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Abstract

Instead of the increase-by-one decrease-to-half strategy used in TCP for
congestion window adjustment, we consider the general strategy such that the
increase value and decrease ratio are parameters. That is, in the congestion
avoidance state, the window size is increased byα per window of packets
acknowledged and it is decreased toβ of the current value when there is con-
gestion indication. We refer to this window adjustment strategy asgeneral
additive increase multiplicative decrease(GAIMD). We present the (mean)
sending rate of a GAIMD flow as a function ofα, β. We conducted extensive
experiments to validate this sending rate formula. We found the formula to
be quite accurate for a loss rate of up to 20%. We also present in this pa-
per how to control flow parameters so that flows with different parameters
can achieve different sending rates. In particular, we present a simple re-
lationship betweenα andβ for a GAIMD flow to beTCP-friendly, that is,
for the GAIMD flow to have approximately the same sending rate as a TCP
flow under the same path conditions. We present results from simulations
in which TCP-friendly GAIMD flows (α = 0.31, β = 7/8) compete for
bandwidth with TCP Reno flows and with TCP SACK flows, on a DropTail
link as well as on a RED link. We found that the GAIMD flows were highly
TCP-friendly. Furthermore, withβ at 7/8 instead of 1/2, these GAIMD flows
have reduced rate fluctuations compared to TCP flows.

∗Research sponsored in part by National Science Foundation grant No. ANI-9977267 and grant
no. ANI-9506048. Experiments were performed on equipment procured with NSF grant no. CDA-
9624082.



1 Introduction

In a shared network, such as the Internet, end systems should react to congestion
by adapting their transmission rates to avoid congestion collapse and keep network
utilization high [9]. The robustness of the current Internet is due in large part to the
end-to-end congestion control mechanisms of TCP [15]. In particular, TCP uses an
additive increase multiplicative decrease(AIMD) algorithm [5]; the TCP sending
rate is controlled by a congestion window which is halved for every window of
data containing a packet drop, and increased by one packet per window of data
acknowledged.

Today, a wide variety of new applications such as streaming multimedia are be-
ing developed to satisfy the growing demands of Internet users. Many of these new
applications use UDP because they do not require reliable delivery and they are not
responsive to network congestion [27]. There is great concern that widespread de-
ployment of such unresponsive applications may harm the performance of respon-
sive TCP applications and ultimately lead to congestion collapse of the Internet.

To address this concern one approach is to entice these applications to use
reservations [7] or differentiated services [6] that provide QoS. However, even if
such services become available, we expect that many new applications will still
want to use best-effort service because of its low cost. A second approach is to
promote the use of end-to-end congestion control mechanisms for best effort traf-
fic and to deploy incentives for its use [9]. However while TCP congestion control
is appropriate for applications such as bulk data transfer, many real-time applica-
tions would find halving the sending rate of a flow to be too severe a response
to a congestion indication, as it can noticeably reduce the flow’s user-perceived
quality [26]. Furthermore, it will be interesting if we can control service differen-
tiation by using end-to-end mechanisms, such as by controlling the parameters of
an end-to-end congestion control protocol.

In the past few years, many unicast congestion control schemes have been pro-
posed and investigated [13, 17, 29, 30, 24, 4, 19, 23, 26, 21, 10, 2]. The common
objective of these studies is to find a good alternative to the congestion control
scheme of TCP. Since the dominant Internet traffic is TCP-based [28], it is impor-
tant that new congestion control schemes beTCP-friendly. By this, we mean that
the sending rate of a non-TCP flow should be approximately the same as that of a
TCP flow under the same conditions of round-trip time and packet loss [17].

The congestion control schemes investigated can be divided into two cate-
gories: AIMD-based [13, 24, 4, 23, 19] and formula-based [17, 29, 30, 26, 21,
10]. Roughly speaking, AIMD-based schemes emulate the increase-by-one and
decrease-to-half window behavior of TCP. Formula-based schemes use a stochas-
tic model [17, 18, 20] to derive a formula that expresses the TCP sending rate as a
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function of packet loss rate, round-trip time, and timeout. Essentially, all of these
schemes are based upon the increase-by-one and decrease-to-half strategy of TCP.
We observe that decrease-to-half is not a fundamental requirement of congestion
control. In DECbit, also based on AIMD, a flow reduces its sending rate to 7/8 of
the old value in response to a packet drop [16].

In this paper, we consider a more general version of AIMD than is implemented
in TCP; specifically, the sender’s window size is increased byα if there is no packet
loss in a round-trip time, and the window size is decreased toβ of current value
if there is a triple-duplicate loss indication, whereα andβ are parameters. Since
the name AIMD is often used in the literature to refer to TCP Reno congestion
control (withα = 1 andβ = 1/2), we call our approachgeneral additive increase
multiplicative decrease(GAIMD) congestion control.

GAIMD was first considered by Chiu and Jain [5]. Their study is mainly about
stability and fairness properties. They showed that ifα andβ satisfy the following
relationships, {

0 < α
0 < β < 1

(1)

then GAIMD congestion control is “stable” and “fair.” However, their study only
considered the case when all flows using the sameα, β parameters. Also, they
provided no quantitative study of the effects ofα andβ on performance metrics.
In our study, we consider in detail the relationships between various performance
metrics and the parametersα and β, assuming thatα and β satisfy (1). In the
balance of this paper, we assume thatα andβ satisfy (1) unless otherwise stated.

In particular, we are interested in the sending rate as a steady state metric,
and responsiveness, aggressiveness and rate fluctuations as transient metrics. In
this paper, we report results on the GAIMD sending rate. Our results on transient
behavior will be reported in [33].

Our first result is a formula showing the GAIMD (mean) sending rate as a
function of the control parameters,α andβ, the loss rate, mean round-trip time,
mean timeout value, and the number of packets each ACK acknowledges. We have
conducted Internet experiments and extensive simulations to validate this formula.
The results show that the formula is accurate over a wide range ofα andβ values
for a loss rate of up to 20%.

With the formula, we investigate how to chooseα andβ such that flows with
different parameters can achieve different sending rates. In particular, we obtain
our second result: a simple relationship betweenα andβ for a GAIMD flow to be
TCP-friendly, that is, for the GAIMD flow to have approximately the same sending
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rate as that of a TCP flow. The relationship betweenα andβ to be TCP-friendly is

α =
4(1 − β2)

3

This relationship offers a wide selection of possible values forα andβ to achieve
desired transient behaviors, such as responsiveness and reduced rate fluctuations.
For example, we can chooseβ to be 7

8 so that a GAIMD sender has a less dramatic
rate drop than that of TCP given one loss indication. For this choice ofβ, if we use
α = 0.31, the GAIMD flow is TCP-friendly.

The balance of this paper is as follows. In Section 2, we present the sending rate
formula for a GAIMD flow. Experiments to validate the formula are also presented
in this section. In Section 3, we use the formula to derive conditions under which
a GAIMD flow is TCP-friendly. In Section 4, we present experimental results
for the TCP-friendliness conditions. We give a summary of related TCP-friendly
congestion control schemes in Section 5. Conclusion and future work are presented
in Section 6.

2 Modeling Sending Rate

The motivation of this paper is to consider a general class of congestion window
adjustment policies. Window adjustment policy, however, is only one component
of a complete congestion control protocol. Other mechanisms such as congestion
detection and round-trip time estimation are needed to make a complete proto-
col. Since TCP congestion control has been studied extensively for many years,
GAIMD adopts these other mechanisms from TCP Reno [15, 14, 25, 1]. In the
next subsection, we give a brief description of the GAIMD congestion window
adjustment algorithm. All other algorithms are the same as those of TCP Reno.

2.1 GAIMD congestion window adjustment

A GAIMD session begins in theslowstartstate. In this state, the congestion win-
dow size is doubled for every window of packets acknowledged. Upon the first
congestion indication, the congestion window size is cut in half and the session
enters thecongestion avoidancestate. In this state, the congestion window size is
increased byα/W for each new ACK received, whereW is the current congestion
window size. For convenience, we say that the window size is increased byα per
round-trip time. So far we have assumed that the receiver returns one new ACK
for each received data packet. Many TCP receiver implementations send one cu-
mulative ACK for two consecutive packets received (i.e., delayed ACK [25]). In
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this case, the window size is increased byα/2 per round-trip time. GAIMD re-
duces the window size when congestion is detected. Same as TCP Reno, GAIMD
detects congestion by two events:triple-duplicate ACKandtimeout. If congestion
is detected by a triple-duplicate ACK, GAIMD changes the window size toβW . If
the congestion indication is a timeout, the window size is set to1.

2.2 Modeling assumptions

In the Appendix we derive an analytic expression for the sending rate of a GAIMD
sender as a function ofα, β, p (loss rate),RTT (round-trip time),T0 (timeout
value), andb (number of packets acknowledged by each ACK). The derivation is
a fairly straightforward extension of a similar formula derived for TCP by Padhye,
Firoiu, Towsley, and Kurose [20]. Various assumptions and simplifications have
been made in the analysis which are summarized below:

• We assume that the sender always has data to send (i.e., a saturated sender).
The receiver always advertises a large enough receiver window size such that
the send window size is determined by the GAIMD congestion window size.

• The sending rate is a random process. We have limited our efforts to model-
ing the mean value of the sending rate. An interesting topic will be to study
the variance of the sending rate which is discussed in [33].

• We focus on GAIMD’s congestion avoidance mechanisms. The impact of
slowstart has been ignored.

• We model GAIMD’s congestion avoidance behavior in terms of rounds. A
round starts with the back-to-back transmission ofW packets, whereW
is the current window size. Once all packets falling within the congestion
window have been sent in this back-to-back manner, no more packet is sent
until the first ACK is received for one of theW packets. This ACK reception
marks the end of the current round and the beginning of the next round. In
this model, the duration of a round is equal to the round-trip time and is
assumed to be independent of the window size. Also, it is assumed that
the time needed to send all of the packets in a window is smaller than the
round-trip time.

• We assume that losses in different rounds are independent. When a packet
in a round is lost, however, we assume all packets following it in the same
round are also lost. Therefore,p is defined to be the probability that a packet
is lost, given that it is either the first packet in its round or the preceding
packet in its round is not lost [20].
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2.3 Sending rate formula

The analytic expression of Equation (2) for the average GAIMD sending rateT has
been derived (see Appendix for derivation):

Tα,β(p,RTT, T0, b) =
1

RTT
√

2b(1−β)
α(1+β) p + T0 min

(
1, 3
√

(1−β2)b
2α p

)
p(1 + 32p2)

(2)

We first observe that the denominator of the formula is the summation of the
following two terms:

TDα,β(p,RTT, b) , RTT

√
2b(1 − β)
α(1 + β)

p (3)

TOα,β(p, T0, b) , T0 min

(
1, 3

√
(1− β2)b

2α
p

)
p(1 + 32p2) (4)

From the derivation, we know that the denominator consists of only the first term
TDα,β if all congestion indications are triple-duplicate ACKs; note thatTDα,β

does not depend onT0. The second termTOα,β is added when congestion indi-
cations can be both timeouts and triple-duplicate ACKs; note thatTOα,β does not
directly depend onRTT . Comparing these two terms, we observe that when loss
ratep is small,TDα,β = O(p0.5) andTOα,β = O(p1.5), therefore,TDα,β domi-
natesTOα,β, and the sending rate is mainly determined byTDα,β . However, asp
increases,TOα,β becomes larger. Define

Q , min

(
1, 3

√
(1− β2)b

2α
p

)

We notice thatQ is the middle term ofTOα,β. From the derivation we know that
Q approximates the probability of a loss being a timeout. From the expression of
Q we note that whenp is small, the probability of timeout is low. However, asp
increases, the probability of timeout increases rapidly to 1.

We next consider how the sending rate varies with the parameters,RTT , T0, α,
β. It is obvious from Equation (2) that the sending rate decreases with increasing
RTT or T0. If β is increased towards 1, bothTDα,β andTOα,β will decrease,
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leading to a higher sending rate. Also ifα is increased, bothTDα,β andTOα,β

will decrease, leading to a higher sending rate. Furthermore, we observe thatβ
must be less than 1 for the sending rate formula to be valid. Ifα approaches0, the
denominator in Equation (2) goes to infinity and the sending rate goes to 0.

Lastly, we note that Equation (2) reduces to other well-known TCP formulas
when we instantiate it withα = 1 andβ = 1

2 . First, if we ignore theTOα,β term,
we obtain

T1, 1
2
(p,RTT, b) = TTCP (p,RTT, b) =

1
RTT

√
3

2bp

which is the formula derived in [17, 18]. Next, if we include theTOα,β term, we
have

T1, 1
2
(p,RTT, T0, b) =

1

RTT
√

2bp
3 + T0 min

(
1, 3
√

3bp
8

)
p(1 + 32p2)

which is the formula derived in [20]. Therefore, our formula subsumes these other
formulas as special cases.

2.4 Formula validation

Because of the simplicity of GAIMD, we have implemented GAIMD in both
NetBSD and Linux kernels, and conducted some experiments in a LAN environ-
ment. We have also tested the formula in Equation (2) extensively using thens
network simulator. In all cases, the accuracy of the formula is respectable over a
wide range ofα andβ when the loss rate is less than 20%. In this section, we
report our simulation validations.

The purpose of our validations, presented in this section, is to answer the fol-
lowing questions:

• Is the formula accurate? Over what range of loss ratep is it accurate?

• Since it is a statistical mean, when do sending rate variations become signif-
icant?

• What is the general trend when the formula loses accuracy?

2.4.1 Simulation setup

The simulation topology we chose to present results is the well-known single bot-
tleneck (“dumbbell”) as shown in Figure 1. We have also conducted simulations
for other topologies; the results are similar.
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GAIMD r16
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TCP r16

Figure 1: Simulation topology

In all of the simulations to be discussed in this section, the bottleneck link
bandwidth is fixed at 15Mbps and its propagation delay at 50ms. We have also
conducted experiments with other link bandwidths and propagation delays; the
results are similar. In all simulations, the access links are sufficiently provisioned
to ensure that packet drops/delays due to congestion occur only at the bottleneck
link from R1 to R2.

We included three types of flows in the simulations. The first type is GAIMD
flows. To see sending rate variations, we placed 16 GAIMD flows. For compar-
ison purposes, we also placed 16 TCP Reno flows. Since the dominant traffic on
the Internet is web-like traffic, we believe that it is important to model the effects
of competing web-like traffic (short TCP connections, some UDP flows). It has
been reported in [22] that WWW-related traffic tends to be self-similar in nature.
In [31], it has been shown that self-similar traffic can be created by using several
ON/OFF UDP sources whose ON/OFF times are drawn from a heavy-tailed distri-
bution such as the Pareto distribution. Therefore, we chose ON/OFF UDP flows
as the third type of traffic. In these experiments, we set the mean ON time to be
1 second, and the mean OFF time to be 2 seconds. During ON time each source
sends at 500Kbps. The shape parameter of the Pareto distribution is set to be 1.5.
In our experiments, we varied the number of ON/OFF sources from 10 to 70 to
create a loss rate from about 1% to about 30%.

Another aspect of the simulations worth mentioning is how we start the flows.
To avoid phase effects [11], we assign small random propagation delays to the
access links and start the flows randomly.

In all experiments in this section, each simulation is run for 120 seconds. The
loss rate is approximated by dividing the number of times a GAIMD flow or TCP
flow reduces its window size by the total number of packets it sends. Notice that
this estimation of loss rate is a lower bound for the loss rate that we defined in
model derivation. Consequently, we will see that the formula will overestimate
and give an upper bound of the sending rate.
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2.4.2 Predication accuracy

We first evaluate the predication accuracy of the formula. A good measure of the
accuracy is the ratio of the predicated sending rate and the actual sending rate. The
closer this ratio to 1, the better the predication accuracy. To test the validity range
of the formula, for eachβ, we varyα from 0.1 to 1.0. For eachα, β pair we vary
the number of ON/OFF flows from 10 to 70 to create a loss rate from about 1% to
about 30%.

Figures 2, 3, 4 demonstrate the predication accuracy forβ = 0.5, 0.75, 0.875.
The bottleneck link is a drop-tail link. In these three figures, the averages of the loss
rates, round-trip times, and timeouts of the 16 GAIMD flows in each experiment
are used to calculate a predicated sending rate for the experiment. Then the actual
sending rates of the 16 GAIMD flows are averaged to obtain an average actual
sending rate. What the figures show are the ratio between the calculated average
sending rate using Equation (2) and the actual average sending rate. We observe
from the figures that for a wide range ofα, β, the formula predications are pretty
close to the actual sending rate when the loss rate is less than about 20%. Next, we

GAIMD predication accuracy (beta=0.5, drop-tail)

1
2

5
10

20 30
Loss indication rate (%) 0.2

0.4
0.6

0.8
1

alpha

1

Predication/measurement

Figure 2: Accuracy forβ = 0.5 and drop-tail

consider the impact of loss patterns on the accuracy of the formula. In the analytic
model, we assume that (i) losses in different rounds are independent, and (ii) losses
in the same round are correlated, i.e., when one packet is lost, all packets following
it in the same round will also be lost. For a drop-tail router, this correlated-loss
assumption is quite reasonable. To see the potential impact of loss patterns, we
repeat the above experiments for a RED link. Figure 5 repeats the experiment in
Figure 4 but uses a RED link. Comparing Figure 4 and 5, we see that loss patterns
do not have a large impact on the accuracy of the formula.
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GAIMD predication accuracy (beta=0.75, drop-tail)
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Figure 3: Accuracy forβ = 0.75 and drop-tail
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Figure 4: Accuracy forβ = 0.875 and drop-tail

GAIMD predication accuracy (beta=0.875, RED)
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Figure 5: Accuracy forβ = 0.875 and RED

2.4.3 Sending rate variation

Since what we derived is the mean value of the sending rate as a random process,
we expect to see higher variations in the sending rate when loss rate increases.
We illustrate this effect in this subsection. In addition to plotting the predication
accuracy, Figures 6, 7 show the predication accuracy for each of the 16 GAIMD
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flows, for α = 0.5, β = 0.5 and α = 0.4, β = 0.75, and for both drop-tail
and RED links. Observe from the figures that with increasing loss rate, sending
rate variations increase. However, from both figures we can see that when the loss
rate is 10% or less, the predication is accurate and the sending rate variance is
reasonably small.
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Figure 6: Variations of sending rate forα = 0.5, β = 0.5 with drop-tail and RED
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Figure 7: Variations of sending rate forα = 0.4, β = 0.75 with drop-tail and RED

A major trend we observe from all the figures is that the sending rate formula
tends to overestimate when loss rate is high or when theα, β parameters are ag-
gressive. Even though we desire an accurate sending rate model, we note that
some applications of the formula do not require high accuracy but rather consis-
tency. For example, if the purpose of using the formula is to compare the sending
rates of twoα, β pairs, then we can apply the formula as long as the amount of
inaccuracy is consistent. We are particularly interested in relative predication ac-
curacies between GAIMD and TCP flows because a major objective of ours is to
use the formula to derive TCP-friendly GAIMD flows. Therefore, if its predication
accuracy for a GAIMD flow is similar to the predication accuracy of a TCP flow,
we can still use the formula to compare the sending rates of a GAIMD flow and a
TCP flow. In both Figures 6, 7 we have also shown the predication accuracy of the
16 comparison TCP flows. We observe that the overestimates for GAIMD and for
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TCP are similar for most of the experiments we have conducted.
In summary, the validation experiments show that the formula is reasonably

accurate for a wide range ofα and β when the loss rate is not too high (up to
20%). For a loss rate of up to 10%, the sending rate variance is also small; thus the
formula gives an accurate predication of the sending rate of a GAIMD flow.

3 TCP-friendly GAIMD

From the sending rate formula for a GAIMD flow, we observe that it is possible to
control (α, β) pairs to yield the desired relative sending rate. Utilizing Equation
(2), we can select the parametersα andβ of a GAIMD flow such that the flow
achievesd times the sending rate of a TCP flow, i.e.

Tα,β(p,RTT, T0, b) = d · T1, 1
2
(p,RTT, T0, b) (5)

Of particular interest are the (α, β) pairs that have (approximately) the same
sending rate as that of a TCP flow, i.e.d = 1. We call these (α, β) pairs theTCP-
friendly curve. Hereafter, we focus our attention on the condition forα andβ to be
TCP-friendly.

Note thatp is a free variable in Equation (5). One way to derive the TCP-
friendly α for a givenβ is to havep in the derived expression. However, this
implies measuringp. To selectα andβ values such that equality holds for allp,
we will have two equations: one forTDα,β and one forTOα,β. In this case, the
only solution isα = 1 andβ = 1/2. Therefore, we propose to relax the constraint
of trying to match rates for allp. More specifically, we present three methods to
determine the TCP-friendlyα for a givenβ.

• TD TCP-friendly curve
This is the simplest case, as we only try to match the first termTDα,β

TDα,β(p,RTT, b) = TD1, 1
2
(p,RTT, b)

Canceling the common variablesp, RTT andb from both sides, and squar-
ing, we get

(1− β)
α(1 + β)

=
(1− 0.5)

1 ∗ (1 + 0.5)

Rearranging, we have

α =
3(1− β)
(1 + β)

(6)
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(It is interesting to see that according to Equation (6), forβ = 1, we have
α = 0, and forβ > 1, we haveα < 0. Even though these are not stable
parameters, the pairing makes sense.)

From both formula derivation and validation, we know that compared to
TOα,β, TDα,β becomes less important whenp increases towards 1. There-
fore, it may be better to try to match theTOα,β term. Thus, a second equa-
tion to determine the TCP-friendlyα for a givenβ is obtained as follows.

• TO TCP-friendly curve

TOα,β(p, T0, b) = TO1, 1
2
(p, T0, b)

Canceling the common variablesp, T0 andb from both sides, we have√
1− β2

α
=

√
1− 0.52

1

Rearranging, we get

α =
4(1− β2)

3
(7)

(Notice that forβ = 1, we haveα = 0, and forβ > 1, we haveα < 0, the
same pairing as in the previous method.)

• Error minimizing TCP-friendly curve
The two previous approaches are based on considering the two terms in the
denominator of Equation (2) one at a time. We next consider both terms and
use optimization to findα∗ for a givenβ such that the mismatch between
GAIMD and TCP rates is minimized over a range of loss rates. Formally,
we define the error function

Eβ(α) =
∫ 1

0
w(p)

∣∣∣∣∣Tα,β(p)
T1, 1

2
(p)

− 1

∣∣∣∣∣ dp (8)

wherew(p) is a function which allows loss rates that are important to be
given more weight in the optimization. In this paper, we consider a simple
function that gives a weight of 1 to any loss rate less than a threshold value;
a loss rate higher than the threshold gets a weight of 0. Figure 8 shows the
shape of our weight function.

13



0

1

w(p)

pthreshold

Figure 8: Weight functionw(p)

Figure 9 showsEβ(α) for β = 0.875, T0 = 4RTT , with the weight function
threshold varying from 0.1 to 0.7. Note thatEβ(α) has a well-defined bottom
and the optimalα∗ for a givenβ is easy to find. We observe the trend that as
the weight function threshold increases, the optimalα∗ increases. In theβ =
0.875 case,α∗ increases from0.26 to about0.3 when the weight function
threshold was changed from 0.1 to 0.3.
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Figure 9: Error integral as a function ofα

Figure 10 shows TCP-friendly curves obtained by the three methods described
above. There are several interesting observations. First we observe that the curve
determined byTDα,β is higher than others whenβ is less than 0.5, and less than
others whenβ is larger than 0.5. Second, we see that the TCP-friendlyα deter-
mined byTOα,β gives an upper bound whenβ is larger than 0.5, and the curve
is also very close to the one determined by optimization if the weight function
threshold is above 40%. Therefore, we propose to use Equation (7) to get the TCP-
friendly α for a givenβ whenever we want to do error minimization up to a 40%
loss rate.

Figure 11 shows ratios between the sending rates of GAIMD and TCP Reno for
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Figure 10: TCP-friendly curves

different values of TCP-friendlyα determined by the three methods;β is fixed at
0.875. We observe from this figure that at a low loss rate a GAIMD flow using the
α determined byTO will receive about 20% higher bandwidth than TCP Reno; and
the flow using theα determined byTD will receive lower bandwidth. However,
the differences diminish as the loss rate becomes higher. One factor we need to
consider when determiningα is that we only compared GAIMD with TCP Reno.
However, many variants of TCP, e.g. NewReno, SACK [8], and TCP Vegas [3],
achieve higher bandwidth than TCP Reno. Therefore, it is reasonable to select the
α that is somewhat more aggressive than TCP Reno at a low loss rate1. We will see
in the next section that TCP SACK does reduce the advantage of GAIMD when we
use theα determined byTO.

We also observe from Figure 11 that when loss rate is very high, the ratios
converge to one because essentially all loss indications are timeouts, and the pa-
rametersα andβ no longer play an important role. However, as we will see in the
next section, under very high loss rate, TCP receives more bandwidth than GAIMD
because of its more aggressive window increasing behavior. This shows that our
formula loses accuracy when the loss rate is very high.

3.1 A closer look at TCP-friendliness

In previous subsections, we derived TCP-friendly curves using Equation (2). In
this subsection, we provide an intuitive explanation of why a GAIMD flow can be
TCP-friendly. Figure 12 shows the evolution of the window sizes of a GAIMD flow
with α = 0.31, β = 0.875 and a TCP flow with the same round-trip time [5]. In this
figure, timeout is not considered. We first observe that the trace will not converge
to theequal window sizecurve. This means that two flows with different control

1Another possibility is to adaptively changeα by measuring loss rate.
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parameters will not have equal sending rate atanytime. We observe, however, that
the window size trace crosses the equal window size curve. In particular, when the
trace is on the left of the equal window size curve, the GAIMD flow has a larger
window size and therefore will send more packets. On the other hand, when the
trace is on the right of the equal window size curve, the TCP flow will send more
packets. Therefore, in the long run, they will receive about the same bandwidth.
We also observe from this figure that the oscillation range of the GAIMD window
is smaller than that of TCP, which indicates that the rate fluctuations of the GAIMD
flow will be smaller.

4 Experimental Evaluation of GAIMD TCP-friendliness

In this section, we present experimental results for one particular GAIMD, namely,
for α = 0.31 and β = 0.875. It will be referred to as GAIMD(0.31, 0.875).
We will study its performance mainly from the perspective of TCP-friendliness.
Results for other TCP-friendly pairs, such asα = 0.58 andβ = 0.75, are similar.
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For experiments in this section, we used the topology in Figure 1. However,
we used only two types of flows:n TCP Reno flows, andn GAIMD(0.31, 0.875)
flows. The numbern is varied from 1 to 64. Each simulation was run for 120
seconds.

4.1 TCP-friendliness

From the analytic model, we see that loss rate has a major impact on the sending
rate. Therefore, we evaluated the TCP-friendliness of GAIMD(0.31, 0.875) for a
wide range of loss conditions. There are two experiment parameters we can use
to control the loss rate, namely: the number of flows (2n) and the bottleneck link
bandwidth.
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Figure 13: Normalized sending rates for 1.5Mbps drop-tail bottleneck link with
Reno
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Figure 14: Normalized sending rates for 15Mbps drop-tail bottleneck link with
Reno

Figures 13, 14 show for a drop-tail bottleneck link the normalized2 average
sending rates of GAIMD(0.31, 0.875) and TCP flows, as well as the sending

2such that a fair share of the link bandwidth is 1.
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rates of individual flows. We observe that at a low loss rate (15Mbps link, or
1.5Mbps link with less than 64 flows), GAIMD(0.31, 0.875) flows receive more
bandwidth than TCP flows. This is expected from Figure 11. With a higher loss rate
(1.5Mbps link with more than 64 flows), TCP flows receive higher bandwidth than
GAIMD(0.31, 0.875) flows. We have seen consistently from all of our experiments
that at a high loss rate TCP flows receive higher bandwidth than TCP-friendly
GAIMD flows. One explanation is that TCP Reno increases more aggressively un-
der high loss than TCP-friendly GAIMD (i.e.,α < 1). Whereas GAIMD’s smaller
reduction (i.e.,β > 1/2) does not play as important a role because the congestion
window size is small under high loss.

Another observation we can make from these figures is that the variance of
individual flow rates is much higher for the 1.5Mbps link than for the 15Mbps link.
This is expected because we have already seen that sending rate variance increases
with loss rate increase.

0

0.5

1

1.5

2

2.5

3

0 16 32 48 64 80 96 112 128

N
or

m
al

iz
ed

 s
en

di
ng

 r
at

e

Total number of GAIMD and TCP flows (2n)

1.5M link (RED), TCP/Reno, GAIMD(0.31, 0.875)

GAIMD
GAIMD mean

TCP
TCP mean

Figure 15: Normalized sending rates for 1.5Mbps RED link with Reno
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Figure 16: Normalized sending rates for 15Mbps RED link with Reno

We next consider the effects of loss patterns on GAIMD TCP-friendliness.
Figures 15 and 16 repeat the experiments in Figure 13 and 14 with RED links.
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Comparing the figures, we observe that with RED instead of drop-tail links, TCP
receives higher bandwidth than GAIMD(0.31, 0.875). We verified this in some
other experiments, and it appears that the random and early dropping of RED does
protect TCP traffic from less responsive traffic, such as GAIMD(0.31, 0.875).

In our third set of experiments, the competing TCP flows implement TCP
SACK instead of TCP Reno. While it is generally assumed that Reno generates
the dominant traffic in the current Internet, many operating systems are begin-
ning to support TCP SACK; for example, Linux kernel supports TCP SACK as
its default. Therefore, we think it is important to evaluate the TCP-friendliness of
GAIMD when competing with TCP SACK. (We have also experimented with the
case that GAIMD is based on TCP SACK instead of Reno. In this case, GAIMD
will become more aggressive.)
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Figure 17: Normalized sending rates for 1.5Mbps drop-tail link with TCP SACK
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Figure 18: Normalized sending rates for 15Mbps drop-tail link with TCP SACK

Figures 17 and 18 repeat the experiments in Figures 13 and 14 except that the
competing TCP flows are SACK instead of Reno. It can be seen that the results
are very similar to the cases when the competing flows are Reno. However, we do
observe that the crossover point in Figure 17 is at a lower loss rate than the one in
Figure 13 (at 24 flows versus 48 flows for a 1.5Mbps drop-tail link).
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Figures 19 and 20 repeat the experiments in Figures 15 and 16 except that the
competing Reno flows are replaced with SACK flows; we can see that the results
are similar to the previous cases.
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Figure 19: Normalized sending rates for 1.5Mbps RED link with TCP SACK
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Figure 20: Normalized sending rates for 15Mbps RED link with TCP SACK

To summarize, we see that GAIMD flows compete with both TCP Reno and
TCP SACK flows in a highly friendly manner over a wide range of loss rates and
for both drop-tail and RED queueing disciplines.

4.2 Rate fluctuations

Having investigated long-term sending rate fairness, we next evaluate the transient
behavior of GAIMD. In our study, we are particularly interested in the smooth-
ness of its sending rate, the convergence speed tofair state and its response to
congestion. We observe that a GAIMD flow with a smaller value ofβ will have
a faster response to congestion, but its rate fluctuation will be higher. However,
due to space limitation, a detailed discussion of our findings is deferred to [33].
Figure 21 shows time traces of the sending rates of one GAIMD(0.31, 0.875) flow
and one TCP flow when 4 GAIMD(0.31, 0.875) flows and 4 TCP Reno flows share
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one RED link with 15Mbps bandwidth and 20ms propagation delay. Each point in
the figure is calculated over a time interval of 150ms, about 2 to 3 times the round-
trip time. We can observe visually that GAIMD’s sending rate is relatively smooth
compared to that of TCP. From [33], we know that if we measure smoothness by
sending rate coefficient of variations, GAIMD withβ = 7/8 will have about half
of the coefficient of variations of TCP at low loss rate.
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Figure 21: GAIMD and TCP sending rate traces for a 15Mbps RED link

4.3 Implementation

GAIMD is straightforward to implement because we only need to change two pa-
rameters in TCP Reno. Note, however, that we need to distinguish the first loss
during slow start; in this case, the window size is dropped to half instead ofβ.

5 Summary of Related Work

AIMD was first proposed by Chiu and Jain in [5]. This design principle was used
in DECbit [16] and TCP [15]. One of the first to consider implementing TCP-like
congestion control for video services is [13]. However, it uses the standard TCP
adjustment rule, and therefore, has the same TCP rapid rate changes.

Ozdemir and Rhee proposed the TEAR protocol (TCP Emulation at the Re-
ceivers) in [19]. In TEAR, a receiver emulates the congestion modifications of a
TCP sender. To transform from a window-based scheme to a rate-based scheme,
an weighted sliding window moving average of the congestion window size is di-
vided by the estimated round-trip time [12]. As we will see in [33], TEAR has
some problems in its responsiveness, and aggressiveness behaviors.

Another type of congestion control is to use additive increase, multiplicative
decrease in some form, but not applying it to a congestion window. The Rate
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Adaption Protocol (RAP) [23] uses an AIMD rate control scheme based on regular
acknowledgments sent by the receiver which the sender uses to detect lost packets
and estimate RTT. The authors use the ratio between long-term and short-term
averages of RTT to fine tune the sending rate on a per packet basis. In addition
to the change from a window-based approach to a rate-based approach, RAP also
includes a mechanism for the sender to stop sending in the absence of feedback
from the receiver. However, RAP does not account for the impact of retransmission
timeouts.

Another AIMD protocol is DLA [24] which makes use of RTP reports from
the receiver to estimate loss rate and round-trip times.

In equation-based congestion control approaches [17, 26, 21, 10], the sender
uses an equation that specifies the allowed sending rate as a function of RTT and
packet drop rate, and adjusts its sending rate as a function of those measured pa-
rameters. However, the stability of this particular approach is not understood yet.
Also, measuring loss rate turns out to be a complex issue, especially when the
tradeoff between responsiveness and accuracy has to be considered.

In [2], Bansal and Balakrishnan use Binomial algorithms to generalize TCP-
style additive-increase by increasing inversely proportional to a powerk of the
current window (for TCP, k=0) and TCP-style multiplicative-decrease by decreas-
ing proportional to a powerl of the current window (for TCP,l = 1). As we will
see in [32], the analysis of GAIMD and Binomial can be combined to have a more
generalized AIMD congestion control.

6 Conclusion

In this paper, we have considered a general version of AIMD congestion control,
where the increase value and decrease ratio in congestion window adjustment are
parameters,α andβ, respectively. We derived a simple formula for the (mean)
sending rate of a GAIMD flow as a function ofα, β, loss rate, mean round-trip
time, mean timeout value, and the number of packets acknowledged by each ACK.
Our extensive experiments showed the formula to be quite accurate for a loss rate of
up to 20%. We also found that we can choose the control parameters to implement
end-to-end flow service differentiation. In particular, we present in this paper a
simple relationship betweenα andβ for a GAIMD flow to beTCP-friendly. We
presented results from simulations in which TCP-friendly GAIMD flows (α =
0.31, β = 7/8) compete for bandwidth with TCP Reno flows and with TCP Sack
flows, on a DropTail link as well as on a RED link. We found that the GAIMD flows
were highly TCP-friendly. Furthermore, withβ at 7/8 instead of 1/2, these GAIMD
flows have reduced rate fluctuations compared to TCP flows. We are currently
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investigating tradeoffs among rate fluctuation, responsiveness, and convergence
speed. We will report the results in [33].
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A GAIMD Sending Rate Modeling

The derivation is a fairly straightforward extension of a similar formula derived
for TCP by Padhye, Firoiu, Towsley, and Kurose [20]. Various assumptions and
simplifications have been made in Section 2.2.

A.1 Congestion indications are exclusively triple-duplicate ACKs

We first consider the case when congestion indications are exclusively of type
“triple duplicate” ACK (TD). Consider a GAIMD flow starting at timet = 0. For
any given timet > 0, defineNt as the number of packets transmitted in the interval
[0, t], andTt = Nt/t, the sending rate on that interval. Note thatTt is the number
of packets sent per unit of time regardless of their eventual fate (i.e. whether they
are received or not). Thus,Tt represents the sending rate of the connection. We
define the long-term steady-state GAIMD rateT to be

T = lim
t→∞Tt = lim

t→∞
Nt

t
(9)

Define a TD period (TDP) to be the interval of time between two TD congestion
indications. For theith TD period we define random variableYi as the number of
packets send in the period,Ai the duration of the period, andWi the window size
at the end of the period. Consider{Wi} to be a Markov regenerative process with
rewards{Yi}. It is known that

T =
E[Y ]
E[A]

(10)

In order to derive an expression forT , the long-term steady-state GAIMD send-
ing rate, we next derive expressions for the means ofY andA.

Consider a TD period as in Figure 22.
A TD period starts immediately after a TD congestion indication, and thus the

congestion window size at the start of theith TD period is equal toβWi−1. At each
round the window is incremented byα/b. We denote byηi the first packet lost in
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TDPi, andXi the round where this loss occurs. After packetηi, Wi − 1 more
packets are sent in an additional round before a TD congestion indication occurs
(and the current TD period ends). Thus a total ofYi = ηi + Wi − 1 packets are
sent inXi + 1 rounds. It follows that:

E[Y ] = E[η] + E[W ]− 1 (11)

To deriveE[η], consider a random process{ηi}, whereηi is the number of
packets sent in a TD period up to and including the first packet that is lost. Based
on the assumption that packets are lost in a round independently of any packets
lost in other rounds,{ηi} is a sequence of independent and identically distributed
(i.i.d.) random variables. Given the loss model, the probability ofηi = k is equal
to the probability that exactlyk − 1 packets are successfully acknowledged before
a loss occurs

P [η = k] = (1− p)k−1p, k = 1, 2, . . . (12)

The mean ofη is thus

E[η] =
∞∑

k=1

(1− p)k−1pk =
1
p

(13)

Plugging (13) into (11), we have

E[Y ] =
1− p

p
+ E[W ] (14)

To deriveE[W ] andE[A], consider againTDPi. Definerij to be the dura-
tion of thejth round ofTDPi. Then, the duration ofTDPi is Ai =

∑Xi+1
j=1 rij.

24



Consider the round-trip timerij to be random variables that are assumed to be in-
dependent of congestion window size, and thus independent of the round number,
j. It follows that

E[A] = (E[X] + 1)E[r] (15)

Henceforth, letRTT = E[r] denote the average value of the round-trip time.
Finally, to derive an expression forE[X], consider the evolution ofWi as a

function of the number of rounds. To simplify the exposition, assume thatβWi and
αXi/b are integers. First we observe that during theith TD period, the window
size increases betweenβWi−1 andWi (see Figure 22). Since the increase is linear
with slopeα/b, we have

Wi = βWi−1 +
αXi

b
(16)

The fact thatYi packets are transmitted inTDPi is expressed by

Yi =

αXi
b
−1∑

k=0

(βWi−1 + k)
b

α
+ θi (17)

= XiβWi−1 +
1
2
Xi(

αXi

b
− 1) + θi (18)

=
Xi

2
(2βWi−1 +

αXi

b
− 1) + θi (19)

=
Xi

2
(βWi−1 + Wi − 1) + θi by (16) (20)

whereθi is the number of packets sent in the last round.{Wi} is a Markov process
for which a stationary distribution can be obtained numerically. However, a sim-
pler approximate solution can be obtained by assuming that{Xi} and{Wi} are
mutually independent sequences of i.i.d random variables. With this assumption,
it follows from (16) that

E[W ] =
α

(1− β)b
E[X] (21)

Take expectations on both sides of (20) and compare to (14), we have

1− p

p
+ E[W ] =

E[X]
2

(βE[W ] + E[W ]− 1) + E[θ] (22)

Consider thatθi, the number of packets in the last round, is uniformly dis-
tributed between1 andWi, and thus

E[θ] = E[W ]/2 (23)
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Plugging (23) and (21) into (22), and solve forE[W ], we have

E[W ] =
α + b(1− β)
2b(1 − β2)

+

√(
α + b(1− β)
2b(1 − β2)

)2

+
2α

b(1− β2)
1− p

p
(24)

Simplify, and we have

E[W ] =

√
2α

b(1− β2)p
+ o(1/

√
p) (25)

Therefore, for small value ofp, we have

E[W ] =

√
2α

b(1− β2)p
(26)

According to (21) and (24), we can also derive the expression forE[X] as

E[X] =
b(1− β)

α
E[W ] (27)

=
α + b(1− β)
2α(1 + β)

+

√(
α + b(1− β)
2α(1 + β)

)2

+
2b(1− β)
α(1 + β)

1− p

p
(28)

Simplify, and we have

E[X] =

√
2b(1 − β)
α(1 + β)p

+ o(1/
√

p) (29)

Next, consider the derivation forE[A]. Plugging theE[X] expression from
(28) into (15), we have

E[A] = RTT (E[X] + 1) (30)

= RTT


α + b(1− β)

2α(1 + β)
+

√(
α + b(1− β)
2α(1 + β)

)2

+
2b(1 − β)
α(1 + β)

1− p

p
+ 1


(31)

Then, according to (10) forT , (14) forE[Y ], (24) forE[W ], (31) forE[A], we
have

T =
1−p

p + E[W ]

E[A]
(32)

=

1−p
p + α+b(1−β)

2b(1−β2)
+

√(
α+b(1−β)
2b(1−β2)

)2
+ 2α

b(1−β2)
1−p

p

RTT

(
α+b(1−β)
2α(1+β) +

√(
α+b(1−β)
2α(1+β)

)2
+ 2b(1−β)

α(1+β)
1−p

p + 1

) (33)
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Simplify, and we have

T =
1

RTT

√
α(1 + β)

2b(1 − β)p
+ o(1/

√
p) (34)

A.1.1 Congestion indications are triple-duplicate ACKs and timeouts

Next, we extend the analysis to include timeouts. The derivation in this section is
the same as in [20] except for̂Q(E(W )). However, we include it here for com-
pleteness.

In the previous section, we considered GAIMD flows where all congestion
indications are due to “triple-duplicate” ACKs. However, under certain circum-
stances the majority of window decreases can be due to timeouts. Therefore, a
good model should also capture timeout congestion indications.

Timeout occurs when packets (or ACKs) are lost, and less than three duplicate
ACKs are received. The sender waits for a period of time denoted byT0, and then
retransmits the first unacknowledged packet. Following a timeout, the congestion
window is reduced to one, and one packet is resent in the first round after a timeout.
If this retransmission is unsuccessful, the period of timeout doubles to2T0; this
doubling is repeated for each unsuccessful retransmission until64T0 is reached,
after which the timeout period remains constant at64T0.

Figure 23 shows a trace with both TDP and timeouts.
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Figure 23: A trace with both TDP and timeouts

Let ZTO
i denote the duration of a sequence of timeouts andZTD

i the time
interval between two consecutive timeout sequences. DefineSi to be

Si = ZTD
i + ZTO

i (35)

Also, defineMi to be the number of packets sent duringSi. Then{(Si,Mi)}
is an i.i.d sequence of random variables, and we have

T =
E[M ]
E[S]

(36)
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Extend the definition of TD period defined previously to include periods start-
ing after, or ending in, a TO congestion indication (besides periods between two
TD congestion indications). Letni be the number of TD periods in intervalZTD

i .
For thejth TD period of intervalZTD

i we defineYij to be the number of packets
sent in the period,Aij to be the duration of the period,Xij to be the number of
rounds in the period, andWij to be the window size at the end of the period. Also,
Ri denotes the number of packets sent during timeout sequenceZTO

i . We have

Mi =
ni∑

j=1

Yij + Ri

Si =
ni∑

j=1

Aij + ZTO
i

And thus,

E[M ] = E[
ni∑

j=1

Yij] + E[R] (37)

E[S] = E[
ni∑

j=1

Aij ] + E[ZTO] (38)

If ni is an i.i.d. sequence of random variables, independent of{Yij} and{Aij},
then for anyi we have

E[(
ni∑

j=1

Yij)i] = E[n]E[Y ] (39)

E[(
ni∑

j=1

Aij)i] = E[n]E[A] (40)

To deriveE[n], observe that, duringZTD
i , the time between two consecutive

timeout sequences, there areni TDPs, where each of the firstni − 1 end in a TD,
and the last TDP ends in a TO. It follows that inZTD

i there is one TO out ofni

loss indications. Therefore, if we denote byQ the probability that a congestion
indication ending a TDP is a TO, we haveQ = 1/E[n]. Consequently,

T =
E[Y ] + QE[R]

E[A] + QE[ZTO]
(41)

SinceYij andAij do not depend on timeouts, their means are those derived
before in (14) and (31), respectively.
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Figure 24: Packet and ACK transmissions preceding a loss indication

However, we still need to derive expressions forQ, E[R], E[ZTO].
First considerQ. Consider the round of packets where a loss indication occurs;

this round will be referred to as the “penultimate” round (see Figure 24) . We
choose the ACK such that ACKs acknowledge individual packets (i.e. ACKs are
not delayed). We will see that the analysis does not depend on whether ACKs are
delayed or not. Letw be the current window size. Thus packetf1, . . . , fw are
sent in the penultimate round. Packetsf1, . . . , fk are acknowledged, and packets
fk+1 is the first packet to be lost (or not ACKed). We again assume packet losses
are correlated within a round: if a packet is lost, so too are all packets that follow,
until the end of the round. Thus all packets followingfk+1 are also lost. However,
since packetsf1, . . . , fk are ACKed, anotherk packets,s1, . . . , sk are sent in the
next round, which we refer to the “last” round. This round of packet may have
another loss, say packetsm+1. Again, our assumption on packet loss correlation
mandates that packetssm+2, . . . , sk are also lost in the last round. Them packets
successfully sent in the last round are responded to by ACKs for packetfk, which
are counted as duplicate ACKs. These ACKs are not delayed, so the number of
duplicate ACKs is equal to the number of successfully received packets in the last
round. If the number of such ACKs is higher than three, then a TD indication
occurs, otherwise a TO occurs. In both cases the current period ends. We denote
by A(w, k) the probability that firstk packets are ACKed in a round ofw packets,
given there is a sequence of one or more losses in the round. Then

A(w, k) =
(1− p)kp

1− (1− p)w
(42)

Also, letC(n,m) denote the probability thatm packets are ACKed in sequence

29



in the last round (where n packets are sent) and the rest of the packets in the round,
if any are lost. Then

C(n,m) =
{

(1− p)mp if m ≤ n-1
(1− p)n otherwise

(43)

Then,Q̂(m), the probability that a loss in a window of sizew is a TO, is given
by

Q̂(w) =
{

1 if w ≤ 3∑2
k=0 A(w, k) +

∑w
k=3 A(w, k)

∑2
m=0 C(k,m) otherwise

(44)

After some algebraic manipulation, we have

Q̂(w) = min
(

1,
(1− (1− p)3)(1 + (1− p)3(1− (1− p)w−3))

1− (1− p)w

)
(45)

Observe that

lim
p→0

Q̂(w) =
3
w

(46)

A numerical approximation of̂Q(w) then is

Q̂(w) ≈ min(1,
3
w

) (47)

Q, the probability that a congestion indication is a TO, is

Q =
∞∑

w=1

Q̂(w)P [W = w] = E[Q̂] (48)

We approximate

Q ≈ Q̂(E[W ]) (49)

whereE[W ] is from (24).
Next, consider the derivations ofE[R] andE[ZTO].
A sequence ofk TOs occurs when there arek − 1 consecutive losses (the first

loss is given) followed by a successfully transmitted packet. Consequently, the
number of TOs in a TO sequence has a geometric distribution, and thus

P [R = k] = pk−1(1− p) (50)
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Then we calculate the mean ofR as

E[R] =
∞∑

k=1

kP [R = k] =
1

1− p
(51)

Next, considerE[ZTO], the average duration of a timeout sequence excluding
retransmissions, which can be calculated in a similar way. We know that the first
six timeouts in one sequence have length2i−1T0, with all immediately following
timeouts having length64T0. Then the duration of a sequence withk timeout is

Lk =
{

(2k − 1)T0 for k ≤ 6
(63 + 64(k − 6))T0 for k ≥ 7

(52)

And the mean ofZTO is

E[ZTO] =
∞∑

k=1

LkP [R = k] (53)

= T0
1 + p + 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1− p
(54)

Now we can plug (14) forE[Y ], (51) forE[R], (15) forE[A], (54) forE[ZTO],
and (49) forQ into (41), and have

T =
1−p

p + E[W ] + Q̂(E[W ]) 1
1−p

RTT (E[X] + 1) + Q̂(E[W ])T0
f(p)
1−p

(55)

where

f(p) = 1 + p + 2p2 + 4p3 + 8p4 + 16p5 + 32p6 (56)

Now we can plug (24) forE[W ], (16) for E[X], and (47) forQ̂ into (55),
simplify, and we have

Tα,β(p,RTT, T0, b) ≈ 1

RTT
√

2b(1−β)
α(1+β) p + T0 min

(
1, 3
√

(1−β2)b
2α p

)
p(1 + 32p2)

(57)

31



References

[1] M. Allman, V. Paxson, and W. Stevens.TCP Congestion Control, RFC 2581,
April 1999.

[2] Deepak Bansal and Hari Balakrishnan. TCP-friendly congestion control for
real-time streaming applications. Technical Report MIT–LCS–TR–806, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A., May
2000.

[3] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New techniques for
congestion detection and avoidance. InProceedings of ACM SIGCOMM ’94,
Vancouver, Canada, May 1994.

[4] Shanwei Cen, Calton Pu, and Jonathan Walpole. Flow and congestion control
for Internet streaming applications. InProceedings of Multimedia Computing
and Networking 1998, January 1998.

[5] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks.Computer Networks
and ISDN Systems, 17, June 1989.

[6] D. Clark and J. Wroclawski. An approach to service allocation in the Internet.
work in progress (IETF Internet-Draft), July 1997.

[7] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time ap-
plications in an Integrated Services Packet Network: architecture and mech-
anism. InProceedings of ACM SIGCOMM ’92, July 1992.

[8] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and
SACK TCP.ACM Communications Review, 26(3):5–21, July 1996.

[9] Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion
control in the Internet.IEEE/ACM Transactions on Networking, 7(4), August
1999.

[10] Sally Floyd, Mark Handley, Jitendra Padhye, and J¨org Widmer. Equation-
based congestion control for unicast applications. InProceedings of ACM
SIGCOMM 2000, August 2000.

[11] Sally Floyd and Van Jacobson. On traffic phase effects in packet-switched
gateways.Internetworking: Research and Experience, 3(3), September 1992.

32



[12] J. Golestani and K. Sabnani. Fundamental observations on multicast conges-
tion control in the Internet. InProceedings of IEEE INFOCOM ’99, 1999.

[13] Stephen Jacobs and Alexandros Eleftheriadis. Providing video services over
networks without quality of service guarantees. InProceedings of World Wide
Web Consortium Workshop on Real-time Multimedia and the Web, October
1996.

[14] V. Jacobson. Modified TCP congestion avoidance algorithm. Note sent to
end2end-interest mailing list, 1990.

[15] Van Jacobson. Congestion avoidance and control. InProceedings of ACM
SIGCOMM ’88, August 1988.

[16] Raj Jain, K. K. Ramakrishnan, and Dah-Ming Chiu. Congestion avoidance
in computer networks with a connectionless network layer. Technical Report
DEC–TR–506, DEC, August 1987.

[17] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow control. Note
sent to the end2end-interest mailing list, 1997.

[18] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of
the TCP congestion avoidance algorithm.ACM Computer Communication
Review, 27(3):67–82, July 1997.

[19] V. Ozdemir and I. Rhee. TCP emulation at the receivers (TEAR), presentation
at the rm meeting, November 1999.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP through-
put: a simple model and its empirical validation. InProceedings of ACM
SIGCOMM ’98, Vancouver, B.C., September 1998.

[21] Jitendra Padhye, Jim Kurose, Don Towsley, and Rajeev Koodli. A model
based TCP-friendly rate control protocol. InProceedings of NOSSDAV ’99,
June 1999.

[22] K. Park, G. Kim, and M. Crovella. On the relationship between file sizes,
transport protocols and self-similar network traffic. InProceedings of IEEE
ICNP ’96, 1996.

[23] Reza Rejaie, Mark Handley, and Deborah Estrin. RAP: An end-to-end rate-
based congestion control mechanism for realtime streams in the Internet. In
Proceedings of IEEE INFOCOM ’99, volume 3, March 1999.

33



[24] Dorgham Sisalem and Henning Schulzrinne. The loss-delay based adjustment
algorithm: A TCP-friendly adaptation scheme. InProceedings of NOSSDAV
’98, July 1998.

[25] Wright Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, 1997.

[26] Wai-Tian Tan and Avideh Zakhor. Real-time Internet video using error
resilient scalable compression and TCP-friendly transport protocol.IEEE
Trans. on Multimedia, 1, June 1999.

[27] V. Thomas. IP multicast in RealSystem G2. White paper, RealNetworks,
January 1998. Available at http://service.real.com/.

[28] Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-area Internet
traffic patterns and characteristics.IEEE Network, 11(6), November 1997.

[29] Thierry Turletti, Sacha Fosse Parisis, and Jean-Chrysostome Bolot. Experi-
ments with a layered transmission scheme over the Internet. Research Report
No 3296, INRIA, November 1997.

[30] Lorenzo Vicisano, Luigi Rizzo, and Jon Crowcroft. TCP-like congestion con-
trol for layered multicast data transfer. InProceedings of IEEE INFOCOM
’99, volume 3, March 1999.

[31] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through
high variability: statistical analysis of Ethernet LAN traffic at the source level.
In Proceedings of ACM SIGCOMM ’95, 1995.

[32] Yang Richard Yang, Min Sik Kim, and Simon S. Lam. Analysis of Binomial
congestion control. Technical Report TR–00–14, The University of Texas at
Austin, June 2000.

[33] Yang Richard Yang, Min Sik Kim, and Simon S. Lam. Transient behaviors
of TCP-friendly congestion control protocols. Technical Report TR–00–23,
Department of Computer Sciences, The University of Texas, Austin, Texas,
U.S.A., September 2000.

34


