
Batch Rekeying for Secure Group Communications ���

Xiaozhou Steve Li, Yang Richard Yang, Mohamed G. Gouda, Simon S. Lam
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188�

xli,yangyang,gouda,lam � @cs.utexas.edu

ABSTRACT
Many emerging web and Internet applications are based on a group
communications model. Thus, securing group communications is
an important Internet design issue. The key graph approach has
been proposed for group key management. Key tree and key star
are two important types of key graphs. Previous work has been fo-
cused on individual rekeying, i.e., rekeying after each join or leave
request. In this paper, we first identify two problems with indi-
vidual rekeying: inefficiency and an out-of-sync problem between
keys and data. We then propose the use of periodic batch rekeying
which can improve efficiency and alleviate the out-of-sync prob-
lem. We devise a marking algorithm to process a batch of join and
leave requests. We then analyze the key server’s processing cost for
batch rekeying. Our results show that batch rekeying, compared to
individual rekeying, saves server cost substantially. We also show
that when the number of requests in a batch is not large, the best key
tree degree is four; otherwise, key star (a special key tree with root
degree equal to group size) outperforms small-degree key trees.

Keywords: Secure group communications, group key management,
rekeying.

1. INTRODUCTION
Many emerging web applications are based on a group commu-

nications model [12, 4, 15]. In the Internet, multicast has been
used successfully to provide an efficient, best-effort delivery ser-
vice from a sender to a large group of receivers [6]. Thus, securing
group communications (i.e., providing confidentiality, authenticity,
and integrity of messages delivered between group members) will
become an important Internet design issue.

One way to achieve secure group communications is to have a
symmetric key, called group key, shared only by group members
(also called users in this paper). The group key is distributed by a
key server which provides group key management service. Mes-
�
Research sponsored by National Science Foundation grant No.

ANI-9977267.�
In Proceedings 10th International World Wide Web Conference,

Hong Kong, May 2001.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

sages sent by a member to the group are encrypted with the group
key, so that only members of the group can decrypt and read the
messages.

Compared to two-party communications, a unique characteris-
tic of group communications is that group membership can change
over time: new users can join and current users can leave or be
expelled. If a user wants to join the group, it sends a join request
to the key server. The user and key server mutually authenticate
each other using a protocol such as SSL [7]. If authenticated and
accepted into the group, the user shares with the key server a sym-
metric key, called the user’s individual key.

For a group of � users, initially distributing the group key to
all users requires � messages each encrypted with an individual
key (the computation and communication costs are proportional to
group size �). To prevent a new user from reading past communi-
cations (called backward access control) and a departed user from
reading future communications (called forward access control), the
key server may rekey (change the group key) whenever group mem-
bership changes. For large groups, join and leave requests can hap-
pen frequently. Thus, a group key management service should be
scalable with respect to frequent key changes.

It is easier to rekey after a join than a leave. After a join, the new
group key can be sent via unicast to the new member (encrypted
with its individual key) and via multicast to existing members (en-
crypted with the previous group key). After a leave, however, since
the previous group key cannot be used, the new group key may
be securely distributed by encrypting it with individual keys. This
straightforward approach, however, is not scalable. In particular,
rekeying costs 2 encryptions for a join and ���	� encryptions for
a leave, where � is current group size (see Section 2.2).

The key graph approach [16, 17] has been proposed for scalable
rekeying. In this approach, besides the group key and its individual
key, each user is given several auxiliary keys. These auxiliary keys
are used to facilitate rekeying. Key graph is a data structure that
models user-key and key-key relationships. Key tree is an important
type of key graph where key-key relationships are modeled as a
tree. For a single leave request, key tree reduces server processing
cost to
����������� . Key star is a special case of key tree. We provide
more details of the key graph approach in Section 2.

A thorough performance analysis of individual rekeying (rekey-
ing after each join or leave) is given in [17]. Individual rekeying,
however, has two problems. First, it is relatively inefficient. Sec-
ond, there is an out-of-sync problem between keys and data (see
Section 4).

In this paper, we propose the use of periodic batch rekeying that
can improve efficiency and alleviate the out-of-sync problem. In
batch rekeying, the key server collects join and leave requests in
a period of time and rekeys after a batch has been collected. We

devise a marking algorithm to process a batch of requests. We then
analyze the worst case and average case server processing costs for
batch rekeying. Our results show that batch rekeying, compared to
individual rekeying, saves server cost substantially. We also show
that when the size of a batch is not large (roughly, when the number
of joins is less than half of current group size, and the number of
leaves is less than a quarter of current group size), four is the best
key tree degree; otherwise, key star outperforms small-degree key
trees. Our results provide guidelines for a key server to choose an
appropriate data structure for group key management.

This paper is organized as follows. Section 2 briefly reviews
the key graph approach. Section 3 identifies two problems with
individual rekeying. Section 4 presents the batch rekeying idea.
Section 5 presents the marking algorithm. Section 6 analyzes the
server’s processing cost for batch rekeying. Section 7 shows how to
minimize server cost. Section 8 discusses related work. Section 9
concludes the paper.

2. KEY GRAPH APPROACH
The key graph approach [17] assumes that there is a single trusted

and secure key server, and the key server uses a key graph for group
key management. Key graph is a directed acyclic graph with two
types of nodes: u-nodes, which represent users, and k-nodes, which
represent keys. User � is given key

�
if and only if there is a di-

rected path from u-node � to k-node
�

in the key graph. Key tree
and key star are two important types of key graph. In a key tree, the
k-nodes and u-nodes are organized as a tree. Key star is a special
key tree where tree degree equals group size. To avoid confusion,
from now on, we use key tree to mean small-degree key tree. We
only consider key tree and key star in this paper.

2.1 Key Tree
In a key tree, the root is the group key, leaf nodes are individual

keys, and the other nodes are auxiliary keys. Consider a group of
9 users ��� , ����� , ��� . A key tree of degree 3 is shown in Figure
2.1(a). In this figure, boxes represent u-nodes and circles represent
k-nodes. User ��� is given 3 keys on the path from �	� to

� ��
�� :� � , ���� � , and
� ��
�� . � ��
�� is the group key.

� � is ��� ’s individual
key, which is shared by only � � and the key server.

� ��� � is an
auxiliary key shared by � � , � � , and ��� . Suppose ��� wants to leave
the group (from Figure 2.1(a) to 2.1(b)), the key server needs to
change the keys that �	� has, that is, change

� ��
�� to a new key� ��
 � , � ��� � to a new key
� ���

. There are three strategies to distribute
the new keys to the remaining users: user-oriented, key-oriented,
and group-oriented [17]. For simplicity, we only consider group-
oriented rekeying in this paper. Using group-oriented rekeying, the
key server constructs the following rekey message and multicasts it
to the whole group:

��� ������������� � :
� ���� ������� � ���� ������ � � ��
 � �������! ,� � ��
 � �"��#�$!%� � � ��
 � �"���!�

Here
� �'& ��� means key

�&
encrypted with key

�
. We call each

item in the rekey message an encrypted key. Upon receiving the
rekey message, a user extracts the encrypted keys that it needs. For
example, � � only needs

� � ��
 � ������� and
� ���� ����� .

Similarly, suppose � � wants to join a group of 8 users (from
Figure 2.1(b) to 2.1(a)). The key server finds a joining point (

�'���
in this example) for the new user, constructs the rekey message,
multicasts it to the whole group, and unicasts �	� the keys needed
by � � :

k123

u2

k2

u5

k5

u8

k8

u1

k1 k3

u3 u4

k4

u6

k6

u7

k7

u9

k9

k456

k1−8

k78

(b)

k123

u2

k2

u5

k5

u8

k8

u1

k1 k3

u3 u4

k4

u6

k6

u7

k7

u9

k9

k456

k1−9

k789

group key

auxiliary
key

(a)

individual
key

u9 leaves u9 joins

Figure 1: Example of a key tree.

��� ����������������� :
� � ��
�� ��� ��('� � � ���� � �"���!���� ��� :
� � ��
��)� ���� � �"��*

From the above example, we can see that both the server’s com-
putation and communication costs are proportional to the number
of encryptions to be performed (5 for the first example and 4 for the
second example). Thus, we use server cost to mean the number of
encryptions the key server has to perform. If the key tree degree is+

and there are � users, assuming the key tree is a completely bal-
anced tree, the server cost is , �����- � for a join and

+ �� �- ��� �
for a leave. [17] showed that

+/.10
is the optimal degree for a

leave.

2.2 Key Star
Key star is a special case of key tree where tree root degree equals

group size. Key star models the straightforward approach. In key
star, every user has two keys: its individual key and the group key.
There is no auxiliary key. Figure 2(a) shows the key star for 4 users.
Suppose ��2 wants to leave the group (from Figure 2(a) to 2(b)),
the key server encrypts the new group key

� ��
�3 using every user’s
individual key, puts the encrypted keys in a message and multicasts
it to the whole group:

��� ��������45����3 :
� � ��
�3 �����)� � � ��
�3 �"����� � � ��
�3��"��

Suppose ��2 wants to join the group (from Figure 2(b) to 2(a)),
the key server sends out the following messages:

��� ��������45����3 :
� � ��
�2 ��� ��(' ��� � 2 :
� � ��
�2 ���6#

Clearly, using a key star, the server cost is , for a join and � � �
for a leave.

3. PROBLEMS WITH INDIVIDUAL
REKEYING

u1 u2 u3u1 u3 u4u2

k2

(a)

group key

individual
keys

u4 leaves

u4 joins

k1 k3 k4 k1 k3k2 k4

u4

k1−4 k1−3

(b)

Figure 2: Example of a key star.

Ideally, a departed user should be expelled from the group, and
a new user be accepted to the group, as early as possible. Thus,
the key server should rekey immediately after receiving a join or
leave request, We call this individual rekeying. Individual rekey-
ing, however, has two problems: inefficiency and an out-of-sync
problem between keys and data.

3.1 Inefficiency
Individual rekeying is relatively inefficient for two reasons. First,

the rekey message has to be signed for authentication purpose, oth-
erwise a compromised group user can send out bogus rekey mes-
sages and mess up the whole system. Signing operation is com-
putationally expensive [18]. If, for every single request, the key
server has to generate and sign a rekey message, the signing oper-
ation alone will place a heavy burden on the key server, especially
when requests are frequent.

Second, consider two leaves that happen one after another. The
key server generates two sets of new keys (group key and auxiliary
keys) for these two leaves. These two leaves, however, might tem-
porally happen so close to each other that the first set of new keys
are actually not used and are immediately replaced by the second
set of new keys. When requests are frequent, like during the startup
or teardown of a multicast session, many new keys may be gener-
ated and distributed, while not used at all. This is a waste of server
cost.

3.2 Out-of-Sync Problem
Individual rekeying also has the following out-of-sync problem

between keys and data: a user might receive a data message en-
crypted by an old group key, or it might receive a data message
encrypted with a group key that it has not received yet. Figure 3
shows an example of this problem. In this example, at time ��� , �	4
receives a data message encrypted with group key GK(2) from � � ,
but ��4 has not received GK(2); at time ��4 , ��� receives a data mes-
sage encrypted with group key GK(0) from � 4 , but ��� ’s current
group key is GK(2). Delay of reliable rekey message delivery 1 can
be large and variable. Thus, this out-of-sync problem may require
a user to keep many old group keys, and/or buffer a large amount
of data encrypted with group keys that it has not received.

4. BATCH REKEYING
To address the above two problems, we propose the use of peri-

odic batch rekeying. In batch rekeying, the key server waits for a
period of time, called a rekey interval, collects all the join and leave
requests during the interval, generates new keys, constructs a rekey
message, and multicasts the rekey message.
� Reliable delivery of rekey messages is itself a research topic [18].
In this paper, we assume that there exists some mechanism for re-
liable delivery of rekey messages.

GK(0) GK(1) GK(2)

GK(0) t1 GK(1)

t2

KS

u1

u2

GK(2)

reliable delivery of rekey messages
data message

GK(i): the i−th group key

Figure 3: Out-of-sync problem

4.1 Efficiency
Batch rekeying improves efficiency because it reduces the num-

ber of rekey messages to be signed: one for a batch of requests,
instead of one for each. Batch rekeying also takes advantage of
the possible overlap of new keys for multiple rekey requests, and
thus reduces the possibility of generating new keys that will not
be used. In Section 6, we will quantify the performance benefit of
batch rekeying.

4.2 Out-of-Sync Problem Alleviated
Batch rekeying alleviates the out-of-sync problem. To see this,

let � � be the maximum delay of reliable delivery of rekey mes-
sages, � 4 be the maximum delay of data messages, � be the length
of the rekey interval, and GK(�) be the � -th group key. That is, if
a user’s current group key is GK(�), when it receives a rekey mes-
sage, its group key becomes GK(��� �). It is not hard to show the
following theorem. We skip the proof for simplicity.

THEOREM 1. If � � ��� 4�� � and a user’s current group key
is GK(�), then the user will only receive data messages encrypted
with GK(� � �), GK(�), or GK(�	� �), but not other group keys.

This theorem indicates that if we make � relatively large com-
pared to � � and � 4 , then a user only needs to keep GK(� � �),
GK(�), and its current auxiliary keys. If the user receives a data
message encrypted with GK(�
� �), it has to keep them in some
buffer and wait until the next rekey message arrives. Since the
rekey interval is likely to be larger than message delays, the condi-
tion � � ��� 4�� � is easy to satisfy.

4.3 Security Considerations
Batch rekeying is a tradeoff between performance and security.

Since the key server does not rekey immediately, a departed user
will remain in the group longer, and a new user has to wait longer
to be accepted to the group.

We define vulnerability window to be the period of time from the
key server receives a join or leave request, to all users receive the
rekey message. We use the maximum size of vulnerability window,
denoted as , to measure security, because any group traffic sent
within the vulnerability window is susceptible to be read by a de-
parted user. The smaller , the more secure the system is. We note
that also measures how soon a new user can be accepted to the
group.

Figure 4(a) shows an example to illustrate the vulnerability win-
dow notion for individual rekeying. In this example, � � requests
to leave the group at � � . The key server receives the request at � 4
and rekeys immediately. The rekey message arrives � 4 at ��� . But
between � 4 and � � , � 4 sends out a message encrypted with GK(�)

at ��3 . The message arrives � � at � 2 . Although ��� has left the group
at � 2 , it is still able to read this message. The period between � 4 and
��� is the vulnerability window. Figure 4(b) shows the vulnerability
window notion for batch rekeying.

KS

u1

u2

GK(0)t1

t3

t2

t4

t5 GK(1)GK(0)

vulnerability window

(a) Individual rekeying

data message
leave request

GK(i): the i−th group key

KS

u1

u2

GK(0)t1

t3

t2

t4

GK(0)

rekey interval

t5 GK(1)

vulnerability window

(b) Batch rekeying

reliable delivery of rekey messages

Figure 4: Vulnerability window.

It is not hard to see that
. � � for individual rekeying and

 . � � � � for batch rekeying. So even in individual rekeying, a
departed user is able to continue reading group communication for
some period of time. Batch rekeying only makes this period longer
and adjustable. Many applications can tolerate such a compromise.
For example, a pay-per-view application can tolerate a viewer re-
maining in the group for a few more minutes after its subscription
expires. An application can choose an acceptable � based on its
own requirements.

As noted in the Introduction section, it is easier to rekey after
a join than a leave. Thus, the access delay of a new user may be
reduced by processing each new join immediately without rekeying
the entire group, i.e., each new user is given the current group key
and its auxiliary keys encrypted with its individual key, but leave
requests are processed periodically in a batch. This approach offers
new users faster access to the group at the cost of also giving new
users a small amount of backward access. For simplicity, we will
not discuss this approach in detail in the balance of this paper.

5. MARKING ALGORITHM
In this section, we present a marking algorithm for the key server

to process a batch of requests. Obviously, if the key server uses
key star, batch rekeying is a straightforward extension to individual
rekeying. Thus, the marking algorithm applies to key tree only. In
Section 6, we will analyze the resulting server processing cost for
batch rekeying.

We use
�

to denote the number of joins in a batch and � to denote
the number of leaves in a batch. We assume that within a batch, a
user will not first join then leave, or first leave then join.

5.1 Marking Algorithm
Given a batch of requests, the main task for the key server is to

identify which keys should be added, deleted, or changed. In indi-
vidual rekeying, all the keys on the path from the request location
to the root of the key tree have to be changed. When there are mul-
tiple requests, there are multiple paths. These paths form a subtree,
called rekey subtree, which includes all the keys to be added or
changed. The rekey subtree does not include individual keys.

The key server cannot control which users might leave, but it can
control where in the key tree to place the new users. Thus, the key

server should carefully place the new users (if there were any) so
that the number of encryptions it has to perform is minimized. The
following marking algorithm uses some heuristics to achieve this
objective. Figure 5 illustrates the idea. We use the word key and
node interchangeably.

J=L

UPDATE

leaves joins

becomes

UPDATE

joinsDELETEleaves

becomesJ<L

J>L, L>0

join

becomes

leave

leave
J−L+1 joins

NEW

UPDATE

J>L, L=0 becomes

v NEW

UPDATE

J joinsv

T

T

NEW

NEW

Figure 5: Marking algorithm.

� Case 1:
� . � .

1. Replace leaves by joins.

2. Mark all the nodes from the replacement locations to
the root UPDATE.

� Case 2:
� ��� .

1. Out of the � leaves, pick
�

shallowest (smallest height)
leaves. 2 Replace these

�
leaves with the

�
joins.

2. Mark all the nodes from the root to the leave and re-
placement locations UPDATE or DELETE. Those leav-
ing nodes without joining replacements are marked
DELETE. A non-leaf node is marked DELETE if and
only if all of its children are marked DELETE.

� Case 3:
��� � and � . � .

1. Find a shallowest leaf node � . Remove � from the tree.

2. Construct � , a complete but not necessarily balanced
tree [11], that has all the new users and � as leaf nodes.
The other nodes of � are new keys.

4 Keeping height information at the nodes is not difficult. We skip
the details in this paper.

3. Attach � to the old location of � .
4. Mark all � ’s internal nodes NEW and mark all the nodes

from the root to the parent of � ’s old location UPDATE.

� Case 4:
��� � and � � � .

1. Replace all leaves by joins.

2. Find a shallowest leaf node, � , among the replacement
locations. Remove � from the tree.

3. Construct a complete tree � that has the extra joins and
� as leaf nodes. The other nodes of � are new keys.

4. Attach � to the old location of � .
5. Mark all � ’s internal nodes NEW and mark all the keys

from the replacement locations (except the old location
of �) to the root UPDATE.

After marking the key tree, the key server removes all nodes that
are marked DELETE. The nodes marked UPDATE or NEW form
the rekey subtree. The key server then traverses the rekey subtree,
generates new keys, encrypts every new key by each of its chil-
dren, constructs and multicasts the rekey message. It is not hard
to see that the running time of the marking algorithm is
�� � � �
������ ��- � � ��� , which is efficient (simulation results in section
6.3).

5.2 Two Examples
Figure 6 shows an example to illustrate the marking algorithm.

In this example, � 2 and � � leave the group, � ��� joins the group.
The rekey subtree is marked as in the figure. Using group-oriented
rekeying, the key server multicasts the following message to the
group:

����� :
� � &2 ��� �������� � � &2 ��� ����$� � � &2 ��� �"��%�� � � &��� � �"���)�� �'&��� � ������� � �'& ��
�� ������� �� � �& ��
�� � �	�#�$ % � � �& ��
�� � �	��!� *

�

�
������
����������

k123

u2

k2

u5

k5

u8

k8

u1

k1 k3

u3 u6

k6

u7

k7

u9

k9

(b)

u10

k10

UPDATEUPDATE

UPDATE
k1−9’

k456’ k789’

DELETE

k123

u2

k2

u5

k5

u8

k8

u1

k1 k3

u3 u4

k4

u6

k6

u7

k7

u9

k9

k456

k1−9

k789

(a)

u4 and u9 leave
u10 joins

Figure 6: Marking algorithm example 1.

k1 k2

u4

k4k3

u3

������������
������������ ������������
��������������������������������

u2u1

k3

(b)

u2u1

(a)

k12 k34

k1−4

k1 k2

k12

k1−6

k5 k6

u5 u6

k56

u3

k356

u5 and u6 join

u4 leaves
UPDATE

UPDATE

NEW

Figure 7: Marking algorithm example 2.

Figure 7 shows another example. In this example, � 2 leaves the
group, � � and ��� join the group. The rekey subtree is marked as in
the figure. Using group-oriented rekeying, the key server multicasts
the following message to the group:

����� :
� � ��� � ��$ � � � ��� � ��% � � � 3 ��� � ��$ % � � � 3 ��� � �� �� � ��
�� �������'� � � ��
�� �"�� !$ %

5.3 Keeping the Key Tree Balanced
To achieve best performance, a key tree should be kept more or

less balanced. Our marking algorithm aims to keep the tree bal-
anced across multiple batches, by adding extra joins to the shal-
lowest leaf node of the tree in each batch.

However, depending on the actual locations of the requests, even
if the key tree starts complete and balanced, it is possible that the
key tree may grow unbalanced after some number of batches. For
example, many users located close to each other in the key tree may
decide to leave at the same time. It is impossible to keep the key
tree balanced all the time, without incurring extra cost. We refer
the interested reader to [14] for discussions on this topic.

6. ANALYSIS
In this section, we analyze the server processing cost for batch

rekeying. We consider the worst case and average case and com-
pare batch rekeying against individual rekeying.

Key star’s batch rekeying server cost, denoted as ��� � � � � � � � ,
is:

� � � � � � � ��� .�� � � � if � . �
� � � � � if � � �

Thus, our analysis mainly focuses on key trees. For the purpose
of analysis, we assume that the key tree is a complete and balanced
tree at the beginning of a batch, and that each current user has equal
probability of leaving.

Let
+

be the key tree degree, � be the group size at the begin-
ning of a batch, be the height of the key tree (. ����'- �),! � � � + � � � � � be the worst case batch rekeying server cost, and" � � � + � � � ��� be the average case batch rekeying server cost.

6.1 Worst Case Analysis
The marking algorithm can control where to place joins, but can-

not control where leaves happen. Thus, worst case analysis mainly
considers how the locations of leaves affect the server cost. Since
the marking algorithm takes different operations for four cases,
worst case analysis is also divided into four cases.

� Case 1:
� . � .

For simplicity, we first assume � . + � for some integer
�

.
When

� . � , the worst case happens when the leaves are
evenly distributed across the � leaf nodes in the key tree
(see Figure 6.1(a)). The server cost for this case is:!�� � � � + � � � � � . � + �����- � � �

+ � � � � �+ � �

If � is not some power of
+

, suppose � . + � � � , � � � �
� + � � � + � , then in the worst case, each of the � additional
leaves adds

+ � � � ��� � to the total cost (see Figure 6.1(b)).
Thus,!�� � � � + � � � � � . + ��� � � � � � �

+ � + � � � �+ � � � � + � � � � � �

In other words, if
+ � � � � + ��� � , !�� � � � + � � � ��� grows

linearly between
!�� � � � + � � � + � � and

!�� � � � + � � � + ��� � � .

d h−k
d h−k

d k

leave and join

d h−k−1 (additional leave and join)

(b) J=L, L is not some power of d(a) J=L, L is some power of d

Figure 8: Worst case analysis.

� Case 2:
� � � .

The analysis for this case is similar to the previous case. The
only difference is that there are only � � � � � � � users left
in this case. Thus,!�� � � � + � � � ��� . !�� � � � + � � � � � � � � � � �
� Case 3:

��� � and � . � .
In this case, the marking algorithm has full control of the
server cost. It is not hard to see that a complete

+
-ary tree

with � leaves is of size
	 -�

��-
��� . Thus, � ’s size is

	 -���� � ����
��-
����
(see Figure 5) and there are ����'- � � � nodes from the root
to � . Thus:!�� � � � + � � � � � . 	 + �

+ � � � � , �����- �

� Case 4:
��� � and � � � .

When there are more joins than leaves, the analysis is a com-
bination of cases 1 and 3. Thus:!�� � � � + � � � � � . !�� � � � + � � � ��� � 	 + � � ��� �+ � � �

Figure 9 shows
! � � � + � � � ��� for � � � + � . � � � , 0 � , � and � � � + �. � 0 ����� � 0 � , on a wide range of

�
and � values. We can see that,

for fixed � ,
! � � � + � � � ��� is an increasing function of

�
(because

more joins helps the key tree to “grow back”). For fixed
�

, as � be-
comes larger,

! � � � + � � � ��� first increases (because more leaves
means more keys to be changed), then decreases (because now
some keys are pruned from the tree). Clearly,

! � � � + � � � ��� is
an increasing function of � . We will investigate the effect of

+
in

Section 7.

6.2 Average Case Analysis
The server cost depends on the number of nodes belonging to the

rekey subtree, and the number of children each node has. Thus, our
technique for average case analysis is to consider the probability
that an individual node belongs to the rekey subtree, and to consider
the node’s expected number of children (some children might be
pruned). Again, we consider the following four cases.

L(v)

v
level l

level 0

level h

T(v)

Figure 10: Average case analysis.

� Case 1:
� . � .

This case forms the basis of our analysis for the other cases.
Let the root of the key tree be at level � , and the leaf nodes be
at level , where . �� � - � . Let � ��� � be the subtree rooted
at node � and � ��� � be the leaf nodes of � ��� � . Consider a
node � at level � , ��� � � � � (see Figure 10). � belongs
to the rekey subtree if and only if there is at least one leave
in � � � � . Assuming every current user has equal probability
of leaving, there are �� !#" ways to pick � leaving users out of

� users. Among these many ways, �
 %$ -�&! " of them have
no leaves in � ��� � . Thus, the probability that � belongs to the

rekey subtree is � � �'
 %$ - &! "�()�� !*" . Therefore,

"+� � � � + � � � � � . +-,
��. / � � +
/
� � � �'
 %$ - &! "�' ! " �

� Case 2:
� ��� .

When
� � � , we should take into account the probability

that some nodes might be marked DELETE and pruned from
the tree. A node � is pruned if and only if all nodes in � � � �
are leaves and none of them are replaced by joins. Using a
similar technique as the previous case, we know the proba-
bility that a node at level � is pruned is

�
 %$ -0&!
 %$ - & "�' ! " 1 �
!
 2$ - &� "� ! � " . � !
 � %$ - & "�3 %$ - & " �

Thus,

" � � � � + � � � ��� . " � � � � + � � � ��� � ,. / � � +
/ � !
 � %$ - & "� %$ - & "

� Case 3:
��� � and � . � .

For this case,"4� � � � + � � � � � . !�� � � � + � � � � �
� Case 4:

��� � and � � � .
The analysis for this case is a combination of cases 1 and 3.
Thus:"4� � � � + � � � ��� . "5� � � � + � � � ��� � 	 + � � ��� �+ � � �

N=1024, d=2

0
200

400
600

800
1000J 0

200
400

600
800

1000
1200

L

0
500

1000
1500
2000
2500
3000
3500

server cost (#encryptions)

N=4096, d=4

0 500 1000150020002500300035004000J 0
500

1000
1500

2000
2500

3000
3500

4000
4500

L

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

server cost (#encryptions)

Figure 9: Worst case server cost.

6.3 Simulation
We built a simulator for the marking algorithm. The simulator

first constructs a key tree and randomly picks � users to leave, it
then runs the marking algorithm and calculates the server cost. We
ran the simulation for � � � times and calculated the mean server
cost. Simulations were done on a Sun Ultra Sparc I with 167MHz
CPU and 128MB memory. The marking algorithm took at most0 � � ms when � � � + � . � � �), 0 � , � , and at most � � ms when � � � + � .
� 0 ��� � � 0 � , for all

� � � and ��� � .
Figure 11 shows

" � � � + � � � � � for � � � + � . � � � , 0 � , � and � � � + �. � 0 ��� � � 0 � , on a wide range of
�

and � values. Our analysis and
simulation results match so well that we cannot tell the difference.

Figure 12 compares average case and worst case server costs.
These two costs are rather close to each other when

�
and � are

relatively small compared to � . Thus, we can consider worst case
a good approximation to average case.

6.4 Batch vs. Individual Rekeying
In this section, we show that batch rekeying saves server cost

substantially over individual rekeying. The actual save depends on
whether the key server uses key star or key tree.

6.4.1 Key Star
Let ��� � � � � � ��� be the cost for processing

�
joins and � leaves

individually. Clearly,

��� � � � � � � � . � , � if � . �
� � � � � � � , � if � � �

Thus, the difference between batch rekeying and individual rekey-
ing is:

��� � � � � � ��� � � � � � � � � � � . � � � � if � . �
� � � � � � � � if � � �

The difference is substantial, especially when
�

and � are large. 3

6.4.2 Key Tree
We have mentioned that using key tree for individual rekeying,

the server cost is
+ �����- � � � for a leave and , ����'- � for a join.

Let � � � � + � � � ��� be the server cost for rekeying a batch of
�

joins

3 We observe that the exact cost for individually rekeying a batch
of requests depends on the actual sequence of the requests. Since
our purpose is to estimate the benefit of batch rekeying, instead of
finding the exact benefit, we do not go into this detail. We will see
that the benefit of batch rekeying is so substantial that the actual
sequence variation is unlikely to make a big difference.

and � leaves individually. Clearly,

� � � � + � � � ��� . � + � � , � � ���� - � � �
We use this to be individual rekeying’s cost 4, and we use average
case cost as batch rekeying’s cost.

Figure 13 compares batch rekeying against individual rekeying
for � � � + � . � � � , 0 � , � and � � � + � . � 0 ��� � � 0 � . On the left fig-
ure, we show a narrower range of

�
and � values. On the right

figure, we show a wider range. We can see that batch rekeying has
a substantial benefit over individual rekeying.

7. MINIMIZATION OF SERVER COST
In the previous section, we have shown that batch rekeying saves

server cost substantially. But when a key server uses batch rekey-
ing, there are still two questions to answer. Shall the key server use
key tree or key star? If it uses key tree, what degree should be the
key tree? In this section, we show that the choice of data structure
has big influence on server cost, and we provide guidelines for the
key server to choose an appropriate one.

7.1 Key Tree vs. Key Star
First, we compare key star cost against , -ary and

0
-ary key tree

costs. Figure 14 shows the comparison for � . � �), 0 and � .
0 � ��� . The shadowed area is where key star is better. We observe
that key star is better when � . � or when

�
and � are large.

Figure 15 compares key star cost against key tree costs for � .
� � , 0 ,

+ . , � 0 ��� , , and � . 0
����� , + . , � 0 ���'� � � . We tem-

porarily ignore the case where � . � . Each curve in the figures
corresponds to a

+
value. The curves are where key star cost is the

same as
+

-ary key tree cost. Above a curve is where key star is
better, while below a curve is where key tree is better. From this
figure we draw a similar conclusion that key star is better than key
tree when

�
and � are large. Roughly, when

� � 4 and � � 2 ,
key tree is better than key star; otherwise, key star is better than key
tree.

7.2 What tree degree is the best
[17] showed that

+ . 0
is optimal for individual rekeying. We

show in this section that
+ . 0

is still optimal for batch rekeying.
Since server cost depends on both

�
and � , we first look at the

special case when
� . � . Figure 16 shows key tree costs for

various
+

values, when
� . � . We can see that

+ . 0
is better than

others when
�

and � are small. Figure 17 shows the server costs
for key trees with various

+
values when

� . � . We also observe
2 See footnote 3.

N=1024, d=2

computed
simulated

0
200

400
600

800
1000J 0

200
400

600
800

1000

L

0
500

1000
1500
2000
2500
3000

server cost (#encryptions)

N=4096, d=4

analysis
simulation

0 500 1000150020002500300035004000J 0
500

1000
1500

2000
2500

3000
3500

4000

L

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

server cost (#encryptions)

Figure 11: Average case server cost.

N=1024, d=2

worst case
average case

0
200

400
600

800
1000J 0

200
400

600
800

1000
1200

L

0
500

1000
1500
2000
2500
3000
3500

server cost (#encryptions)

N=4096, d=4

worst case
average case

0 500 1000150020002500300035004000J 0
500

1000
1500

2000
2500

3000
3500

4000
4500

L

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

server cost (#encryptions)

Figure 12: Average case and worst case server costs.

N=1024, d=2

batch rekeying
individual rekeying

0
20

40
60

80
100J 0

20
40

60
80

100

L

0
500

1000
1500
2000
2500
3000
3500
4000

server cost (#encryptions)

N=4096, d=4

batch rekeying
individual rekying

0 500 1000150020002500300035004000J 0
500

1000
1500

2000
2500

3000
3500

4000

L

0
20000
40000
60000
80000

100000
120000
140000

server cost (#encryptions)

Figure 13: Batch rekeying vs. individual rekeying.

that
+ . 0

is better than others when
�

and � are small. These two
figures also show that

+
has a big influence on the resulting server

cost. Figure 18 shows the area where
+ . 0

is better than other
+

values. We can see that roughly, in the area where key tree is better
than key star,

+ . 0
is the best.

7.3 How to minimize server cost
From the above discussions we have seen that choosing an ap-

propriate data structure has big influence on server cost. An appli-
cation usually has an estimate of

�
and � , based on the expected

number of users, length of the rekey interval, and the application’s
other characteristics. Thus, the guideline for a key server to choose
an appropriate data structure is: if

� � 4 and ��� 2 , use a
0
-ary

key tree; otherwise, use a key star.

8. RELATED WORK
The topic of secure group communications has been investigated

in [2, 3, 8, 10, 9, 13]. [13] addressed the need for frequent group
key changes and the associated scalability problem. The approach
proposed in [13] decomposes a large group of users into many sub-
groups and employs a hierarchy of group security agents. This ap-
proach, however, requires many trusted entities.

Approaches that assume only a single trusted key server are pro-
posed in [17, 16, 1]. In these approaches, a user is given some aux-
iliary keys, besides the group key and the individual key, to reduce
the server cost for rekeying. These approaches have been mainly
focused on reducing the server cost for individual rekeying.

[5] addressed the problem of batch rekeying and proposed using

0

200

400

600

800

1000

0 200 400 600 800 1000

L

J

N=1024, d=2

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

L

J

N=4096, d=4

Figure 14: Area where key star is better than key tree.

0

200

400

600

800

1000

0 200 400 600 800 1000

L

J

N=1024

d=2
d=4

d=32

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

L

J

N=4096

d=2
d=4
d=8

d=16

Figure 15: Curves where key tree and key star costs are the same.

0

500

1000

1500

2000

2500

0 200 400 600 800 1000

se
rv

er
 c

os
t (

#e
nc

ry
pt

io
ns

)

L

N=1024, J=L

key star
d=2
d=4

d=32
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 500 1000 1500 2000 2500 3000 3500 4000

se
rv

er
 c

os
t (

#e
nc

ry
pt

io
ns

)

L

N=4096, J=L

key star
d=2
d=4
d=8

d=16

Figure 16: Comparison of different tree degrees, when
� . � .

boolean function minimization technique to facilitate batch rekey-
ing. Their approach, however, has the collusion problem, namely,
two users can combine their knowledge of keys to continue reading
group communications, even after they leave the group.

[14] addressed the problem of keeping the key tree balanced.
Their approach essentially is to add joins at the shallowest leaf
nodes of the tree, and re-structure the tree periodically. [14] also
briefly described an algorithm for batch rekeying, in which joins
replace leaves one by one, and if there are still extra joins, they are
added to the shallowest leaf nodes of the tree one by one. [14]’s
objective is to keep the key tree balanced, while our marking algo-
rithm aims to reduce the server cost for batch rekeying. [14] did not
provide any quantitative analysis for the benefit of batch rekeying.

9. CONCLUSION
This paper addressed the scalability problem of group key man-

agement. We identified two problems with individual rekeying:
inefficiency and an out-of-sync problem between keys and data.
We proposed the use of periodic batch rekeying to improve the key
server’s performance and alleviate the out-of-sync problem. We de-
vised a marking algorithm for the key server to process a batch of
join and leave requests, and we analyzed the key server’s process-
ing cost for batch rekeying. Our results show that batch rekeying,
compared to individual rekeying, saves server cost substantially.
We also show that when the number of requests is not large in a
batch, four is the best key tree degree; otherwise, key star outper-
forms small-degree key trees.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

se
rv

er
 c

os
t (

#e
nc

ry
pt

io
ns

)

L

N=1024, J=0

key star
d=2
d=4

d=32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000 3500 4000

se
rv

er
 c

os
t (

#e
nc

ry
pt

io
ns

)

L

N=4096, J=0

key star
d=2
d=4
d=8

d=16

Figure 17: Comparison of different tree degrees, when
� . � .

0

200

400

600

800

1000

0 200 400 600 800 1000

L

J

N=1024

d=4 is better than d=2,32

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

L

J

N=4096

d=4 is better than d=2,8,16

Figure 18: Area where degree 4 is better.

10. ACKNOWLEDGEMENT
We thank the anonymous reviewers for helpful comments.

11. REFERENCES
[1] David Balenson, David McGrew, and Alan Sherman. Key

Management for Large Dynamic Groups: One-way Function
Trees and Amortized Initialization, INTERNET-DRAFT,
1999.

[2] A. Ballardie. Scalable Multicast Key Distribution, RFC
1949, May 1996.

[3] A. Ballardie and J. Crowcroft. Multicast-specific security
threats and counter measures. In Symposium on Network and
Distributed System Security, San Diego, CA, February 1995.

[4] E. Burns. Webcast: collaborative document sharing via the
mbone. Technical report, NCSA, 1995.

[5] Isabella Chang, Robert Engel, Dilip Kandlur, Dimitrios
Pendarakis, and Debanjan Saha. Key management for secure
Internet multicast using boolean function minimization
techniques. In Proceedings of IEEE INFOCOM ’99,
volume 2, March 1999.

[6] Stephen E. Deering. Multicast routing in internetworks and
extended LANs. In Proceedings of ACM SIGCOMM ’88,
August 1988.

[7] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL
protocol version 3.0. Work in progress, IETF Internet-Draft,
March 1996.

[8] Li Gong. Enclaves: Enabling secure collaboration over the
internet. IEEE Journal of Selected Areas in Communications,
pages 547–575, 1997.

[9] H. Harney, C. Muckenhirn, and T. Rivers. Group Key
Management Protocol Architecture, RFC 2094, July 1997.

[10] H. Harney, C. Muckenhirn, and T. Rivers. Group Key
Management Protocol Specification, RFC 2093, July 1997.

[11] Donald Knuth. The Art of Computer Programming,
volume 1, pages 401–402. Addison Wesley, 3rd edition,
1997.

[12] T. Liao. Webcanal: a multicast web application. In 6th
International WWW Conference, Santa Clara, CA, April
1997, 1997.

[13] S. Mittra. Iolus: A framework for scalable secure
multicasting. In Proceedings of ACM SIGCOMM ’97,
September 1997.

[14] M. J. Moyer, J. R. Rao, and P. Rohatgi. Maintaining
Balanced Key Trees for Secure Multicast,
INTERNET-DRAFT, June 1999.

[15] P. Parnes, M. Mattson, K. Synnes, and D. Schefstrom. The
mWeb presentation framework. Computer Networks and
ISDN Systems, pages 1083–1090, 1997.

[16] D. Wallner, E. Harder, and Ryan Agee. Key Management for
Multicast: Issues and Architectures, INTERNET-DRAFT,
September 1998.

[17] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam.
Secure group communications using key graphs. In
Proceedings of ACM SIGCOMM ’98, September 1998.

[18] Chung Kei Wong and Simon S. Lam. Keystone: a group key
management system. In International Conference on
Telecommunications, Acapulco, Mexico, May 2000.

