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1 Introduction

Binomial congestion control was proposed by Bansal and Balakrishnan in [2].
However, the sending rate derivation in [2] is greatly simplified and does not con-
sider the effect of timeouts. Further, even though the authors use� = 1 and
� = 0:6 for TCP-friendliness in their experiments; this selection is not justified by
their analysis. On the contrary, according to the authors, for� = 1, they should
select� such that�� = 1

0:5 , therefore,� = 0:5.
The motivation of this paper is to analyze the sending rate of binomial conges-

tion window adjustment policy, considering both tripli-duplicate loss indications
and timeout loss indications. We also consider the selection of� and� for IIAD
and SQRT congestion control strategies [2] to be TCP-friendly. This paper suggests
that the authors of Binomial should test their protocol under higher loss scenarios.

The balance of this paper is as follows. In Section 2, we describe the Binomial
congestion control and state the analysis assumptions. The detail of the derivations
is put in the Appendix. In Section 3, we use the sending rate formula to derive
conditions under which a Binomial flow is TCP-friendly.

�Research sponsored in part by National Science Foundation grant No. ANI-9977267 and grant
no. ANI-9506048. Experiments were performed on equipment procured with NSF grant no. CDA-
9624082.
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2 Model and Analysis Assumptions

Formally, the Binomial window adjustment policy is�
wt+R  wt + �=wk

t if no loss
wt+Æt  wt � �wl

t when loss
(1)

We can see that TCP is a special case whenk = 0, l = 1. In this paper, we
analysis the two cases considered by the authors: whenk = 1, l = 0, which is
called IIAD (inverse-increase/additive decrease) andk = l = 0:5, which is called
SQRT (square-root).

Window adjustment policy, however, is only one component of a complete
congestion control protocol. Other mechanisms such as congestion detection and
round-trip time estimation are needed to make a complete protocol. Since TCP
congestion control has been studied extensively for many years, Binomial adopts
these other mechanisms from TCP Reno [5, 6, 8, 1]. In the next subsection, we
give a brief description of the Binomial congestion window adjustment algorithm.
All other algorithms are the same as those of TCP Reno.

2.1 Congestion window adjustment

A Binomial session begins in theslowstartstate. In this state, the congestion win-
dow size is doubled for every window of packets acknowledged. Upon the first
congestion indication, the congestion window size is cut in half and the session
enters thecongestion avoidancestate. In this state, the congestion window size is
increased by�=W k in each round-trip time, whereW is the current congestion
window size. Notice that in this analysis we assume that the receiver returns one
new ACK for each received data packet. It is straightforward to extend the analysis
to consider delayed ACK. Binomial reduces the window size when congestion is
detected. Same as TCP Reno, Binomial detects congestion by two events:triple-
duplicate ACKand timeout. If congestion is detected by a triple-duplicate ACK,
Binomial changes the window size toW � �W l. If the congestion indication is a
timeout, the window size is set to1.

2.2 Modeling assumptions

The assumptions and simplifications made in this analysis are summarized below.

� We assume that the sender always has data to send (i.e., a saturated sender).
The receiver always advertises a large enough receiver window size such
that the send window size is determined by the Binomial congestion window
size.
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� The sending rate is a random process. We have limited our efforts to mod-
eling the mean value of the sending rate. An interesting future topic will be
to study the variance of the sending rate which is beyond the scope of this
paper.

� We focus on Binomial’s congestion avoidance mechanisms. The impact of
slowstart has been ignored.

� We model Binomial’s congestion avoidance behavior in terms of rounds. A
round starts with the back-to-back transmission ofW packets, whereW
is the current window size. Once all packets falling within the congestion
window have been sent in this back-to-back manner, no more packet is sent
until the first ACK is received for one of theW packets. This ACK reception
marks the end of the current round and the beginning of the next round. In
this model, the duration of a round is equal to the round-trip time and is
assumed to be independent of the window size. Also, it is assumed that
the time needed to send all of the packets in a window is smaller than the
round-trip time.

� We assume that losses in different rounds are independent. When a packet
in a round is lost, however, we assume all packets following it in the same
round are also lost. Therefore,p is defined to be the probability that a packet
is lost, given that it is either the first packet in its round or the preceding
packet in its round is not lost [7].

� To void having too many parameters, we assume that the receiver returns one
new ACK for each received data packet, i.e., no delayed ACK. To model the
effect of delayed ACK, we can simply replace all� with �=b, where� is the
increasing parameter, andb is the number of data packets before an ACK is
sent.

� To derive an analytic result, sometimes in the analysis we assumeE[W t] �
E[W ]t, whereW is the window size andt 2 (0;1).

3 TCP-friendly Binomial Congestion Control

As derived in Appendix, the sending rate of both IIAD and SQRT can be expressed
as

TBinomial(�; �; p;R; T0) � 1

R
q

�
�
p+ T0 min

�
1; 3
q

�
�
p

�
p(1 + 32p2)

(2)
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wherep is the loss rate,R the mean round-trip time, andT0 the timeout. We should
emphasize that to derive (2), in some cases we have assumedp is small. For detail,
refer to the Appendix.

To be TCP-friendly, we need to matchTBinomial(�; �; p;R; T0) to that of TCP
sending rate formula, which is

TTCP (p;R; T0) � 1

R
q

2
3p+ T0min

�
1; 3
q

3
8p
�
p(1 + 32p2)

(3)

Under low loss scenario, the first terms in the denominators of (2) and (3)
dominates, and we have the expression:

�

�
=

2

3
(4)

For example, when the Binomial congestion control uses� = 1, we select
� = 0:66 so that the control is TCP-friendly.

To consider the sensitivity of the TCP-friendliness on the� parameters, we
define

F (�; �) =

1

R
q

2

3
p

1

R

q
�
�
p

(5)

=

r
3�

2�
(6)

Under small loss ratep, F is the relative throughput of a IIAD/SQRT flow and
a TCP flow. Figure 1 plotsF as a function of� when� = 1. Compare Figure 1
with the experimental results in Figure 16 of [2], we find that the two figures are
very similar. This can be considered a validation of (2).

However, it is important to point out thatF is valid only when loss ratep is
small. When loss rate is high, we should use the complete sending rate formula to
derive the TCP-friendly� and�, using the methods as in [?]. It also suggests that
the authors of Binomial should evaluate Binomial under high loss scenarios.
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Figure 1:F as a function of� when� = 1

A Sending Rate Derivation

We carry the derivation in two steps. In the first step, we only consider the case
when congestion indications are exclusively of type “triple duplicate” ACK (TD).
In the next step, we consider both TD and timeout loss indications.

A.1 Congestion indications are exclusively triple-duplicate ACKs

We first consider the case when congestion indications are exclusively of type
“triple duplicate” ACK (TD). Consider a Binomial flow starting at timet = 0. For
any given timet > 0, defineNt as the number of packets transmitted in the interval
[0; t], andTt = Nt=t, the sending rate on that interval. Note thatTt is the number
of packets sent per unit of time regardless of their eventual fate (i.e. whether they
are received or not). Thus,Tt represents the sending rate of the connection. We
define the long-term steady-state rateT to be

T = lim
t!1

Tt = lim
t!1

Nt

t
(7)

Define a TD period (TDP) to be the interval of time between two TD congestion
indications. For theith TD period we define random variableYi as the number of
packets send in the period,Ai the duration of the period, andWi the window size
at the end of the period. ConsiderfWig to be a Markov regenerative process with
rewardsfYig. From renewal theory [3, 4], we know that

T =
E[Y ]

E[A]
(8)
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In order to derive an expression forT , the long-term steady-state Binomial
sending rate, we next derive expressions for the means ofY andA.

Consider a TD period as in Figure 2.

W i-1βi-1W
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TD occurs
TDP ends
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η
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η

θ

l

-

sent
Packets

Figure 2: A triple-duplicate period (TDP)

A TD period starts immediately after a TD congestion indication, and thus the
congestion window size at the start of theith TD period is equal toWi�1��W l

i�1.
At the end of each round, the window is incremented by�=W k, whereW is the
window size at the beginning of the round. We denote by�i the first packet lost
in TDPi, andXi the round where this loss occurs. After packet�i, Wi � 1 more
packets are sent in an additional round before a TD congestion indication occurs
(and the current TD period ends). Thus a total ofYi = �i +Wi � 1 packets are
sent inXi + 1 rounds. It follows that:

E[Y ] = E[�] +E[W ]� 1 (9)

To deriveE[�], consider a random processf�ig, where�i is the number of
packets sent in a TD period up to and including the first packet that is lost. Based
on the assumption that packets are lost in a round independently of any packets
lost in other rounds,f�ig is a sequence of independent and identically distributed
(i.i.d.) random variables. Given the loss model, the probability of�i = k is equal
to the probability that exactlyk � 1 packets are successfully acknowledged before
a loss occurs

P [� = k] = (1� p)k�1p; k = 1; 2; : : : (10)
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The mean of� is thus

E[�] =

1X
k=1

(1� p)k�1pk =
1

p
(11)

Plugging (11) into (9), we have

E[Y ] =
1� p
p

+E[W ] (12)

To deriveE[W ] andE[A], consider againTDPi. Definerij to be the dura-
tion of thejth round ofTDPi. Then, the duration ofTDPi is Ai =

PXi+1
j=1 rij.

Consider the round-trip timerij to be random variables that are assumed to be in-
dependent of congestion window size, and thus independent of the round number,
j. It follows that

E[A] = (E[X] + 1)E[r] (13)

Henceforth, letR = E[r] denote the average value of the round-trip time.
Finally, to derive an expression forE[X], consider the evolution ofWi as a

function of the number of rounds. First we observe that during theith TD period,
the window size increases betweenWi�1 � �W l

i�1 andWi (see Figure 2).
Consider the differential equation:

dW

dt
=

�

RW k
(14)

Solve the differential equation, we have that fort 2 [0; RXi]

W (t) =

�
�(k + 1)

R
t+W k+1

i�1 (1� �W l�1
i�1 )

k+1

� 1

k+1

(15)

From (15), and plug inW (RXi) = Wi, we solve the expression forXi as

Xi =
1

(k + 1)�

�
W k+1

i �W k+1
i�1 (1� �W l�1

i�1 )
k+1
�

(16)

The fact thatYi packets are transmitted inTDPi is expressed by

Yi =

Z RXi

0
W (t)dt+ �i (17)

=
W k+2

i �W k+2
i�1 (1� �W l�1

i�1 )
k+2

�(k + 2)
+ �i (18)
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where�i is the number of packets sent in the last round. Consider that�i, the
number of packets in the last round, is uniformly distributed between1 andWi,
and thus

E[�] = E[W ]=2 (19)

fWig is a Markov process for which a stationary distribution can be obtained
numerically. However, a simpler approximate solution can be obtained.

Next, we consider two special cases. The first case is called IIAD (inverse-
increase/additive decrease); the second, SQRT (because the increase and decrease
are proportional to the square-root of the current window).

A.1.1 IIAD (k = 1, l= 0)

First, plug ink = 1, l = 0 into (16), we have

Xi =
1

2�

�
W 2

i � (Wi�1 � �)2
�

(20)

Take expectation on (20), and we have

E[X] =
2�E[W ]� �2

2�
(21)

Plug in k = 1, l = 0 into (18), take expectations on both sides, compare to
(12), we have

1� p

p
+
E[W ]

2
= E

�
W 3 � (W � �)3)

3�

�
(22)

=
3�E[W 2]� 3�2E[W ] + �3

3�
(23)

SinceV ar[W ] = E[W 2]�E[W ]2, and we assume the variance of W is small,
therefore, we can approximateE[W 2] byE[W ]2. We solve the Equation (23) and
derive the expression forE[W ] as

E[W ] � �+ 2�2

4�
+

s
�

�p
+

3�2 � 48�� + 12��2 � 4�4

144�2
(24)

Simplify, and we have

E[W ] =

r
�

�p
+ o(1=

p
p) (25)
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Therefore, for small value ofp, we have

E[W ] �
r

�

�p
(26)

According to (21), and plug in the expression forE[W ], we can derive the
expression forE[X], simplify, and we have

E[X] =

s
�

�p
+ o(1=

p
p) (27)

Next, consider the derivation forE[A]. Plugging the expression forE[X] into
(13), we have

E[A] = R(E[X] + 1) (28)

= R

s
�

�p
+ o(1=

p
p) (29)

Then, according to (8) forT , (12) forE[Y ], (24) forE[W ], (29) forE[A], we
have

T =

1�p
p

+E[W ]

E[A]
(30)

�
1�p
p +

q
�
�p

R
q

�
�p

(31)

Simplify, and we have

T � 1

R

r
�

�p
+ o(1=

p
p) (32)

A.1.2 SQRT (k = l = 0.5)

First, plug ink = l = 0:5 into (16), we have

Xi =
1

1:5�

�
W 1:5

i � (Wi�1 � �W 0:5
i�1)

1:5
�

(33)

AssumeE[W t] � E[W ]t, take expectations on (33), we have

E[X] =
E[W ]1:5 �E[W ]1:5(1� �p

E[W ]
)1:5

1:5�
(34)
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Plug in k = l = 0:5 into (18), take expectations on both sides, assume
E[W t] � E[W ]t, and compare to (12), we have

1� p

p
+
E[W ]

2
=
E[W ]2:5(1� (1� �p

E[W ]
)2:5)

2:5�
(35)

To get an analytical expression forE[W ], approximate(1 � �p
E[W ]

)2:5 as1 �
2:5 �p

E[W ]
, we solve the equation to get

E[W ] =
�

4�
+

1

2

s
�2

4�2
+

4�

�

1� p

p
(36)

Simplify, and we have

E[W ] =

r
�

�p
+ o(1=

p
p) (37)

Therefore, for small value ofp, we have

E[W ] �
r

�

�p
(38)

Plug in (36) into (34), simplify, and we have

E[X] =

s
�

�p
+ o(1=

p
p) (39)

Next, consider the derivation forE[A]. Plug in the expression forE[X] into
(13), we have have

E[A] = R(E[X] + 1) (40)

= R

s
�

�p
+ o(1=

p
p) (41)

Then, according to (8) forT , (12) forE[Y ], (36) forE[W ], (41) forE[A], we
have

T =

1�p
p

+E[W ]

E[A]
(42)

�
1�p
p +

q
�
�p

R
q

�
�p

(43)
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Simplify, and we have

T � 1

R

r
�

�p
+ o(1=

p
p) (44)

Summarize the result for IIAD and SQRT, we found that for both cases,

E[W ] �
r

�

�p
(45)

and

E[X] �
s

�

�p
(46)

A.2 Congestion indications are triple-duplicate ACKs and timeouts

Next, we extend the analysis to include timeouts. The derivation in this section is
the same as in [7] except for̂Q(E(W )). However, we include it here for complete-
ness.

In the previous section, we considered Binomial flows where all congestion
indications are due to “triple-duplicate” ACKs. However, under certain circum-
stances the majority of window decreases can be due to timeouts. Therefore, a
good model should also capture timeout congestion indications.

Timeout occurs when packets (or ACKs) are lost, and less than three duplicate
ACKs are received. The sender waits for a period of time denoted byT0, and then
retransmits the first unacknowledged packet. Following a timeout, the congestion
window is reduced to one, and one packet is resent in the first round after a timeout.
If this retransmission is unsuccessful, the period of timeout doubles to2T0; this
doubling is repeated for each unsuccessful retransmission until64T0 is reached,
after which the timeout period remains constant at64T0.

Figure 3 shows a trace with both TDP and timeouts.

A i1

W i1

A i2 A i3

W i2

W i3

Zi

2T0

R =2i

4T0T0

W

t

t i

TD Zi
TO

S i

Figure 3: A trace with both TDP and timeouts
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Let ZTO
i denote the duration of a sequence of timeouts andZTD

i the time
interval between two consecutive timeout sequences. DefineSi to be

Si = ZTD
i + ZTO

i (47)

Also, defineMi to be the number of packets sent duringSi. Thenf(Si;Mi)g
is an i.i.d sequence of random variables, and we have

T =
E[M ]

E[S]
(48)

Extend the definition of TD period defined previously to include periods start-
ing after, or ending in, a TO congestion indication (besides periods between two
TD congestion indications). Letni be the number of TD periods in intervalZTD

i .
For thejth TD period of intervalZTD

i we defineYij to be the number of packets
sent in the period,Aij to be the duration of the period,Xij to be the number of
rounds in the period, andWij to be the window size at the end of the period. Also,
Ri denotes the number of packets sent during timeout sequenceZTO

i . We have

Mi =

niX
j=1

Yij +Ri

Si =

niX
j=1

Aij + ZTO
i

And thus,

E[M ] = E[

niX
j=1

Yij] +E[R] (49)

E[S] = E[

niX
j=1

Aij ] +E[ZTO] (50)

If ni is an i.i.d. sequence of random variables, independent offYijg andfAijg,
then for anyi we have

E[(

niX
j=1

Yij)i] = E[n]E[Y ] (51)

E[(

niX
j=1

Aij)i] = E[n]E[A] (52)
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To deriveE[n], observe that, duringZTD
i , the time between two consecutive

timeout sequences, there areni TDPs, where each of the firstni � 1 end in a TD,
and the last TDP ends in a TO. It follows that inZTD

i there is one TO out ofni
loss indications. Therefore, if we denote byQ the probability that a congestion
indication ending a TDP is a TO, we haveQ = 1=E[n]. Consequently,

T =
E[Y ] +QE[R]

E[A] +QE[ZTO]
(53)

SinceYij andAij do not depend on timeouts, their means are those derived
before.

However, we still need to derive expressions forQ,E[R], E[ZTO].

RTT

penultimate round last round

f1

fk

fw

fk+1

RTT

time

sequence 
number

k

w

k

m
s1

sm+1

sk

received packet

lost packet

ACK

TD occurs,
TDP ends

LEGEND

Figure 4: Packet and ACK transmissions preceding a loss indication

First considerQ. Consider the round of packets where a loss indication oc-
curs; this round will be referred to as the “penultimate” round (see Figure 4) . We
choose the ACK such that ACKs acknowledge individual packets (i.e. ACKs are
not delayed). We will see that the analysis does not depend on whether ACKs are
delayed or not. Letw be the current window size. Thus packetf1; : : : ; fw are
sent in the penultimate round. Packetsf1; : : : ; fk are acknowledged, and packets
fk+1 is the first packet to be lost (or not ACKed). We again assume packet losses
are correlated within a round: if a packet is lost, so too are all packets that follow,
until the end of the round. Thus all packets followingfk+1 are also lost. However,
since packetsf1; : : : ; fk are ACKed, anotherk packets,s1; : : : ; sk are sent in the
next round, which we refer to the “last” round. This round of packet may have
another loss, say packetsm+1. Again, our assumption on packet loss correlation
mandates that packetssm+2; : : : ; sk are also lost in the last round. Them packets
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successfully sent in the last round are responded to by ACKs for packetfk, which
are counted as duplicate ACKs. These ACKs are not delayed, so the number of
duplicate ACKs is equal to the number of successfully received packets in the last
round. If the number of such ACKs is higher than three, then a TD indication oc-
curs, otherwise a TO occurs. In both cases the current period ends. We denote by
A(w; k) the probability that firstk packets are ACKed in a round ofw packets,
given there is a sequence of one or more losses in the round. Then

A(w; k) =
(1� p)kp

1� (1� p)w
(54)

Also, letC(n;m) denote the probability thatm packets are ACKed in sequence
in the last round (where n packets are sent) and the rest of the packets in the round,
if any are lost. Then

C(n;m) =

�
(1� p)mp if m � n-1
(1� p)n otherwise

(55)

Then,Q̂(m), the probability that a loss in a window of sizew is a TO, is given
by

Q̂(w) =

�
1 if w � 3P2

k=0A(w; k) +
Pw

k=3A(w; k)
P2

m=0 C(k;m) otherwise
(56)

After some algebraic manipulation, we have

Q̂(w) = min

�
1;

(1� (1� p)3)(1 + (1� p)3(1� (1� p)w�3))

1� (1� p)w

�
(57)

Observe that

lim
p!0

Q̂(w) =
3

w
(58)

A numerical approximation of̂Q(w) then is

Q̂(w) � min(1;
3

w
) (59)

Q, the probability that a congestion indication is a TO, is

Q =
1X
w=1

Q̂(w)P [W = w] = E[Q̂] (60)
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We approximate

Q � Q̂(E[W ]) (61)

whereE[W ] is from (45).
Next, consider the derivations ofE[R] andE[ZTO].
A sequence ofk TOs occurs when there arek � 1 consecutive losses (the first

loss is given) followed by a successfully transmitted packet. Consequently, the
number of TOs in a TO sequence has a geometric distribution, and thus

P [R = k] = pk�1(1� p) (62)

Then we calculate the mean ofR as

E[R] =
1X
k=1

kP [R = k] =
1

1� p
(63)

Next, considerE[ZTO], the average duration of a timeout sequence excluding
retransmissions, which can be calculated in a similar way. We know that the first
six timeouts in one sequence have length2i�1T0, with all immediately following
timeouts having length64T0. Then the duration of a sequence withk timeout is

Lk =

�
(2k � 1)T0 for k � 6
(63 + 64(k � 6))T0 for k � 7

(64)

And the mean ofZTO is

E[ZTO] =

1X
k=1

LkP [R = k] (65)

= T0
1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1� p
(66)

Now we can plug (12) forE[Y ], (63) forE[R], (13) forE[A], (66) forE[ZTO],
and (61) forQ into (53), and have

T =

1�p
p

+E[W ] + Q̂(E[W ]) 1
1�p

R(E[X] + 1) + Q̂(E[W ])T0
f(p)
1�p

(67)

where

f(p) = 1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6 (68)
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Now we can plug the common expression (45) of IIAD and SQRT forE[W ],
the common expression (46) of IIAD and SQRT forE[X], and (59) forQ̂ into (67),
simplify, and we have

T�;�(p;R; T0; b) � 1

R
q

�
�p+ T0min

�
1; 3
q

�
�p

�
p(1 + 32p2)

(69)
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