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Abstract

The mobile agent is a fundamental building block of the mobile computing paradigm.
In mobile agent security, oblivious transfer (OT) from a trusted party can be used to
protect the agent’s privacy and the hosts’ privacy. In this paper, we introduce a new
cryptographic primitive called Verifiable Distributed Oblivious Transfer (VDOT), which
allows us to replace a single trusted party with a group of threshold trusted servers. The
design of VDOT uses a novel technique called consistency verification of encrypted secret
shares. VDOT protects the privacy of both the sender and the receiver against malicious
attacks of the servers. We also show the design of a system to apply VDOT to protect
the privacy of mobile agents. Our design partitions an agent into the general portion and
the security-sensitive portion. We also implement the key components of our system. As
far as we know, this is the first effort to implement a system that protects the privacy of
mobile agents. Our preliminary evaluation shows that protecting mobile agents not only
is possible, but also can be implemented efficiently.

Keywords: Mobile Agent, Privacy, Oblivious Transfer, Verifiable Secret Sharing.

1 Introduction

As an important paradigm of computation, the mobile agent has a lot of potential applications
in electronic commerce. However, the success of the mobile agents depends on security. In the
past, the focus of mobile-agent security has been on protecting the safety and the integrity
of visited hosts. To achieve this objective, researchers have proposed novel techniques such
as the Sandbox architecture [14], which restricts the access of a visiting mobile agent, and
proof-carrying code [20], which allows a host to efficiently verify that the visiting mobile agent
will not do harm to the host.

However, in mobile agent computing, it is as important to protect the privacy of the agent
from the hosts as to protect the privacy of the hosts from the agent. Since Sander and
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Tschudin’s pioneering work [25], various systems have been designed for this purpose [26, 5, 1].
In particular, Algesheimer, Cachin, Camenisch, and Karjoth [1] present a nice and general
solution that has provable security. However, the security of this system relies on a single
trusted party which carries out oblivious transfer (OT). If the trusted party is compromised,
the privacy of both the agent and the hosts can be violated.

The security of [1] can be significantly strengthened if the single trusted party is replaced
by a group of threshold trusted servers. For this end, a “threshold extension” of OT is needed.
One possible solution is to use Naor and Pinkas’s distributed OT (DOT) [19], which involves a
sender, a receiver, and a group of servers. In DOT, the sender has two items and the receiver
chooses to receive one of them. First, the sender distributes to each server some data derived
from her items, in such a secure way that no single server can figure out any information about
her items. Then the receiver queries the servers. From the servers’ responses, the receiver
is able to reconstruct one and only one of the two items. Furthermore, the receiver has no
information about the other item and the sender has no information about which of the items
the receiver has chosen.

However, DOT assumes semi-honest servers. If some servers are malicious, they can mislead
the receiver to reconstruct a false item. To deal with such malicious servers, we propose a
new cryptographic primitive called “Verifiable Distributed Oblivious Transfer,” or VDOT for
short.

Challenges and Contributions The design of VDOT is technically challenging. One might
suggest that the objective of VDOT could be achieved by a secret-sharing scheme with oblivious
transfer of each share. However, there are two somewhat conflicting goals that need to be
achieved. On the one hand, the receiver must be able to verify the correctness of both items;
otherwise, a malicious server could violate the receiver’s privacy by tampering with its share
of one item and observing whether or not this attack is detected by the receiver. On the other
hand, in order to protect the sender’s privacy, the receiver should be able to reconstruct only
one of the two items. In summary, the major technical challenge is to allow the receiver to
reconstruct only one item but verify the correctness of both items.

Our VDOT protocol uses a novel technique to address the above challenge. An overview of
the VDOT protocol is as follows. During initialization, a global private key is shared in the
Feldman VSS. An advantage of this setup is that the consistency of secret shares encrypted
using ElGamal can be verified. Before each transfer, the sender distributes the shares of both
items among the servers. During the transfer procedure, the receiver invokes the one-round
OT protocol by Bellare and Micali [2, 5], with each server in a quorum (called main servers)
in order to get the share of the item he chooses. Although the receiver can reconstruct only
one item, he can verify the consistency of both items through the help of the remaining servers
(called verification servers), because the encryptions of the shares of both items are transfered
to the receiver during the OT.

We then apply VDOT to mobile agent security to implement the key components of a mobile
agent architecture. As far as we know, this is the first effort to implement a system that
protects the privacy of mobile agents. To write an agent in our system, the designer extracts
the security-sensitive portion of the agent into a function. Then the function is encoded as a
garbled circuit, which is carried by the agent. Because we only apply the security mechanism
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to the security-sensitive portion of an agent, our system is efficient. Because the result of
the security-sensitive portion is interpreted by the normal portion of the agent, all that a
host needs to provide is an interpreter of garbled circuits. As a result, our system provides a
general-purpose solution. We measure the overhead of our system and show that the overhead
is acceptable. In other words, our preliminary evaluation shows that protecting mobile agents
not only is possible, but also can be implemented efficiently.

In summary, the contributions of this paper are as follows. First, we introduce a new
cryptographic primitive, VDOT, which can be used in situations where proxies of OT are
needed but no single proxy can be trusted. In particular, VDOT can be used to strengthen
the security of the mobile agent system designed in [1]. Second, the design of VDOT uses
a novel technique to achieve consistency verification of encrypted secret shares. Third, we
apply VDOT to the problem of mobile agent security to implement the key components of an
architecture for mobile agents.

Organization The rest of this paper is organized as follows. In Subsection 1.1, we discuss
related work. In Section 2, we define the security requirements for VDOT. (In principle, we
can use the general definitions of secure multi-party computation with respect to malicious
adversaries in [13]; however, these general definitions are much more complicated than the
definitions we give specifically for VDOT.) In Section 3, we explain the technique of consis-
tency verification on encrypted shares and present the VDOT protocol. We prove the security
properties of VDOT in Section 4. In Section 5, we show how to apply VDOT to a mobile-
agent system. In Section 6, we present implementation issues and report initial performance
evaluation. We conclude this paper in Section 7.

1.1 Related Work

OT Protocols Oblivious Transfer was first introduced by Rabin [23]. Later, several vari-
ations were proposed, e.g., 1-out-of-2 OT [9], 1-out-of-N OT [4], k-out-of-N OT [17], and
adaptive k-out-of-n OT [18]. Our VDOT can be viewed as an extension of DOT [19], which
introduces a group of servers to the 1-out-of-2 OT scenario. The major difference is that, as
we have explained, our VDOT protocol considers potentially malicious servers, while the DOT
protocol considers semi-honest servers. Another difference is that our model allows the receiver
to communicate with all servers.

PIR/SPIR Protocols A problem similar to OT is private information retrieval (PIR) [6],
in which a user (analogous to the receiver in OT) privately retrieves a bit from a database
(analogous to the sender in OT). However, in PIR, only the user’s privacy is protected, and
the amount of communication is required to be small. In order to get nontrivial solutions
with information-theoretic privacy, it is often assumed that there are two or more copies
of the database, held by database servers that do not communicate with each other. With
computational assumptions, a PIR protocol with a single copy of the database can be con-
structed [15]. Gertner, Ishai, Kushilevitz, and Malkin added the privacy of the database to
the PIR model [12]. The result is called symmetric PIR (SPIR). The difference between SPIR
and OT is that the former further requires small-communication overhead.

3



Interestingly, Gertner, Goldwasser, and Malkin introduced auxiliary servers to PIR [11], just
as Naor and Pinkas introduced a group of servers to OT. However, in the Gertner-Goldwasser-
Malkin model, the database itself is still involved in the protocol after the initialization stage,
and the auxiliary servers may contain no information about the data at all (in the case of
“total independence”). Therefore, it is significantly different from the models of distributed
OT and verifiable distributed OT. The relationship between OT and PIR/SPIR is further
studied in [8].

Cheating Prevention in Secret Sharing Another topic related with this paper is Ver-
ifiable Secret Sharing (VSS), which can be used as a tool for cheating detection. Although
several VSS schemes were proposed in the literature, e.g., [21] and [24], our protocol is based on
the scheme in [10]. Besides VSS, coding-theory-based techniques [16, 3] and cheating-immune
secret sharing [22, 30] can also be used for cheating detection; however, the contexts of these
schemes are different from this paper.

Threshold-based Mobile-Agent Computation An extension of [1] based on threshold
cryptography was proposed by Tate and Xu [28]. The problem they study is analogous to ours
but they base their solution on multiple agents rather than multiple proxy servers. Conse-
quently, their protocol is different from ours.

2 Definitions

We formulate the problem of VDOT as follows. A VDOT protocol involves a sender, a receiver,
and a group of servers, T1, . . . , Tn. Each of the honest parties is a probabilistic Turing machine
who is restricted to run in time polynomial in a security parameter s, while all the dishonest
parties are controlled by an adversary who is also a probabilistic Turing machine running in
time polynomial in s. We assume an authenticated, untappable channel between the sender
(resp., receiver) and each server. Let x0, x1 be the two items held privately by the sender. Let
σ ∈ {0, 1} be a private input of the receiver.

A VDOT protocol consists of an initialization stage and a transfer stage.1 In the initialization
stage, the sender sends a function Fj : {0, 1}∗ → {0, 1}∗ to each server Tj , where Fj depends
on (x0, x1) and the sender’s coin tosses. In the transfer stage, in order to learn xσ, the receiver
sends query qj to server Tj and receiving reply rj = Fj(qj) from Tj . Because the receiver
may not send his queries all at once, qj may depend on the replies to previous queries. After
receiving replies from the servers, the receiver decides either to accept the replies (and gives an
output O(r1, . . . , rn) which is supposed to be xσ) or to reject the replies (and output ⊥ which
means cheating is detected).

Now we summarize the security requirements of a VDOT protocol. In the follows, by saying
ε is negligible in s we mean, for all positive polynomial p(·), there exists s0 ∈ N+ such that,

1We assume that all participants of the protocol, including the malicious ones, will proceed to the end of the
protocol. Therefore, there is no fairness problem. This is a reasonable assumption because we detect cheating
when any participant aborts the protocol, and in many realistic scenarios it is good enough to detect cheating.
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for any s > s0,

ε(s) <
1

p(s)
.

We say that an event happens with high probability if the probability that it does not happen
is negligible in s.

Definition 1 ( correctness) A VDOT protocol is correct if the receiver’s outputs xσ when all
parties follow the protocol.

Definition 2 ( receiver’s privacy) A VDOT protocol protects the receiver’s privacy against a
coalition of the sender and t1 servers if, for σ chosen uniformly at random from {0, 1}, for
any probabilistic polynomial-time adversary that controls a colluding group of the sender and t1
servers, when all parties out of the colluding group are honest, the probability that the adversary
outputs σ is at most 1

2 + ε, where ε is negligible in s.

Definition 3 ( sender’s privacy) A VDOT protocol protects the sender’s privacy against a
coalition of the receiver and t2 servers if, for (x0, x1) chosen uniformly at random, for any
probabilistic polynomial-time adversary that controls a colluding group of the receiver and t2
servers, for any random tape the adversary uses, when all parties out of the colluding group
are honest, there exists σ′ ∈ {0, 1} such that the probability that the adversary outputs x1−σ′ is
at most 1

2 + ε, where ε is negligible in s.

For verifiability, we require that cheating be detected if it may lead the receiver to compute
a false xσ. On the other hand, if the cheating behavior of some servers does not affect correct
reconstruction of xσ, it will be unnecessary to detect it.

Definition 4 ( verifiability of reconstruction) A VDOT protocol is verifiable if, when the
sender and the receiver are honest, there exists a probabilistic polynomial-time algorithm V
such that

• V (r1, . . . , rn) = “accept′′ if no server cheats;

• V (r1, . . . , rn) = “reject′′ with high probability if O(r1, . . . , rn) 6= xσ.

Remark In the above definition, we do not have any requirement of V ’s output if some server
is cheating but O(r1, . . . , rn) = xσ. In this case, both acceptance and rejection will be fine,
because there is cheating but it does not affect the reconstruction.

3 VDOT Protocol

In this section, we address the technical challenge mentioned in Section 1 and present our
protocol. Before describing our protocol in details, we first review an adapted version of the
Bellare-Micali OT protocol, which can be understood as transferring both items encrypted
using ElGamal. Then we show how to verify the consistency of secret shares encrypted using
ElGamal, which is the key technical contribution of our protocol.

Let p, q be large primes such that p = 2q + 1. Denote by Gq the quadratic residue subgroup
of Z∗p . Suppose that g is a generator of Gq. We assume that q has s bits.
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3.1 Bellare-Micali OT

Assume that there exists a public random source. In this adapted version of Bellare-Micali
OT, the receiver first picks δ ∈ Gq using the public random source. Because the receiver has
no control over the public random source, he does not know logg δ, the discrete logarithm of
δ. The receiver then picks β ∈ [0, q − 1] and sets

Gσ = gβ, G1−σ = δ/gβ.

Note that the receiver knows logg Gσ but not logg G1−σ. The receiver sends G0, G1, δ to the
sender, along with a proof that he knows one of the two discrete logarithms, logg G0 and
logg G1, using a result by Cramer et al. [7]. The sender first verifies that δ has been chosen
properly according to the public random source, and δ = G0G1. Then the sender computes,
for b = 0, 1,

x̂b = xbG
k
b ,

where k ∈ [0, q − 1] is the sender’s private key and K = gk her public key.

This OT protocol can be understood as transferring both items in ElGamal ciphertexts.
Recall that in the ElGamal encryption scheme, which is semantically secure under the DDH
assumption, when cleartext m ∈ Gq is encrypted with public key K using random string
r ∈ [0, q− 1], the ciphertext will be (mKr, gr) = (m(gr)k, gr). In the Bellare-Micali OT above,
x̂b can be understood as the first element of the ElGamal ciphertext of xb, encrypted using
random string logg Gb. For convenience, hereafter we often refer to the first element of an
ElGamal ciphertext as the ciphertext. In order to decrypt x̂b, a party not knowing k (e.g., the
receiver) must know logg Gb, the random string used for encryption.

The sender gives both x̂0 and x̂1 to the receiver. Because Gk
σ = (gβ)k = Kβ, the receiver

can reconstruct xσ by computing
xσ = x̂σ/Kβ,

where K is public and β is known to the receiver. However, because the receiver does not
know logg G1−σ, he cannot compute x1−σ.

3.2 Consistency Verification

The basis of our VDOT protocol is actually a distributed version of the above Bellare-Micali
OT. The sender distributes shares of the two items, x0 and x1 respectively, among the servers;
then each server runs the above Bellare-Micali OT with the receiver, to transfer the shares of
the two items, such that the shares of xσ, but not x1−σ, can be received by the receiver. The
privacy properties of our protocol are based on the privacy properties of Bellare-Micali OT.
Therefore, our remaining question is how the receiver detects cheating if any server does not
transfer the correct share.

To detect cheating, the receiver can verify the consistency of shares. More precisely, suppose
that (s1, . . . , sn) are the shares of a secret using (n, t)-Shamir secret sharing [27]. Then, for
any quorum J (|J |=t), any i 6∈ J , it must hold that

∑

j∈J

sj ·
l 6=j∏

l∈J

i− l

j − l
= si.
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Now suppose that we consider a variant of Shamir scheme by applying a homomorphic mapping
α → gα to the Shamir scheme. Then, for secret shares (s1, . . . , sn), it must hold that

∏

j∈J

s

∏l6=j
l∈J

i−l
j−l

j = si.

We say that si is consistent with {sj |j ∈ J} whenever the above equation holds. Therefore, if
no share is corrupted, any share should be consistent with any disjoint quorum. But if some
shares are corrupted while others are not, with high probability there is inconsistency that can
be detected.

However, note that the receiver needs to detect inconsistency of shares of either item. For
x1−σ, the receiver only sees the encryptions of its shares, but not its shares in cleartext. To
allow the receiver to detect inconsistency on encrypted shares, we need to use a property of
Feldman VSS [10].

Specifically, suppose that the servers share k using (n, t)-Feldman VSS. Denote by kj the
share of k held by Tj , and Kj = gkj the corresponding committment. Then clearly,

∏

j∈J

K

∏l6=j
l∈J

i−l
j−l

j = Ki.

Therefore, for the shares (s1, . . . , sn) in the above variant of Shamir scheme,
∏

j∈J

s

∏l6=j
l∈J

i−l
j−l

j = si ⇔
∏

j∈J

(sjK
β
j )

∏l6=j
l∈J

i−l
j−l = siK

β
i

⇔
∏

j∈J

(sjK
1−β
j )

∏l6=j
l∈J

i−l
j−l = siK

1−β
i .

The above means that, to verify consistency among shares (the equation on the left side), the
receiver only needs to check an identity on the right side, which only involves encrypted shares
(which the receiver is able to see).

3.3 VDOT Protocol Specification

In this subsection, we give the full details of our protocol. A server Tj is called “main server”
if 1 ≤ j ≤ t; it is called “verification server” otherwise.

System Initialization An (n, t)-Feldman VSS is set up among T1, . . . , Tn to share k, the
sender’s private key.

Step 0: The sender distributes the shares of x0 and x1 (in the variant of Shamir’s scheme
with threshold t), respectively, among T1, . . . , Tn.

Step 1: The receiver picks δ ∈ Gq uniformly at random according to the public random
source. He also picks β ∈ [0, q − 1] uniformly at random, and computes Gσ = gβ and G1−σ =
δ/gβ. He sends query (G0, G1, δ) to each main server, along with a proof that he knows one of
the two discrete logarithms, logg G0 and logg G1.
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Step 2: Each main server Tj first verifies that 1) the receiver’s proof is valid; 2) δ is chosen
properly according to the public random source; and 3) δ = G0G1 (G0, G1, δ ∈ Gq). If all the
three conditions are satisfied, Tj computes, for b = 0, 1,

ŝb,j = sb,jG
κj

b , (1)

where sb,j is Tj ’s share of xb in the variant of Shamir scheme. Tj sends (ŝ0,j , ŝ1,j) to the
receiver.

Step 3: The receiver checks, for each j, that ŝ0,j , ŝ1,j ∈ Gq. Using the public key of main
server Tj , the receiver computes each share of xσ by

sσ,j = ŝσ,j/Kβ
j .

Then the receiver computes

xσ =
∏

j∈{1,...,t}
s

∏l6=j
l∈{1,...,t}

−l
j−l

σ,j . (2)

Step 4: The receiver computes, for b = 0, 1 and i = t + 1, . . . , n,

ŝ′b,i =
∏

j∈{1,...,t}
ŝ

∏l6=j
l∈{1,...,t}

i−l
j−l

b,j .

Then he sends (G0, G1, ŝ′0,i, ŝ′1,i) to each verification server Ti.

Step 5: Each verification server Ti tests, for b = 0, 1,

ŝ′b,i = sb,iG
ki
b , (3)

and sends the results of comparisons back to the receiver.

Step 6: If for both b = 0 and b = 1, more than half of the verification servers reply with “yes”
(i.e., reply that (3) holds), the receiver accepts the servers’ replies and outputs xσ. Otherwise,
the receiver rejects.

4 Security Properties of VDOT

Our VDOT protocol has security properties as follows.

Claim 5 This VDOT protocol is correct.

Claim 6 The VDOT protocol protects the receiver’s privacy against a coalition of the sender
and all the servers.
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Proof: Consider an adversary that controls the sender and all the servers. It is clear that, no
matter how adversary cheats, the message sequnce M sent by the receiver follow a distribution
that is symmetric in σ. That is, ∀m ∈ {0, 1}∗,

Prob[M = m|σ = 0] = Prob[M = m|σ = 1] = Pr[M = m] = pm.

Suppose that the adversary’s output OA = OA(M, κ), where κ represents the adversary’s
knowledge. Then,

Prob[OA = σ] = Prob[OA = 0|σ = 0]Prob[σ = 0] + Prob[OA = 1|σ = 1]Prob[σ = 1]

=
∑
m

Prob[OA = 0|σ = 0 ∧M = m]Prob[M = m|σ = 0]/2

+
∑
m

Prob[OA = 1|σ = 1 ∧M = m]Prob[M = m|σ = 1]/2

=
∑
m

pm

2
Prob[OA(m,κ) = 0|σ = 0 ∧M = m]

+
∑
m

pm

2
Prob[OA(m,κ) = 1|σ = 1 ∧M = m].

Because each m is a constant string, and κ is independent of σ,

Prob[OA = σ] =
∑
m

pm

2
Prob[OA(m,κ) = 0|M = m] +

∑
m

pm

2
Prob[OA(m,κ) = 1|M = m]

=
∑
m

pm

2

=
1
2
.

¤

Claim 7 Under the DDH assumption, the VDOT protocol protects the sender’s privacy against
a coalition of the receiver and t− 1 servers.

Proof: Note that there is at least one honest main server. Because the receiver’s proof has
been checked by the honest main server(s), it must be the case that the receiver knows either
logg G0 or logg G1. Suppose that the receiver knows logg Gσ′ ; we will show that the adversary
outputs x1−σ′ with probability less than 1

2 + ε.

First, it is clear that, whenever the adversary computes x1−σ′ , it can derive each share of
x1−σ′ . For example, it can derive s1−σ′,j , where Tj is an honest main server. Therefore, it
will be sufficient if we can show that the adversary computes s1−σ′,j with probability less than
1
2 + ε.

To determine the probability that the adversary computes s1−σ′,j , let’s look at the adver-
sary’s interaction with the honest parties. All the adversary learns from the honest parties is the
ŝ1−σ′,js from the honest main servers and the replies indicating whether ŝ′1−σ′,i = s1−σ′,iG

ki
1−σ′

from the honest verification servers. The latter can be ignored because the adversary can
compute such replies by checking the following identity itself:

ŝ′1−σ′,i = ŝ

∏l6=j
l∈{1,...,t}

i−l
j−l

1−σ′,j .
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However, the former (ŝ1−σ′,js) are ElGamal encryptions of s1−σ′,js. Because the ElGamal
encryption scheme is semantically secure under the DDH assumption, the probability that the
adversary computes s1−σ′,j must be less than 1

2 + ε. ¤

Claim 8 The VDOT protocol is verifiable if the number of dishonest servers is not more than
than n−t

2 .

Proof: We construct a verification algorithm V as follows. If the majority of the verification
servers reply with “yes,” then V outputs “accept;” otherwise, V outputs “reject.” It is clear
that, if no server cheats, all verification server will reply with “yes” and V will output “accept.”
In the remainder of this proof, we still need to show that, if the receiver’s output is not equal
to xσ, then the majority of the verification servers reply with “no.” Equivalently, we show
that, when the majority of the verification servers reply with “yes,” the receiver’s output must
equal xσ.

Because the number of dishonest servers is not more than n−t
2 , among the main servers and

the verification servers that reply with “yes,” there are at least t that are honest. Suppose
that there are h honest main servers and t− h dishonest main servers. Then there are at least
t−h honest verification servers that reply with “yes.” For each such honest verification server
Ti, it must hold that,

ŝ′σ,i = sσ,iG
ki
σ ,

which implies

sσ,iG
ki
σ =

∏

j∈{1,...,t}
ŝ

∏l6=j
l∈{1,...,t}

i−l
j−l

σ,j .

For j ∈ {1, . . . , t}, we define sσ,j using ŝσ,j = sσ,jG
kj
σ . Note that, if Tj is honest, then it must

be the case that sσ,j = sσ,j . Therefore, we can simplify the above equation as

sσ,i =
∏

j∈{1,...,t}
s

∏l6=j
l∈{1,...,t}

i−l
j−l

σ,j .

We now have at least t − h sσ,is and t sσ,js that are consistent. Exclude the t − h sσ,js from
dishonest main servers. Then we have at least t−h sσ,is and h sσ,js that are consistent, where
each sσ,j = sσ,j . These t items uniquely define a degree-(t− 1) polynomial, which must be the
original polynomial used for secret sharing. The output of the receiver equals this polynomial
evaluated at 0, which is exactly xσ. ¤

5 Protocol for Mobile-Agent Computation

5.1 A Global Picture of Mobile-Agent Computation

In this section, we apply VDOT to design a secure protocol for mobile agents. Our system
architecture, which is a threshold extension to that in [1], is shown in Figure 1.

There are three types of entities in our system architecture: the originator, the hosts, and
the servers. The reason for introducing the servers in this mobile computing environment is
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server 1

server 3

server 2

originator

host 1 host 2 host k
agent

agent

Figure 1: System Architecture for Mobile Agent Computation

that the originator may not always be online. Furthermore, because the majority of Internet
users are still using dial-up service, they do not have persistent connections. In such scenarios,
the servers serve as a proxy to the originator.

Next we briefly discuss each of the entities.

• Originators The responsibility of an originator is to create an agent and send the agent
to the hosts. To improve efficiency, we partition an agent into the security-sensitive
portion and the general portion.

• Hosts The responsibility of a host is to run the general portion of an agent and interpret
the garbled-circuit portion of the agent. In order to interpret a garbled circuit, the host
needs to run the VDOT protocol with the servers to get the appropriate entries from the
translation table.

• Servers The responsibility of the servers is to serve as a proxy for an originator and
provide translation tables to the hosts through the VDOT protocol.

5.2 Protocol Design of Mobile-Agent Computation

The crucial part of our protocol is how to evaluate the security-sensitive function of an agent.
Therefore, we start our presentation of the protocol by describing the encoding of the security-
sensitive function.

5.2.1 Encoding of a security-sensitive function

For each host, the originator of an agent encodes the security-sensitive function by a garbled
circuit and attaches the circuit to the agent. It is proven in [29] that a garbled circuit never re-
veals any information (to any polynomially bounded adversary) when it is evaluated. However,
to evaluate a garbled circuit, a host needs four translation tables:
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• (table In1) A table that translates clear input 1 (the previous state) to garbled input 1.

• (table In2) A table that translates clear input 2 (the local input) to garbled input 2.

• (table Out1) A table that translates garbled output 1 to clear output 1 (the new state);

• (table Out2) A table that translates garbled output 2 to clear output 2 (the local output).

Among the four tables, table Out2 is attached to the agent in cleartext so that the host can
obtain its local output immediately after the evaluation.

Tables In1 and Out1 encode the state of the agent. Note that the clear output 1 at host j
should be the same as the clear input 1 at host j + 1. A chaining technique [5, 1] is used to
combine the entries of table Out1 at host j with the corresponding entries of table In1 at host
j + 1, the next host. Therefore, as long as host j attaches its garbled output 1 to the agent,
host j + 1 is able to obtain its garbled input 1 which corresponds to the agent’s state after
visiting host j.

Now the only remaining table is In2. For each bit of input 2, the agent originator holds two
items —- the garbled inputs for 0 and 1. Note that we must guarantee that the host receives
the item corresponding to its real input bit, but not the other item, because otherwise the host
would be able to test the agent with all possible inputs to violate the originator’s privacy. So, a
VDOT is invoked, with the originator as the sender, the host as the receiver, and the servers as
the servers in VDOT. Through this VDOT, the host obtains the garbled input corresponding
to its real input bit.

ID Session identifier
GbCircuitj Garbled circuit for host j

GbIn1Host1 Garbled input 1 for host 1
ekm The encryption (public) key of

the mth server
GbIn1Tabj(i,b) The entry of table In1 for host j

when the i-th bit of input 1 is b

GbIn2Tabj(i,b,m) The m-th share of the entry of table
In2 for host j when the i-th bit of
input 2 is b

GbOut1Tabj(i,b) The entry of table Out1 for host j
when the i-th bit of output 1 is b

GbOut2Tabj The translation table Out2 for host j

Table 1: Notations in Figure 2

Figure 2 summarizes the data format carried by an agent for a security-sensitive function
(the notation is explained in Table 1). In our protocol, we use both asymmetric encryption and
symmetric encryption. Here, we denote by PE(ek, m) the asymmetric encryption of cleartext
m with encryption key ek; we denote by E(k, m) the symmetric encryption of cleartext m
with key k. In our protocol, we require that it be easy to verify whether or not a ciphertext
is encrypted with a key in the symmetric encryption scheme. Note that this property can be
implemented by adding redundancy to the cleartext before encryption.

12



Figure 2: Data Format of a Security-Sensitive Function in an Agent

5.2.2 Protocol Summary for Mobile-Agent Computation

When an agent arrives at a host, since In1 is chained to Out1 of the previous host, the host
uses the garbled output 1 of the previous host to retrieve its garbled input 1. The host then
executes VDOT to obtain the value of garbled input 2 corresponding to its local input.

With both garbled input 1 and garbled input 2, the host evaluates the garbled circuit. After
the evaluation, the host uses the attached table Out2 to get its local output. Then it attaches
its garbled output 1 to the agent so that the next host can retrieve its garbled input 1 from
the agent.

Figure 3 shows the information flow of our protocol at a host.

The last host sends the agent back to the originator. The originator then translates the
garbled output 1 to determine the final state of the computation.

5.3 Security Analysis of the Mobile-Agent Protocol

We briefly analyze the security properties of our protocol for mobile-agent computation.

• Originator’s Privacy The originator’s private information in the security-sensitive por-
tion of the agent is private against any hosts and any servers, unless t or more servers
collude.

This follows from the property of sender’s privacy of VDOT. Because only the originator
knows the translation tables of input 1 and output 1, the state information (in which
the originator’s private information is hidden) is private against other parties. Because
VDOT ensures that each host can only evaluate the garbled circuit with one value of its

13



Figure 3: Evaluating a Security-Sensitive Function at Host j

local input, no host is able to extract partial private information from the garbled circuit
by evaluating it for multiple times.

• Host’s Privacy A host’s local input to the agent and local output from the agent are
private against the originator, any other hosts and any servers, no matter how many
parties involved collude.

The privacy of local input follows from the property of receiver’s privacy of VDOT.
Because the local input is not revealed in VDOT, there is no way for other parties to
learn about it. The privacy of the local output is obvious.

• Cheating Detection If the servers cheat to change the garbled input 2, the host is able
to detect cheating, unless n−t

2 or more servers collude.

This follows from the verifiability of VDOT.

6 Implementation and Performance Evaluation

We have implemented VDOT and garbled circuits, the key components of system. We have
also measured preliminary performance.

In our software design, the general portion of an agent will be implemented in Java, while the
security-sensitive portion will be encoded as a garbled circuit. Figure 4 shows the components
and the information flow at an originator. In our current implementation, a user needs to
manually generate a garbled circuit, which should be very small for many applications. In the
future, we expect that an automatic circuit generator will be built. Using the automatic circuit
generator, a user can generate a circuit for her own use by specifying her own parameters. For
example, to build an agent that searches for airline tickets, all a user needs to do is to execute
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the generator and input her desired flight date, source, destination and price threshold. Then
the generator immediately outputs a mobile agent on her behalf.

An agent is sent to hosts for execution. Figure 5 shows the components and the information
flow at a host. Because garbled circuits are general purpose and are represented in a platform-
independent format, for the purpose of efficiency, our current interpreter is implemented in
C.

Obviously, one potential major overhead will be the evaluation of garbled circuits. However,
measurement of our prototype interpreter shows that the overhead is very small. Figure 6
shows the overhead of evaluating random garbled circuits of different sizes. The result shows
that the overhead of evaluating a garbled circuit of several hundred gates is pretty small.

In order to interpret garbled circuits, the hosts need to interact with the servers through
the VDOT protocol to retrieve garbled input 2. Our prototype of VDOT is implemented in
C++. We evaluate the overhead of the VDOT protocol on machines with Intel 1.0GHz CPU
running Linux. Figure 7 shows the steps of the VDOT protocol and labels the cost of each
computational step. The setting of the evaluation is n = 6 and t = 3. It is clear that the cost
of VDOT is acceptable.

7 Conclusions

In this paper, we presented our VDOT scheme. We showed that VDOT is correct and it
protects both the receiver’s privacy and the sender’s privacy. In addition, the correct recon-
struction of the transfered item is verifiable. Note that VDOT can be further extended to
consider a malicious sender, who may intentionally mislead the servers so that they can be
accused of cheating. The protocol we have shown can be easily adapted to solve this problem,
if revised slightly. We ignore this extension for simplicity.
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We also presented a system for secure mobile-agent computation. Our system partitions
an agent into the general portion and the security-sensitive portion. Our system protects
the privacy of both the originator and the hosts, without using any single trusted party. We
also designed and implemented the key components of our system. As far as we know, this
is the first effort to implement a system that protects the privacy of mobile agents. Our
preliminary evaluation shows that protecting mobile agents is not only possible, but also can
be implemented efficiently.

Our current major implementation effort is seamless integration between the general portion
and the security-sensitive portion of an agent. A strong programming support environment is
desired.
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