can be implemented by adding redundancy to
the cleartext before encryption.

Figure 2: Data Format of a Security-Sensitive Func-
tion in an Agent

6.1.2 Evaluation of a security-sensitive function
When an agent arrives at a host, since In1 is chained to

Out1 of the previous host, the host uses the garbled output
1 of the previous host to retrieve its garbled input 1. The
host then executes VDOT to obtain the value of garbled
input 2 corresponding to its local input.

With both garbled input 1 and garbled input 2, the host
evaluates the garbled circuit. After the evaluation, the host
uses the attached table Out2 to get its local output. Then
it attaches its garbled output 1 to the agent so that the next
host can retrieve its garbled input 1 from the agent.

Figure 3 shows the information flow of our protocol at a
host.

The last host sends the agent back to the originator. The
originator then translates the garbled output 1 to determine
the final state of the computation.

6.2 Security Analysis
We briefly summarize the security properties of our sys-

tem.

• Originator’s Privacy The originator’s private infor-
mation in the security-sensitive portion of the agent is
private against any hosts and any servers, unless more
than a threshold of servers collude.

This follows from the security properties of garbled
circuits and VDOT. Since only the originator knows
the translation tables of input 1 and output 1, the
state information (in which the originator’s private in-
formation is hidden) is private against other parties.
Because VDOT ensures that each host can only evalu-
ate the garbled circuit with one value of its local input,
no host is able to extract partial private information
from the garbled circuit by evaluating it for more than
once.

Figure 3: Evaluating a Security-Sensitive Function
at Host j

• Host’s Privacy A host’s local input to the agent and
local output from the agent are private against the
originator, any other hosts and any servers, no matter
how many parties involved collude.

The privacy of local input follows from the security
properties of VDOT. Because the local input is not
revealed in VDOT, there is no way for other parties
to learn about it. The privacy of the local output is
obvious.

• Cheater Detection If any server cheats, the host is
able to detect the cheater, unless more than a thresh-
old (which is different from the threshold for the orig-
inator’s privacy) of servers collude.

This also follows from the security properties of VDOT.

7. IMPLEMENTATION AND
PERFORMANCE EVALUATION

We have implemented VDOT and garbled circuits, the key
components of system. We have also measured preliminary
performance.

In our software design, the general portion of an agent will
be implemented in Java, while the security-sensitive portion
will be encoded as a garbled circuit. Figure 4 shows the
components and the information flow at an originator. In
our current implementation, a user needs to manually gen-
erate a garbled circuit, which should be very small for many
applications. In the future, we expect that an automatic
circuit generator will be built. Using the automatic circuit
generator, a user can generate a circuit for her own use by
specifying her own parameters. In the airline-ticket exam-
ple, all the user needs to do is to execute the generator and

19

encryption encapsulation

garbled
circuit

generator

Java
compiler

general
portion

security
sensitive
portion

final agent

Figure 4: Software Architecture of an Originator

input her desired flight date, source, destination and price
threshold. Then the generator immediately outputs a mo-
bile agent on her behalf.

circuit
Java
agent

garbled

VDOT

input
clear

Java
virtual machine

garbled
circuit

interpreter

general
portion

output

input
garbled

agent
updated

Figure 5: Components of a Host

An agent is sent to hosts for execution. Figure 5 shows
the components and the information flow at a host. Since
garbled circuits are general purpose and are represented in a
platform-independent format, for the purpose of efficiency,
our current interpreter is implemented in C.

Obviously, one potential major overhead will be the eval-
uation of garbled circuits. However, measurement of our
prototype interpreter shows that the overhead is very small.
Figure 6 shows the overhead of evaluating random garbled
circuits of different sizes. The result shows that the over-
head of evaluating a garbled circuit of several hundred gates
is pretty small.

In order to interpret garbled circuits, the hosts need to
interact with the servers to retrieve translation tables. In
particular, if the local inputs of the hosts need to be pro-
tected, the hosts and the servers will interact through the
VDOT protocol. Since VDOT is a security-intensive pro-
cess, it is implemented in C++. Since a server may need
to serve many hosts, its design should be as simple as pos-
sible. In our current design, a server only runs the VDOT
protocol.

We next evaluate the overhead of the VDOT protocol, on

0

1

2

3

4

5

500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(m

s)

Number of gates

Overhead of Evaluating a Garbled Circuit

Figure 6: Overhead of Evaluating a Garbled Circuit

machines with Intel 1.0GHz CPU running Linux. Figure 7
shows the steps of the VDOT protocol and labels the cost
of each computational step. The setting of the evaluation is
6 servers and the threshold for the originator’s privacy is 3.
It is clear that the cost of VDOT is acceptable.

calculate
requests:
81.8 ms

verification:
248.2 ms

requests:
processing

161.4 ms

reconstruction:
1.6 ms

responses

requests

host servers

Figure 7: Overhead of VDOT (Number of Servers:
6; Threshold: 3)

8. CONCLUSIONS
In this paper, we presented our VDOT scheme. We showed

that VDOT is correct and it protects both the receiver’s
privacy and the sender’s privacy. It also has verifiabil-
ity of reconstruction and verifiability of accusation. Note
that VDOT can be further extended to consider a mali-
cious sender, who may intentionally mislead the servers so
that they can be accused of cheating. The protocol we have
shown can be easily adapted to solve this problem, if revised
slightly. We ignore this extension for simplicity.

We also presented a system for secure mobile-agent com-
putation. Our system partitions an agent into the general
portion and the security-sensitive portion. Our system pro-
tects the privacy of both the originator and the hosts, with-
out using any single trusted party. We also designed and
implemented the key components of our system. As far
as we know, this is the first effort to implement a system
that protects the privacy of mobile agents. Our preliminary
evaluation shows that protecting mobile agents is not only
possible, but also can be implemented efficiently.

20

Our current major implementation effort is seamless inte-
gration between the general portion and the security-sensitive
portion of an agent. A strong programming support envi-
ronment is desired.

9. REFERENCES
[1] J. Algesheimer, C. Cachin, J. Camenisch, and

G. Karjoth. Cryptographic security for mobile code.
In IEEE Symposium on Security and Privacy, pages
2–11. IEEE, 2001.

[2] M. Bellare and S. Micali. Non-interactive oblivious
transfer and applications. In Advances in Cryptology -
Proceedings of CRYPTO 89, volume 435 of Lecture
Notes in Computer Science, pages 547–557, 1990.

[3] D. Boneh. The decision Diffie-Hellman problem. In
ANTS-III, volume 1423 of Lecture Notes in Computer
Science, pages 48–63, 1998.

[4] G. Brassard, C. Crepeau, and J.-M. Robert.
All-or-nothing disclosure of secrets. In Advances in
Cryptology - Proceedings of CRYPTO 86, volume 263
of Lecture Notes in Computer Science, pages 234–238,
1986.

[5] C. Cachin, J. Camenisch, J. Kilian, and J. Muller.
One-round secure computation and secure
autonomous mobile agents. In Automata, Languages
and Programming, 27th International Colloquium,,
volume 1853 of Lecture Notes in Computer Science,
pages 512–523, 2000.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. Journal of the ACM,
45(6):965–982, November 1998.

[7] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs
of partial knowledge and simplified design of witness
hiding protocols. In Advances in Cryptology -
Proceedings of CRYPTO 94, volume 839 of Lecture
Notes in Computer Science, pages 174–187.
Springer-Verlag, 1994.

[8] G. D. Crescenzo, T. Malkin, and R. Ostrovsky. Single
database private information retrieval implies
oblivious transfer. In Advances in Cryptology -
Proceedings of EUROCRYPT 2000, volume 1807 of
Lecture Notes in Computer Science, pages 122–138,
2000.

[9] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. Communications of the
ACM, 28:637–647, 1985.

[10] P. Feldman. A practical scheme for non-interactive
verifiable secret sharing. In Proceedings of the 28th
IEEE Symposium on Foundations of Computer
Science, pages 427–437, 1987.

[11] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin.
Secure distributed key generation for discrete-log
based cryptosystems. In Advances in Cryptology -
Proceedings of EUROCRYPT 99, volume 1592 of
Lecture Notes in Computer Science, pages 295–310,
1999.

[12] Y. Gertner, S. Goldwasser, and T. Malkin. A random
server model for private information retrieval. In
RANDOM’98, volume 1518 of Lecture Notes in
Computer Science, pages 200–217, 1998.

[13] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information

retrieval schemes. In Proceedings of the 30th Annual
ACM Symposium on the Theory of Computing, pages
151–160, 1998.

[14] O. Goldreich. Secure multi-party computation.
Working Draft Version 1.1, 1998.

[15] L. Gong. Java security architecture (JDK1.2).
Technical report, Sun Microsystems, 1998.

[16] E. Kushilevitz and R. Ostrovsky. Replication is NOT
needed: SINGLE database, computationally-private
information retrieval. In Proceedings of the 38th IEEE
Symposium on Foundations of Computer Science,
pages 364–373, 1997.

[17] M. Naor and B. Pinkas. Oblivious transfer and
polynomial evaluation. In Proceedings of the 31st
Annual ACM Symposium on the Theory of
Computing, pages 245–254, 1999.

[18] M. Naor and B. Pinkas. Oblivious transfer with
adaptive queries. In Advances in Cryptology -
Proceedings of CRYPTO 99, volume 1666 of Lecture
Notes in Computer Science, pages 573–590, 1999.

[19] M. Naor and B. Pinkas. Distributed oblivious transfer.
In Advances in Cryptology - ASIACRYPT 2000,
volume 1976 of Lecture Notes in Computer Science,
pages 205–219, 2000.

[20] G. C. Necula and P. Lee. Safe, untrusted agents using
proof-carrying code. In Mobile Agents and Security,
volume 1419 of Lecture Notes in Computer Science,
pages 61–91, 1998.

[21] T. Pedersen. A threshold cryptosystem without a
trusted third party. In Advances in Cryptology -
Proceedings of EUROCRYPT 91, volume 547 of
Lecture Notes in Computer Science, pages 522–526,
1991.

[22] M. Rabin. How to exchange secrets by oblivious
transfer. Tech. memo TR-81, Aiken Computation
Laboratory, Havard U., 1981.

[23] T. Sander and C. Tschudin. Protecting mobile agents
against malicious hosts. In Mobile Agents and
Security, volume 1419 of Lecture Notes in Computer
Science, pages 44–60, 1998.

[24] T. Sander, A. Young, and M. Yung. Non-interactive
cryptocomputing for NC1. In Proceedings of the 40th
IEEE Symposium on Foundations of Computer
Science, pages 554–567. ACM, 1998.

[25] C. P. Schnorr. Efficient indentification and signatures
for smart cards. In Advances in Cryptology -
Proceedings of CRYPTO 89, volume 435 of Lecture
Notes in Computer Science, pages 239–252, 1990.

[26] A. Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[27] S. Zhong and Y. R. Yang. Verifiable distributed
oblivious transfer. Technical Report
Yale/DCS/TR1241, Computer Science Department,
Yale University, October 2002.

ACKNOWLEDGEMENT
The authors are indebted to Joan Feigenbaum for her in-
sightful comments.

21

