
General AIMD Congestion Control ∗

Yang Richard Yang, Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
E-mail: {yangyang,lam }@cs.utexas.edu

Abstract

Instead of the increase-by-one decrease-to-half strategy
used in TCP for congestion window adjustment, we con-
sider the general strategy such that the increase value and
decrease ratio are parameters. That is, in the congestion
avoidance state, the window size is increased byα per win-
dow of packets acknowledged and it is decreased toβ of
the current value when there is congestion indication. We
refer to this window adjustment strategy asgeneral additive
increase multiplicative decrease(GAIMD). We present the
(mean) sending rate of a GAIMD flow as a function ofα, β.
We conducted extensive experiments to validate this send-
ing rate formula. We found the formula to be quite accurate
for a loss rate of up to 20%. We also present in this paper
how to control flow parameters so that flows with different
parameters can achieve different sending rates. In particu-
lar, we present a simple relationship betweenα andβ for a
GAIMD flow to beTCP-friendly, that is, for the GAIMD
flow to have approximately the same sending rate as a
TCP flow under the same path conditions. We present re-
sults from simulations in which TCP-friendly GAIMD flows
(α = 0.31, β = 7/8) compete for bandwidth with TCP
Reno flows and with TCP SACK flows, on a DropTail link
as well as on a RED link. We found that the GAIMD flows
were highly TCP-friendly. Furthermore, withβ at 7/8 in-
stead of 1/2, these GAIMD flows have reduced rate fluctua-
tions compared to TCP flows.

1. Introduction

In a shared network, such as the Internet, end systems
should react to congestion by adapting their transmission

∗Research sponsored in part by National Science Foundation grant No.
ANI-9977267 and grant no. ANI-9506048. Experiments were performed
on equipment procured with NSF grant no. CDA-9624082. An early ver-
sion of this paper appears inProceedings of ICNP 2000, Osaka, Japan,
November 2000.

rates to avoid congestion collapse and keep network uti-
lization high [9]. The robustness of the current Internet
is due in large part to the end-to-end congestion control
mechanisms of TCP [14]. In particular, TCP uses anaddi-
tive increase multiplicative decrease(AIMD) algorithm [5];
the TCP sending rate is controlled by a congestion win-
dow which is halved for every window of data containing
a packet drop, and increased by one packet per window of
data acknowledged.

Today, a wide variety of new applications such as stream-
ing multimedia are being developed to satisfy the growing
demands of Internet users. Many of these new applications
use UDP because they do not require reliable delivery and
they are not responsive to network congestion [27]. There
is great concern that widespread deployment of such unre-
sponsive applications may harm the performance of respon-
sive TCP applications and ultimately lead to congestion col-
lapse of the Internet.

To address this concern one approach is to entice these
applications to use reservations [7] or differentiated ser-
vices [6] that provide QoS. However, even if such services
become available, we expect that many new applications
will still want to use best-effort service because of its low
cost. A second approach is to promote the use of end-to-end
congestion control mechanisms for best effort traffic and to
deploy incentives for its use [9]. However while TCP con-
gestion control is appropriate for applications such as bulk
data transfer, many real-time applications would find halv-
ing the sending rate of a flow to be too severe a response
to a congestion indication, as it can noticeably reduce the
flow’s user-perceived quality [26]. Furthermore, it will be
interesting if we can control service differentiation by using
end-to-end mechanisms, such as by controlling the parame-
ters of an end-to-end congestion control protocol.

In the past few years, many unicast congestion control
schemes have been proposed and investigated [13, 17, 29,
30, 24, 4, 19, 23, 26, 21, 10, 2]. The common objective of
these studies is to find a good alternative to the congestion
control scheme of TCP. Since the dominant Internet traffic is

TCP-based [28], it is important that new congestion control
schemes beTCP-friendly. By this, we mean that the sending
rate of a non-TCP flow should be approximately the same as
that of a TCP flow under the same conditions of round-trip
time and packet loss [17].

The congestion control schemes investigated can be di-
vided into two categories: AIMD-based [13, 24, 4, 23, 19]
and formula-based [17, 29, 30, 26, 21, 10]. Roughly speak-
ing, AIMD-based schemes emulate the increase-by-one and
decrease-to-half window behavior of TCP. Formula-based
schemes use a stochastic model [17, 18, 20] to derive a for-
mula that expresses the TCP sending rate as a function of
packet loss rate, round-trip time, and timeout. Essentially,
all of these schemes are based upon the increase-by-one and
decrease-to-half strategy of TCP. We observe that decrease-
to-half is not a fundamental requirement of congestion con-
trol. In DECbit, also based on AIMD, a flow reduces its
sending rate to 7/8 of the old value in response to a packet
drop [16].

In this paper, we consider a more general version
of AIMD than is implemented in TCP; specifically, the
sender’s window size is increased byα if there is no packet
loss in a round-trip time, and the window size is decreased
to β of current value if there is a triple-duplicate loss in-
dication, whereα andβ are parameters. Since the name
AIMD is often used in the literature to refer to TCP Reno
congestion control (withα = 1 andβ = 1/2), we call our
approachgeneral additive increase multiplicative decrease
(GAIMD) congestion control.

GAIMD was first considered by Chiu and Jain [5]. Their
study is mainly about stability and fairness properties. They
showed that ifα andβ satisfy the following relationships,{

0 < α
0 < β < 1 (1)

then GAIMD congestion control is “stable” and “fair.”
However, their study only considered the case when all
flows using the sameα, β parameters. Also, they provided
no quantitative study of the effects ofα andβ on perfor-
mance metrics. In our study, we consider in detail the rela-
tionships between various performance metrics and the pa-
rametersα andβ, assuming thatα andβ satisfy (1). In the
balance of this paper, we assume thatα andβ satisfy (1)
unless otherwise stated.

In particular, we are interested in the sending rate as a
steady state metric, and responsiveness, aggressiveness and
rate fluctuations as transient metrics. In this paper, we re-
port results on the GAIMD sending rate. Our results on
transient behavior will be reported in [33].

Our first result is a formula showing the GAIMD (mean)
sending rate as a function of the control parameters,α and
β, the loss rate, mean round-trip time, mean timeout value,
and the number of packets each ACK acknowledges. We

have conducted Internet experiments and extensive simu-
lations to validate this formula. The results show that the
formula is accurate over a wide range ofα andβ values for
a loss rate of up to 20%.

With the formula, we investigate how to chooseα andβ
such that flows with different parameters can achieve differ-
ent sending rates. In particular, we obtain our second result:
a simple relationship betweenα andβ for a GAIMD flow
to be TCP-friendly, that is, for the GAIMD flow to have ap-
proximately the same sending rate as that of a TCP flow.
The relationship betweenα andβ to be TCP-friendly is

α =
4(1− β2)

3

This relationship offers a wide selection of possible values
for α andβ to achieve desired transient behaviors, such as
responsiveness and reduced rate fluctuations. For example,
we can chooseβ to be 7

8 so that a GAIMD sender has a less
dramatic rate drop than that of TCP given one loss indica-
tion. For this choice ofβ, if we useα = 0.31, the GAIMD
flow is TCP-friendly.

The balance of this paper is as follows. In Section 2, we
present the sending rate formula for a GAIMD flow. Exper-
iments to validate the formula are also presented in this sec-
tion. In Section 3, we use the formula to derive conditions
under which a GAIMD flow is TCP-friendly. In Section 4,
we present experimental results for the TCP-friendliness
conditions. We give a summary of related TCP-friendly
congestion control schemes in Section 5. Conclusion and
future work are presented in Section 6.

2. Modeling Sending Rate

The motivation of this paper is to consider a general
class of congestion window adjustment policies. Window
adjustment policy, however, is only one component of a
complete congestion control protocol. Other mechanisms
such as congestion detection and round-trip time estima-
tion are needed to make a complete protocol. Since TCP
congestion control has been studied extensively for many
years, GAIMD adopts these other mechanisms from TCP
Reno [14, 15, 25, 1]. In the next subsection, we give a brief
description of the GAIMD congestion window adjustment
algorithm. All other algorithms are the same as those of
TCP Reno.

2.1. GAIMD congestion window adjustment

A GAIMD session begins in theslowstartstate. In this
state, the congestion window size is doubled for every win-
dow of packets acknowledged. Upon the first congestion
indication, the congestion window size is cut in half and
the session enters thecongestion avoidancestate. In this

Tα,β(p, RTT, T0, b) =
1

RTT
√

2b(1−β)
α(1+β) p + T0 min

(
1, 3
√

(1−β2)b
2α p

)
p(1 + 32p2)

(2)

state, the congestion window size is increased byα/W for
each new ACK received, whereW is the current conges-
tion window size. For convenience, we say that the window
size is increased byα per round-trip time. So far we have
assumed that the receiver returns one new ACK for each
received data packet. Many TCP receiver implementations
send one cumulative ACK for two consecutive packets re-
ceived (i.e., delayed ACK [25]). In this case, the window
size is increased byα/2 per round-trip time. GAIMD re-
duces the window size when congestion is detected. Same
as TCP Reno, GAIMD detects congestion by two events:
triple-duplicate ACKandtimeout. If congestion is detected
by a triple-duplicate ACK, GAIMD changes the window
size toβW . If the congestion indication is a timeout, the
window size is set to1.

2.2. Modeling assumptions

In the Appendix of [34], we derive an analytic expression
for the sending rate of a GAIMD sender as a function ofα,
β, p (loss rate),RTT (round-trip time),T0 (timeout value),
andb (number of packets acknowledged by each ACK). The
derivation is a fairly straightforward extension of a similar
formula derived for TCP by Padhye, Firoiu, Towsley, and
Kurose [20]. Various assumptions and simplifications have
been made in the analysis which are summarized below:

• We assume that the sender always has data to send (i.e.,
a saturated sender). The receiver always advertises a
large enough receiver window size such that the send
window size is determined by the GAIMD congestion
window size.

• The sending rate is a random process. We have limited
our efforts to modeling the mean value of the sending
rate. An interesting topic will be to study the variance
of the sending rate which is discussed in [33].

• We focus on GAIMD’s congestion avoidance mecha-
nisms. The impact of slowstart has been ignored.

• We model GAIMD’s congestion avoidance behavior
in terms of rounds. A round starts with the back-to-
back transmission ofW packets, whereW is the cur-
rent window size. Once all packets falling within the
congestion window have been sent in this back-to-back
manner, no more packet is sent until the first ACK is

received for one of theW packets. This ACK recep-
tion marks the end of the current round and the begin-
ning of the next round. In this model, the duration of
a round is equal to the round-trip time and is assumed
to be independent of the window size. Also, it is as-
sumed that the time needed to send all of the packets
in a window is smaller than the round-trip time.

• We assume that losses in different rounds are indepen-
dent. When a packet in a round is lost, however, we
assume all packets following it in the same round are
also lost. Therefore,p is defined to be the probabil-
ity that a packet is lost, given that it is either the first
packet in its round or the preceding packet in its round
is not lost [20].

2.3. Sending rate formula

The analytic expression of Equation (2) for the average
GAIMD sending rateT has been derived (see Appendix
of [34] for derivation):

We first observe that the denominator of the formula is
the summation of the following two terms:

TDα,β(p, RTT, b) , RTT

√
2b(1− β)
α(1 + β)

p (3)

TOα,β(p, T0, b) , T0 min

(
1, 3

√
(1 − β2)b

2α
p

)
p(1 + 32p2)

(4)

From the derivation, we know that the denominator consists
of only the first termTDα,β if all congestion indications are
triple-duplicate ACKs; note thatTDα,β does not depend on
T0. The second termTOα,β is added when congestion in-
dications can be both timeouts and triple-duplicate ACKs;
note thatTOα,β does not directly depend onRTT . Com-
paring these two terms, we observe that when loss ratep is
small,TDα,β = O(p0.5) andTOα,β = O(p1.5), therefore,
TDα,β dominatesTOα,β, and the sending rate is mainly
determined byTDα,β. However, asp increases,TOα,β be-
comes larger. Define

Q , min

(
1, 3

√
(1 − β2)b

2α
p

)

We notice thatQ is the middle term ofTOα,β. From the
derivation we know thatQ approximates the probability of a
loss being a timeout. From the expression ofQ we note that
whenp is small, the probability of timeout is low. However,
asp increases, the probability of timeout increases rapidly
to 1.

We next consider how the sending rate varies with the
parameters,RTT , T0, α, β. It is obvious from Equation
(2) that the sending rate decreases with increasingRTT or
T0. If β is increased towards 1, bothTDα,β andTOα,β

will decrease, leading to a higher sending rate. Also ifα
is increased, bothTDα,β andTOα,β will decrease, leading
to a higher sending rate. Furthermore, we observe thatβ
must be less than 1 for the sending rate formula to be valid.
If α approaches0, the denominator in Equation (2) goes to
infinity and the sending rate goes to 0.

Lastly, we note that Equation (2) reduces to other well-
known TCP formulas when we instantiate it withα = 1 and
β = 1

2 . First, if we ignore theTOα,β term, we obtain

T1, 12
(p, RTT, b) = TTCP (p, RTT, b) =

1
RTT

√
3

2bp

which is the formula derived in [17, 18]. Next, if we include
theTOα,β term, we have

T1, 12
(p, RTT, T0, b) =

1

RTT
√

2bp
3 +T0 min

�
1,3
√

3bp
8

�
p(1+32p2)

which is the formula derived in [20]. Therefore, our formula
subsumes these other formulas as special cases.

2.4. Formula validation

Because of the simplicity of GAIMD, we have imple-
mented GAIMD in both NetBSD and Linux kernels, and
conducted some experiments in a LAN environment. We
have also tested the formula in Equation (2) extensively us-
ing thensnetwork simulator. In all cases, the accuracy of
the formula is respectable over a wide range ofα and β
when the loss rate is less than 20%. In this section, we re-
port our simulation validations.

The purpose of our validations, presented in this section,
is to answer the following questions:

• Is the formula accurate? Over what range of loss rate
p is it accurate?

• Since it is a statistical mean, when do sending rate vari-
ations become significant?

• What is the general trend when the formula loses ac-
curacy?

15Mbps/50ms
R2R1

TCP s16

TCP s1

GAIMD s1

GAIMD s16

ON/OFF s1

ON/OFF sn

TCP r1

ON/OFF rn

ON/OFF r1

GAIMD r16

GAIMD r1

TCP r16

Figure 1. Simulation topology

2.4.1 Simulation setup

The simulation topology we chose to present results is the
well-known single bottleneck (“dumbbell”) as shown in
Figure 1. We have also conducted simulations for other
topologies; the results are similar.

In all of the simulations to be discussed in this section,
the bottleneck link bandwidth is fixed at 15Mbps and its
propagation delay at 50ms. We have also conducted exper-
iments with other link bandwidths and propagation delays;
the results are similar. In all simulations, the access links are
sufficiently provisioned to ensure that packet drops/delays
due to congestion occur only at the bottleneck link fromR1
to R2.

We included three types of flows in the simulations. The
first type is GAIMD flows. To see sending rate variations,
we placed 16 GAIMD flows. For comparison purposes, we
also placed 16 TCP Reno flows. Since the dominant traffic
on the Internet is web-like traffic, we believe that it is impor-
tant to model the effects of competing web-like traffic (short
TCP connections, some UDP flows). It has been reported
in [22] that WWW-related traffic tends to be self-similar
in nature. In [31], it has been shown that self-similar traf-
fic can be created by using several ON/OFF UDP sources
whose ON/OFF times are drawn from a heavy-tailed distri-
bution such as the Pareto distribution. Therefore, we chose
ON/OFF UDP flows as the third type of traffic. In these
experiments, we set the mean ON time to be 1 second, and
the mean OFF time to be 2 seconds. During ON time each
source sends at 500Kbps. The shape parameter of the Pareto
distribution is set to be 1.5. In our experiments, we varied
the number of ON/OFF sources from 10 to 70 to create a
loss rate from about 1% to about 30%.

Another aspect of the simulations worth mentioning is
how we start the flows. To avoid phase effects [11], we
assign small random propagation delays to the access links
and start the flows randomly.

In all experiments in this section, each simulation is run
for 120 seconds. The loss rate is approximated by dividing
the number of times a GAIMD flow or TCP flow reduces its
window size by the total number of packets it sends. Notice
that this estimation of loss rate is a lower bound for the loss
rate that we defined in model derivation. Consequently, we

will see that the formula will overestimate and give an upper
bound of the sending rate.

2.4.2 Predication accuracy

We first evaluate the predication accuracy of the formula. A
good measure of the accuracy is the ratio of the predicated
sending rate and the actual sending rate. The closer this
ratio to 1, the better the predication accuracy. To test the
validity range of the formula, for eachβ, we varyα from 0.1
to 1.0. For eachα, β pair we vary the number of ON/OFF
flows from 10 to 70 to create a loss rate from about 1% to
about 30%.

Figures 2, 3, 4 demonstrate the predication accuracy for
β = 0.5, 0.75, 0.875. The bottleneck link is a drop-tail link.
In these three figures, the averages of the loss rates, round-
trip times, and timeouts of the 16 GAIMD flows in each
experiment are used to calculate a predicated sending rate
for the experiment. Then the actual sending rates of the
16 GAIMD flows are averaged to obtain an average actual
sending rate. What the figures show are the ratio between
the calculated average sending rate using Equation (2) and
the actual average sending rate. We observe from the fig-
ures that for a wide range ofα, β, the formula predications
are pretty close to the actual sending rate when the loss rate
is less than about 20%. Next, we consider the impact of

GAIMD predication accuracy (beta=0.5, drop-tail)

1
2

5
10

20 30
Loss indication rate (%) 0.2

0.4
0.6

0.8
1

alpha

1

Predication/measurement

Figure 2. Accuracy for β = 0.5 and drop-tail

GAIMD predication accuracy (beta=0.75, drop-tail)

1
2

5
10

20 30
Loss indication rate (%) 0.2

0.4
0.6

0.8
1

alpha

1

Predication/measurement

Figure 3. Accuracy for β = 0.75 and drop-tail

GAIMD predication accuracy (beta=0.875, drop-tail)

1
2

5
10

20 30
Loss indication rate (%) 0.2

0.4
0.6

0.8
1

alpha

1

Predication/measurement

Figure 4. Accuracy for β = 0.875 and drop-tail

loss patterns on the accuracy of the formula. In the analytic
model, we assume that (i) losses in different rounds are in-
dependent, and (ii) losses in the same round are correlated,
i.e., when one packet is lost, all packets following it in the
same round will also be lost. For a drop-tail router, this
correlated-loss assumption is quite reasonable. To see the
potential impact of loss patterns, we repeat the above ex-
periments for a RED link. Figure 5 repeats the experiment
in Figure 4 but uses a RED link. Comparing Figure 4 and
5, we see that loss patterns do not have a large impact on
the accuracy of the formula.

GAIMD predication accuracy (beta=0.875, RED)

1
2

5
10

20 30
Loss indication rate (%) 0.2

0.4
0.6

0.8
1

alpha

1

Predication/measurement

Figure 5. Accuracy for β = 0.875 and RED
2.4.3 Sending rate variation

Since what we derived is the mean value of the sending rate
as a random process, we expect to see higher variations in
the sending rate when loss rate increases. We illustrate this
effect in this subsection. In addition to plotting the predi-
cation accuracy, Figures 6, 7 show the predication accuracy
for each of the 16 GAIMD flows, forα = 0.5, β = 0.5
andα = 0.4, β = 0.75, and for both drop-tail and RED
links. Observe from the figures that with increasing loss
rate, sending rate variations increase. However, from both
figures we can see that when the loss rate is 10% or less,
the predication is accurate and the sending rate variance is
reasonably small.

A major trend we observe from all the figures is that the
sending rate formula tends to overestimate when loss rate

0.1

1

10

1 2 5 10 20 30

P
re

di
ca

tio
n/

m
ea

su
re

m
en

t

Loss indication rate (%)

GAIMD predication accuracy (alpha=0.5, beta=0.5, drop-tail)

TCP avg.

GAIMD(0.5, 0.5) avg.

0.1

1

10

1 2 5 10 20 30

P
re

di
ca

tio
n/

m
ea

su
re

m
en

t

Loss indication rate (%)

GAIMD model predication accuracy (alpha=0.5, beta=0.5, RED)

TCP avg.

GAIMD(0.5, 0.5) avg.

Figure 6. Variations of sending rate for α = 0.5, β = 0.5 with drop-tail and RED

0.1

1

10

1 2 5 10 20 30

P
re

di
ca

tio
n/

m
ea

su
re

m
en

t

Loss indication rate (%)

GAIMD predication accuracy (alpha=0.4, beta=0.75, drop-tail)

TCP avg.

GAIMD(0.4, 0.75) avg.

0.1

1

10

1 2 5 10 20 30

P
re

di
ca

tio
n/

m
ea

su
re

m
en

t

Loss indication rate (%)

GAIMD predication accuracy (alpha=0.4, beta=0.75, RED)

TCP avg.

GAIMD(0.4, 0.75) avg.

Figure 7. Variations of sending rate for α = 0.4, β = 0.75 with drop-tail and RED

is high or when theα, β parameters are aggressive. Even
though we desire an accurate sending rate model, we note
that some applications of the formula do not require high
accuracy but rather consistency. For example, if the pur-
pose of using the formula is to compare the sending rates of
two α, β pairs, then we can apply the formula as long as the
amount of inaccuracy is consistent. We are particularly in-
terested in relative predication accuracies between GAIMD
and TCP flows because a major objective of ours is to use
the formula to derive TCP-friendly GAIMD flows. There-
fore, if its predication accuracy for a GAIMD flow is similar
to the predication accuracy of a TCP flow, we can still use
the formula to compare the sending rates of a GAIMD flow
and a TCP flow. In both Figures 6, 7 we have also shown
the predication accuracy of the 16 comparison TCP flows.
We observe that the overestimates for GAIMD and for TCP
are similar for most of the experiments we have conducted.

In summary, the validation experiments show that the
formula is reasonably accurate for a wide range ofα and
β when the loss rate is not too high (up to 20%). For a loss
rate of up to 10%, the sending rate variance is also small;
thus the formula gives an accurate predication of the send-
ing rate of a GAIMD flow.

3 TCP-friendly GAIMD

From the sending rate formula for a GAIMD flow, we
observe that it is possible to control (α, β) pairs to yield the
desired relative sending rate. Utilizing Equation (2), we can
select the parametersα andβ of a GAIMD flow such that

the flow achievesd times the sending rate of a TCP flow,
i.e.

Tα,β(p, RTT, T0, b) = d · T1, 1
2
(p, RTT, T0, b) (5)

Of particular interest are the (α, β) pairs that have (ap-
proximately) the same sending rate as that of a TCP flow,
i.e. d = 1. We call these (α, β) pairs theTCP-friendly
curve. Hereafter, we focus our attention on the condition
for α andβ to be TCP-friendly.

Note thatp is a free variable in Equation (5). One way
to derive the TCP-friendlyα for a givenβ is to havep in
the derived expression. However, this implies measuring
p. To selectα and β values such that equality holds for
all p, we will have two equations: one forTDα,β and one
for TOα,β. In this case, the only solution isα = 1 and
β = 1/2. Therefore, we propose to relax the constraint of
trying to match rates for allp. More specifically, we present
three methods to determine the TCP-friendlyα for a given
β.

• TD TCP-friendly curve
This is the simplest case, as we only try to match the
first termTDα,β

TDα,β(p, RTT, b) = TD1,12
(p, RTT, b)

Canceling the common variablesp, RTT andb from
both sides, and squaring, we get

(1 − β)
α(1 + β)

=
(1 − 0.5)

1 ∗ (1 + 0.5)

Rearranging, we have

α =
3(1− β)
(1 + β)

(6)

(It is interesting to see that according to Equation (6),
for β = 1, we haveα = 0, and forβ > 1, we have
α < 0. Even though these are not stable parameters,
the pairing makes sense.)

From both formula derivation and validation, we know
that compared toTOα,β, TDα,β becomes less impor-
tant whenp increases towards 1. Therefore, it may be
better to try to match theTOα,β term. Thus, a second
equation to determine the TCP-friendlyα for a given
β is obtained as follows.

• TO TCP-friendly curve

TOα,β(p, T0, b) = TO1, 12
(p, T0, b)

Canceling the common variablesp, T0 andb from both
sides, we have√

1 − β2

α
=

√
1 − 0.52

1

Rearranging, we get

α =
4(1− β2)

3
(7)

(Notice that forβ = 1, we haveα = 0, and forβ > 1,
we haveα < 0, the same pairing as in the previous
method.)

• Error minimizing TCP-friendly curve
The two previous approaches are based on consider-
ing the two terms in the denominator of Equation (2)
one at a time. We next consider both terms and use
optimization to findα∗ for a givenβ such that the mis-
match between GAIMD and TCP rates is minimized
over a range of loss rates. Formally, we define the er-
ror function

Eβ(α) =
∫ 1

0

w(p)

∣∣∣∣∣Tα,β(p)
T1, 1

2
(p)

− 1

∣∣∣∣∣ dp (8)

wherew(p) is a function which allows loss rates that
are important to be given more weight in the optimiza-
tion. In this paper, we consider a simple function that
gives a weight of 1 to any loss rate less than a thresh-
old value; a loss rate higher than the threshold gets a
weight of 0. Figure 8 shows the shape of our weight
function.

0

1

w(p)

pthreshold

Figure 8. Weight function w(p)

Figure 9 showsEβ(α) for β = 0.875, T0 = 4RTT ,
with the weight function threshold varying from 0.1 to
0.7. Note thatEβ(α) has a well-defined bottom and
the optimalα∗ for a givenβ is easy to find. We ob-
serve the trend that as the weight function threshold
increases, the optimalα∗ increases. In theβ = 0.875
case,α∗ increases from0.26 to about0.3 when the
weight function threshold was changed from 0.1 to 0.3.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

In
te

gr
at

io
n

of
 m

is
sm

at
ch

alpha

Error integrals (beta=0.875)

threshold=0.1

threshold=0.2

threshold=0.3

Figure 9. Error integral as a function of α

Figure 10 shows TCP-friendly curves obtained by the
three methods described above. There are several inter-
esting observations. First we observe that the curve deter-
mined byTDα,β is higher than others whenβ is less than
0.5, and less than others whenβ is larger than 0.5. Second,
we see that the TCP-friendlyα determined byTOα,β gives
an upper bound whenβ is larger than 0.5, and the curve
is also very close to the one determined by optimization if
the weight function threshold is above 40%. Therefore, we
propose to use Equation (7) to get the TCP-friendlyα for a
givenβ whenever we want to do error minimization up to a
40% loss rate.

Figure 11 shows ratios between the sending rates of
GAIMD and TCP Reno for different values of TCP-friendly
α determined by the three methods;β is fixed at 0.875. We
observe from this figure that at a low loss rate a GAIMD
flow using theα determined byTO will receive about
20% higher bandwidth than TCP Reno; and the flow us-
ing theα determined byTD will receive lower bandwidth.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

al
ph

a

beta

TCP-friendly curves

TD curve

TO curve

threshold=0.1
threshold=0.2
threshold=0.3
threshold=0.4
threshold=0.5

TD
TO

Figure 10. TCP-friendly curves

However, the differences diminish as the loss rate becomes
higher. One factor we need to consider when determining
α is that we only compared GAIMD with TCP Reno. How-
ever, many variants of TCP, e.g. NewReno, SACK [8], and
TCP Vegas [3], achieve higher bandwidth than TCP Reno.
Therefore, it is reasonable to select theα that is somewhat
more aggressive than TCP Reno at a low loss rate1. We will
see in the next section that TCP SACK does reduce the ad-
vantage of GAIMD when we use theα determined byTO.

We also observe from Figure 11 that when loss rate is
very high, the ratios converge to one because essentially all
loss indications are timeouts, and the parametersα andβ
no longer play an important role. However, as we will see
in the next section, under very high loss rate, TCP receives
more bandwidth than GAIMD because of its more aggres-
sive window increasing behavior. This shows that our for-
mula loses accuracy when the loss rate is very high.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io

Loss rate (p)

Sending rate relative to TCP at different loss rate (beta=0.875)

TD pair (0.2, 0.875)

TO pair (0.31, 0.875)

th=0.1 pair
th=0.2 pair
th=0.3 pair

TD pair
TO pair

Figure 11. Ratios of the GAIMD flow sending
rate and TCP sending rate

3.1 A closer look at TCP-friendliness

In previous subsections, we derived TCP-friendly curves
using Equation (2). In this subsection, we provide an in-
tuitive explanation of why a GAIMD flow can be TCP-
friendly.

1Another possibility is to adaptively changeα by measuring loss rate.

0

5

10

15

20

0 5 10 15 20

G
A

IM
D

(0
.2

,
0

.8
7

5
)

w
in

d
o

w
 s

iz
e

 (
p

k
t)

TCP window size (pkt)

equal window sizecapacity line

window tracestarting point

steady state line

Figure 12. Window size changing trace

Figure 12 shows the evolution of the window sizes of
a GAIMD(0.2, 7/8) flow and a TCP flow with the same
round-trip time [5]. Since we do not consider timeout, for
β = 7/8, we use the TD curve, and set the value ofα as
0.2. The initial window size of the GAIMD(0.2, 7/8) flow
is 10, and the initial window size of the TCP flow is 10.
Therefore, the starting point of this trace is at (10, 5). When
the sum of the window size of the two flows is less than 20,
namely the link capacity, the TCP flow will increase its win-
dow size by 1 and the GAIMD(0.2, 7/8) flow will increase
by 0.2 per RTT. When the sum is greater than the link ca-
pacity, the TCP flow reduces its window size to half, and the
GAIMD(0.2, 7/8) flow reduces to 7/8 of the previous value.
From this figure, we first observe that the trace will not con-
verge to theequal window sizecurve. This means that two
TCP-friendly flows with different control parameters will
not have equal sending rate atany instant of time. We ob-
serve, however, that the window size trace crosses the equal
window size curve. In particular, when the trace is on the
left of the equal window size curve, the GAIMD(0.2, 7/8)
flow has a larger window size and therefore will send more
packets. On the other hand, when the trace is on the right of
the equal window size curve, the TCP flow will send more
packets. As a result, in the long run, they will receive about
the same bandwidth. We also observe from this figure that
when the flows enter steady states, that is, when the trace
fluctuates along the top most line, the oscillation range of
the GAIMD(0.2, 7/8) flow (projection of the top line on the
y-axis) is smaller than that of the TCP flow (projection of
the top line to the x-axis). This result indicates that the rate
fluctuations of the GAIMD(0.2, 7/8) flow will be smaller.

4 Experimental Evaluation of GAIMD TCP-
friendliness

In this section, we present experimental results for one
particular GAIMD, namely, forα = 0.31 andβ = 0.875.
It will be referred to as GAIMD(0.31, 0.875). We will
study its performance mainly from the perspective of TCP-
friendliness. Results for other TCP-friendly pairs, such as
α = 0.58 andβ = 0.75, are similar.

For experiments in this section, we used the topology in
Figure 1. However, we used only two types of flows:n TCP
Reno flows, andn GAIMD(0.31, 0.875) flows. The number
n is varied from 1 to 64. Each simulation was run for 120
seconds.

4.1 TCP-friendliness

From the analytic model, we see that loss rate has a ma-
jor impact on the sending rate. Therefore, we evaluated the
TCP-friendliness of GAIMD(0.31, 0.875) for a wide range
of loss conditions. There are two experiment parameters we
can use to control the loss rate, namely: the number of flows
(2n) and the bottleneck link bandwidth.

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

1.5M link (drop-tail), TCP/Reno, GAIMD(0.31, 0.875)

GAIMD(.31, .875) avg.

TCP avg.

GAIMD(0.31, 7/8)
TCP

Figure 13. Normalized sending rates for
1.5Mbps drop-tail bottleneck link with Reno

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

15M link (drop-tail), TCP/Reno, GAIMD(0.31, 0.875)

GAIMD(.31, .875) avg.

TCP avg.

GAIMD(0.31, 0.875)
TCP

Figure 14. Normalized sending rates for
15Mbps drop-tail bottleneck link with Reno

Figures 13, 14 show for a drop-tail bottleneck link the
normalized2 average sending rates of GAIMD(0.31, 0.875)
and TCP flows, as well as the sending rates of individual
flows. We observe that at a low loss rate (15Mbps link, or
1.5Mbps link with less than 64 flows), GAIMD(0.31, 0.875)
flows receive more bandwidth than TCP flows. This is ex-
pected from Figure 11. With a higher loss rate (1.5Mbps
link with more than 64 flows), TCP flows receive higher
bandwidth than GAIMD(0.31, 0.875) flows. We have seen
consistently from all of our experiments that at a high
loss rate TCP flows receive higher bandwidth than TCP-
friendly GAIMD flows. One explanation is that TCP Reno
increases more aggressively under high loss than TCP-
friendly GAIMD (i.e., α < 1). Whereas GAIMD’s smaller
reduction (i.e.,β > 1/2) does not play as important a role
because the congestion window size is small under high
loss.

Another observation we can make from these figures is
that the variance of individual flow rates is much higher for
the 1.5Mbps link than for the 15Mbps link. This is expected
because we have already seen that sending rate variance in-
creases with loss rate increase.

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

1.5M link (RED), TCP/Reno, GAIMD(0.31, 0.875)

TCP avg.

GAIMD(.31, .875) avg.

GAIMD(0.31, 0.875)
TCP

Figure 15. Normalized sending rates for
1.5Mbps RED link with Reno

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

15M link (RED), TCP/Reno, GAIMD(0.31, 0.875)

TCP avg.

GAIMD(.31, .875) avg.

GAIMD(0.31, 0.875)
TCP

Figure 16. Normalized sending rates for
15Mbps RED link with Reno

2such that a fair share of the link bandwidth is 1.

We next consider the effects of loss patterns on GAIMD
TCP-friendliness. Figures 15 and 16 repeat the experiments
in Figure 13 and 14 with RED links. Comparing the figures,
we observe that with RED instead of drop-tail links, TCP
receives higher bandwidth than GAIMD(0.31, 0.875). We
verified this in some other experiments, and it appears that
the random and early dropping of RED does protect TCP
traffic from less responsive traffic, such as GAIMD(0.31,
0.875).

In our third set of experiments, the competing TCP flows
implement TCP SACK instead of TCP Reno. While it is
generally assumed that Reno generates the dominant traf-
fic in the current Internet, many operating systems are be-
ginning to support TCP SACK; for example, Linux kernel
supports TCP SACK as its default. Therefore, we think it
is important to evaluate the TCP-friendliness of GAIMD
when competing with TCP SACK. (We have also experi-
mented with the case that GAIMD is based on TCP SACK
instead of Reno. In this case, GAIMD will become more
aggressive.)

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

1.5M link (drop-tail), TCP/Sack, GAIMD(0.31, 0.875)

GAIMD(.31, .875) avg.

TCP avg.

GAIMD(0.31, 0.875)
TCP

Figure 17. Normalized sending rates for
1.5Mbps drop-tail link with TCP SACK

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

15M link (drop-tail), TCP/Sack, GAIMD(0.31, 0.875)

GAIMD(.31, .875) avg.

TCP avg.

GAIMD(0.31, 0.875)
TCP

Figure 18. Normalized sending rates for
15Mbps drop-tail link with TCP SACK

Figures 17 and 18 repeat the experiments in Figures 13
and 14 except that the competing TCP flows are SACK in-
stead of Reno. It can be seen that the results are very similar

to the cases when the competing flows are Reno. However,
we do observe that the crossover point in Figure 17 is at a
lower loss rate than the one in Figure 13 (at 24 flows versus
48 flows for a 1.5Mbps drop-tail link).

Figures 19 and 20 repeat the experiments in Figures 15
and 16 except that the competing Reno flows are replaced
with SACK flows; we can see that the results are similar to
the previous cases.

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

1.5M link (RED), TCP/Sack, GAIMD(0.31, 0.875)

TCP avg.

GAIMD(.31, .875) avg.

GAIMD(0.31, 0.875)
TCP

Figure 19. Normalized sending rates for
1.5Mbps RED link with TCP SACK

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

15M link (RED), TCP/Sack, GAIMD(0.31, 0.875)

TCP avg.

GAIMD(.31, .875) avg.

GAIMD(0.31, 0.875)
TCP

Figure 20. Normalized sending rates for
15Mbps RED link with TCP SACK

To summarize, we see that GAIMD flows compete with
both TCP Reno and TCP SACK flows in a highly friendly
manner over a wide range of loss rates and for both drop-tail
and RED queueing disciplines.

4.2 Rate fluctuations

Having investigated long-term sending rate fairness, we
next evaluate the transient behavior of GAIMD. In our
study, we are particularly interested in the smoothness of
its sending rate, the convergence speed tofair state and its
response to congestion. We observe that a GAIMD flow
with a smaller value ofβ will have a faster response to con-
gestion, but its rate fluctuation will be higher. However,

due to space limitation, a detailed discussion of our find-
ings is deferred to [33]. Figure 21 shows time traces of
the sending rates of one GAIMD(0.31, 0.875) flow and one
TCP flow when 4 GAIMD(0.31, 0.875) flows and 4 TCP
Reno flows share one RED link with 15Mbps bandwidth
and 20ms propagation delay. Each point in the figure is cal-
culated over a time interval of 150ms, about 2 to 3 times
the round-trip time. We can observe visually that GAIMD’s
sending rate is relatively smooth compared to that of TCP.
From [33], we know that if we measure smoothness by
sending rate coefficient of variations, GAIMD withβ =
7/8 will have about half of the coefficient of variations of
TCP at low loss rate.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40 45 50

S
en

di
ng

 r
at

e
(M

bp
s)

Time (sec)

Sending rate changes, 15Mbps RED Link

TCP Reno Flow
GAIMD Flow(0.31, 0.875)

Figure 21. GAIMD and TCP sending rate
traces for a 15Mbps RED link

4.3 Implementation

GAIMD is straightforward to implement because we
only need to change two parameters in TCP Reno. Note,
however, that we need to distinguish the first loss during
slow start; in this case, the window size is dropped to half
instead ofβ.

5 Summary of Related Work

AIMD was first proposed by Chiu and Jain in [5]. This
design principle was used in DECbit [16] and TCP [14].
One of the first to consider implementing TCP-like conges-
tion control for video services is [13]. However, it uses the
standard TCP adjustment rule, and therefore, has the same
TCP rapid rate changes.

Ozdemir and Rhee proposed the TEAR protocol (TCP
Emulation at the Receivers) in [19]. In TEAR, a receiver
emulates the congestion modifications of a TCP sender.
To transform from a window-based scheme to a rate-based
scheme, an weighted sliding window moving average of the

congestion window size is divided by the estimated round-
trip time [12]. As we will see in [33], TEAR has some prob-
lems in its responsiveness, and aggressiveness behaviors.

Another type of congestion control is to use additive in-
crease, multiplicative decrease in some form, but not apply-
ing it to a congestion window. The Rate Adaption Protocol
(RAP) [23] uses an AIMD rate control scheme based on reg-
ular acknowledgments sent by the receiver which the sender
uses to detect lost packets and estimate RTT. The authors
use the ratio between long-term and short-term averages of
RTT to fine tune the sending rate on a per packet basis. In
addition to the change from a window-based approach to
a rate-based approach, RAP also includes a mechanism for
the sender to stop sending in the absence of feedback from
the receiver. However, RAP does not account for the impact
of retransmission timeouts.

Another AIMD protocol is DLA [24] which makes use
of RTP reports from the receiver to estimate loss rate and
round-trip times.

In equation-based congestion control approaches [17,
26, 21, 10], the sender uses an equation that specifies the
allowed sending rate as a function of RTT and packet drop
rate, and adjusts its sending rate as a function of those mea-
sured parameters. However, the stability of this particular
approach is not understood yet. Also, measuring loss rate
turns out to be a complex issue, especially when the tradeoff
between responsiveness and accuracy has to be considered.

In [2], Bansal and Balakrishnan use Binomial algorithms
to generalize TCP-style additive-increase by increasing in-
versely proportional to a powerk of the current window
(for TCP, k=0) and TCP-style multiplicative-decrease by
decreasing proportional to a powerl of the current window
(for TCP, l = 1). As we will see in [32], the analysis of
GAIMD and Binomial can be combined to have a more gen-
eralized AIMD congestion control.

6 Conclusion

In this paper, we have considered a general version of
AIMD congestion control, where the increase value and de-
crease ratio in congestion window adjustment are parame-
ters,α andβ, respectively. We derived a simple formula
for the (mean) sending rate of a GAIMD flow as a func-
tion of α, β, loss rate, mean round-trip time, mean timeout
value, and the number of packets acknowledged by each
ACK. Our extensive experiments showed the formula to be
quite accurate for a loss rate of up to 20%. We also found
that we can choose the control parameters to implement
end-to-end flow service differentiation. In particular, we
present in this paper a simple relationship betweenα and
β for a GAIMD flow to be TCP-friendly. We presented
results from simulations in which TCP-friendly GAIMD
flows (α = 0.31, β = 7/8) compete for bandwidth with

TCP Reno flows and with TCP Sack flows, on a DropTail
link as well as on a RED link. We found that the GAIMD
flows were highly TCP-friendly. Furthermore, withβ at 7/8
instead of 1/2, these GAIMD flows have reduced rate fluc-
tuations compared to TCP flows. We are currently investi-
gating tradeoffs among rate fluctuation, responsiveness, and
convergence speed. We will report the results in [33].

Acknowledgment

The authors would like to thank Steve Li for valuable
discussions.

References

[1] M. Allman, V. Paxson, and W. Stevens.TCP Congestion
Control, RFC 2581, Apr. 1999.

[2] D. Bansal and H. Balakrishnan. TCP-friendly congestion
control for real-time streaming applications. Technical Re-
port MIT–LCS–TR–806, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, U.S.A., May 2000.

[3] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. InPro-
ceedings of ACM SIGCOMM ’94, Vancouver, Canada, May
1994.

[4] S. Cen, C. Pu, and J. Walpole. Flow and congestion con-
trol for Internet streaming applications. InProceedings of
Multimedia Computing and Networking 1998, Jan. 1998.

[5] D.-M. Chiu and R. Jain. Analysis of the increase and de-
crease algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN Systems, 17, June
1989.

[6] D. Clark and J. Wroclawski. An approach to service alloca-
tion in the Internet. work in progress (IETF Internet-Draft),
July 1997.

[7] D. D. Clark, S. Shenker, and L. Zhang. Supporting real-
time applications in an Integrated Services Packet Network:
architecture and mechanism. InProceedings of ACM SIG-
COMM ’92, July 1992.

[8] K. Fall and S. Floyd. Simulation-based comparisons of
Tahoe, Reno, and SACK TCP.ACM Communications Re-
view, 26(3):5–21, July 1996.

[9] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the Internet.IEEE/ACM Transactions on
Networking, 7(4), Aug. 1999.

[10] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. InPro-
ceedings of ACM SIGCOMM 2000, Aug. 2000.

[11] S. Floyd and V. Jacobson. On traffic phase effects in packet-
switched gateways.Internetworking: Research and Experi-
ence, 3(3), Sept. 1992.

[12] J. Golestani and K. Sabnani. Fundamental observations on
multicast congestion control in the Internet. InProceedings
of IEEE INFOCOM ’99, 1999.

[13] S. Jacobs and A. Eleftheriadis. Providing video services over
networks without quality of service guarantees. InProceed-
ings of World Wide Web Consortium Workshop on Real-time
Multimedia and the Web, Oct. 1996.

[14] V. Jacobson. Congestion avoidance and control. InProceed-
ings of ACM SIGCOMM ’88, Aug. 1988.

[15] V. Jacobson. Modified TCP congestion avoidance algorithm.
Note sent to end2end-interest mailing list, 1990.

[16] R. Jain, K. K. Ramakrishnan, and D.-M. Chiu. Congestion
avoidance in computer networks with a connectionless net-
work layer. Technical Report DEC–TR–506, DEC, Aug.
1987.

[17] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based
flow control. Note sent to the end2end-interest mailing list,
1997.

[18] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macro-
scopic behavior of the TCP congestion avoidance algorithm.
ACM Computer Communication Review, 27(3):67–82, July
1997.

[19] V. Ozdemir and I. Rhee. TCP emulation at the receivers
(TEAR), presentation at the rm meeting, Nov. 1999.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: a simple model and its empirical valida-
tion. In Proceedings of ACM SIGCOMM ’98, Vancouver,
B.C., Sept. 1998.

[21] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model
based TCP-friendly rate control protocol. InProceedings of
NOSSDAV ’99, June 1999.

[22] K. Park, G. Kim, and M. Crovella. On the relationship be-
tween file sizes, transport protocols and self-similar network
traffic. In Proceedings of IEEE ICNP ’96, 1996.

[23] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-
end rate-based congestion control mechanism for realtime
streams in the Internet. InProceedings of IEEE INFOCOM
’99, volume 3, Mar. 1999.

[24] D. Sisalem and H. Schulzrinne. The loss-delay based ad-
justment algorithm: A TCP-friendly adaptation scheme. In
Proceedings of NOSSDAV ’98, July 1998.

[25] W. Stevens.TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, 1997.

[26] W.-T. Tan and A. Zakhor. Real-time Internet video using
error resilient scalable compression and TCP-friendly trans-
port protocol.IEEE Trans. on Multimedia, 1, June 1999.

[27] V. Thomas. IP multicast in RealSystem G2. White
paper, RealNetworks, Jan. 1998. Available at
http://service.real.com/.

[28] K. Thompson, G. J. Miller, and R. Wilder. Wide-area Inter-
net traffic patterns and characteristics.IEEE Network, 11(6),
Nov. 1997.

[29] T. Turletti, S. F. Parisis, and J.-C. Bolot. Experiments with
a layered transmission scheme over the Internet. Research
Report No 3296, INRIA, Nov. 1997.

[30] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like conges-
tion control for layered multicast data transfer. InProceed-
ings of IEEE INFOCOM ’99, volume 3, Mar. 1999.

[31] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-
similarity through high variability: statistical analysis of
Ethernet LAN traffic at the source level. InProceedings of
ACM SIGCOMM ’95, 1995.

[32] Y. R. Yang, M. S. Kim, and S. S. Lam. Analysis of Bino-
mial congestion control. Technical Report TR–00–14, The
University of Texas at Austin, June 2000.

[33] Y. R. Yang, M. S. Kim, and S. S. Lam. Transient behav-
iors of TCP-friendly congestion control protocols. Technical
Report TR–00–23, Department of Computer Sciences, The
University of Texas, Austin, Texas, U.S.A., Sept. 2000.

[34] Y. R. Yang and S. S. Lam. General AIMD congestion con-
trol. Technical Report TR–00–09, Department of Computer
Sciences, The University of Texas, Austin, Texas, U.S.A.,
May 2000.

