
Reliable Group Rekeying: A Performance Analysis �

Yang Richard Yang, X. Steve Li, X. Brian Zhang, Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712–1188
�yangyang,xli,zxc,lam�@cs.utexas.edu

TR–01–21
June, 2001

Abstract
In secure group communications, users of a group share a common group

key. A key server sends the group key to authorized new users as well as per-
forms group rekeying for group users whenever the key changes. In this
paper, we investigate scalability issues of reliable group rekeying, and pro-
vide a performance analysis of our group key management system (called
keygem) based upon the use of key trees. Instead of rekeying after each join
or leave, we use periodic batch rekeying to improve scalability and allevi-
ate out-of-sync problems among rekey messages as well as between rekey
and data messages. Our analyses show that batch rekeying can achieve large
performance gains. We then investigate reliable multicast of rekey messages
using proactive FEC. We observe that rekey transport has an eventual reli-
ability and a soft real-time requirement, and that the rekey workload has a
sparseness property, that is, each group user only needs to receive a small
fraction of the packets that carry a rekey message sent by the key server.
We also investigate tradeoffs between server and receiver bandwidth require-
ments versus group rekey interval, and show how to determine the maximum
number of group users a key server can support.

1 Introduction

Many emerging network applications, such as pay-per-view distribution of digital
media, restricted teleconferences, and pay-per-use multi-party games, are based

�Research sponsored in part by NSF grant no. ANI-9977267 and NSA INFOSEC University
Research Program grant no. MDA904-98-C-A901. Experiments were performed on equipment
procured with NSF grant no. CDA-9624082.

1

upon a secure group communications model [8]. In this model, to protect the pri-
vacy of group communications, a symmetric group key known only to group users
and the key server is used for encrypting data traffic between group users. Access
to the group key is controlled by a group key management system, which sends the
group key to authorized new users as well as performs group rekeying whenever the
group key changes. Specifically, a group key management system can implement
two types of access control: backward access control and forward access control.
If the system changes the group key after a new user joins, the new user will not be
able to decrypt past group communications; this is called backward access control.
Similarly, if the system rekeys after a current user leaves, or is expelled from the
system, the departed user will not be able to access future group communications;
this is called forward access control.

Implementing access control may have large performance overheads which
limit system scalability. Backward access control can be implemented efficiently
because a new group key can be distributed by encrypting it with the existing group
key for existing group users. Forward access control is harder to implement. To
send a new group key to all remaining group users after a user has departed, one
approach is to encrypt the new group key with each remaining user’s individual
key, which is shared only between the user and the key management system. This
straightforward approach, however, is not scalable because it requires the key man-
agement system to encrypt and send the new group key � � � times, where � is
group size before the departure.

In the past few years, several approaches [21, 22, 2, 4, 6] have been proposed
to implement scalable forward access control. For example, the key tree approach,
which uses a hierarchy of keys to facilitate group rekeying, reduces group rekeying
complexity to ������� [21, 22], where � is group size.

 Rekey encoding

Registration

leavejoin

Rekey transport

individual key

rekey message

Figure 1: Functional components of a key management service

Figure 1 shows the functional components of an architecture for group key
management system. The registration component authenticates users and distributes
to each user its individual key. Authenticated users send their join and leave re-
quests to the rekey encoding component. The rekey encoding component, which
manages the keys in the system, validates the requests by checking whether they
are encrypted by individual keys, and generates rekey messages, which are sent

2

to the rekey transport component for delivery. Previous studies have focused pri-
marily on the rekey encoding component, particularly the processing time required
by the rekey encoding component in a key server [21, 22]; the problem of reli-
able transport of group rekey messages has not been addressed in the literature. To
make a group key management system scalable, however, the design of each of
the three components needs to be scalable. Therefore, the objective of our study
is to investigate scalability issues of all three components, including the evalua-
tion of batch rekeying algorithms to improve scalability for a large and dynamic
group, the characterization of rekey transport workload, the design of a reliable
rekey transport protocol, and an overall performance analysis of our system, called
keygem.

First, consider the registration component. For a group key management sys-
tem to grant or deny a join or leave request, the identity of the user sending the
request needs to be authenticated. Thus, each user needs to first register with the
system by authenticating itself to the system and receive its individual key. Reg-
istration using an authentication protocol, however, can have large overheads, and
a key server becomes a bottleneck when user registration rate is high. To improve
the scalability of the registration component, the key server in keygem can offload
its its registration workload to trusted registrars [8, 24]. Machines running regis-
trars can be added or removed dynamically. Moreover, different registrars can use
different authentication protocols to authenticate different sets of users. Since we
can offload the registration workload to registrars, we do not consider this work-
load in this paper. For the detailed operations to register a new user, please see a
description of the keystone system [24].

Second, consider the rekey encoding component. We show that rekeying af-
ter each join or leave (called individual rekeying) for the key tree approach has
two problems: inefficiency and out-of-sync problems among rekey messages as
well as between rekey and data messages (see Section 2). Furthermore, when user
join/leave rate is high, the delay needed to reliably multicast a rekey message may
be too large to implement individual rekeying. In keygem, we improve rekey en-
coding efficiency and alleviate the out-of-sync problems by rekeying periodically
for a batch of join/leave requests. The idea of batch rekeying has been proposed
before [4, 13, 18, 22]. However, for batch rekeying based on a key tree, no explicit
algorithm has been presented and its performance has not been analyzed. In this
paper, we present the specification of a batch rekeying algorithm, analyze its per-
formance, and evaluate the benefits of batch rekeying. Our evaluation shows that
batch rekeying not only can reduce the number of expensive signing operations, it
also can reduce substantially bandwidth requirements at server and receivers. In
other words, batch processing can improve system scalability for a highly dynamic
group.

3

Third, consider the rekey transport component. Reliable transport of rekey
messages has not received much attention in previous work. Although the idea of
using FEC to improve the reliability of rekey transport has been discussed in the
SMuG community [8] and in our keystone system, there is no protocol detail and
its performance is not analyzed. The common assumption is that one of the reliable
multicast protocols [7] can be used for rekey transport, and that prior analyses [11,
14, 20, 9, 15] of these reliable multicast protocols still apply. In this paper, we
observe that rekey transport has its own special properties. First, we observe that
rekey transport has an eventual reliability and a soft real-time requirement because
of the inter-dependencies among rekey messages as well as between rekey and
data messages. Second, we observe that rekey transport workload has a sparseness
property, that is, while a key server sends a rekey message as a large block of
packets, each receiver only needs to receive a small fraction of the packets. For
our rekey transport protocol, which is based upon the use of proactive FEC [10,
17], we show that reliable rekey multicast can be analyzed by converting it to
conventional reliable multicast, which does not have the sparseness property. Using
this approach, we have investigated key server bandwidth overhead, number of
rounds needed to transport the workload of a rekey operation, and how to determine
the proactivity factor for FEC.

Fourth, consider the rekey encoding and the rekey transport components to-
gether. Based on a simple membership model, we show that group rekeying inter-
val serves as a design parameter that allows tradeoffs between rekeying overheads,
group access delay, and the degree of forward access control vulnerability. Consid-
ering four system constraints, we investigate how to choose an appropriate rekey
interval and determine the maximum number of users that a key server can support.

To further improve the scalability and reliability of keygem, we allow keygem
to extend a centralized key server to distributed key servers. Our performance
analysis shows that partitioning users into active and inactive groups can further
improve system scalability. In particular, we present two distributed architectures
with one architecture suitable for applications with both security and reliability
requirements on the transferred application data, such as reliable secure software
transfer, and another architecture suitable for applications with only security re-
quirement on the transferred application data, such as secure multimedia applica-
tions.

The balance of the paper is organized as follows. In Section 2, we investigate
scalability issues of the rekey encoding component and evaluate periodic batch
rekeying. In Section 3, we address the issues of reliable rekey transport, including
rekey workload characterization and performance analysis of rekey transport. In
Section 4, we integrate the results of Section 2 and Section 3 to consider overall
system performance and study tradeoffs between bandwidth overhead and rekey

4

interval. Extensions to multiple key servers are presented in Section 5. Our con-
clusion is in Section 6.

2 Improving Rekey Encoding Scalability

Having been authenticated by a registrar, a user can then send a join request to the
key server. The key server will also receive leave requests from existing users. The
rekey encoding component processes these requests to prepare rekey messages.
Before discussing the issues of individual rekeying, we first briefly review the key
tree idea [21, 22].

2.1 Key tree

A key tree is a directed tree in which each node represents a key. The root of the
key tree is the group key, which is shared by all users, and a leaf node is a user’s
individual key, which is shared only between the user and the key server. Since each
node represents a key, we call a node in the key tree a key node. For key nodes
representing the individual keys of users, we also refer to them as user nodes. A
trusted key server manages the key tree, and a user � is given key � if and only if
there is a directed path from its individual key to key � in the key tree. Consider a
group with 9 users. An example key tree is shown in Figure 2. In this group, user
�� is given three keys: ��, ����, and ����. Key �� is the user’s individual key, key
���� is the group key, and ���� is an auxiliary key shared by ��, ��, and ��.

k123

k2 k5 k8k1 k3 k4 k6 k7 k9

k456

k1−9

k789

group key

keys

(change to k1−8)

(change to k78)
auxiliary

individual
keys

(user nodes)

u1 u2 u3 u4 u5 u6 u7 u8 u9
leave

users

Figure 2: An example key tree

Suppose �� leaves the group. The key server will then need to change the keys
that �� knows: change ���� to ����, and change ���� to ���. To distribute the
changed keys to the remaining users using group-oriented rekeying strategy [22],
the key server constructs the following rekey message by traversing the key tree
bottom-up: (������� , ������� , ���������� , ���������� , ���������). Here �����
denotes key �� encrypted by key �, and is referred to as an encrypted key or an

5

encryption. Upon receiving this message, a user extracts the encrypted keys that it
needs. For example, �� only needs ��������� and ������� .

2.2 Issues of individual rekeying

Although individual rekeying introduces no extra delay to process user requests, it
has two issues.

First, if we rekey after each join or leave, it is hard to control the synchro-
nization that will arise because of the inter-dependencies among rekey messages as
well as between rekey and data messages. When synchronization is not achieved,
we will have out-of-sync problems. Consider an encryption ����� in a rekey mes-
sage. A user must receive �� in order to decrypt the encryption. However, �� may
be distributed in a previous rekey message, and if the previous rekey message has
not arrived, the user will not be able to recover the new key. Also, consider a group
key distributed in a rekey message to a user. If data messages are encrypted us-
ing the group key and the group key has not arrived, the user will not be able to
decrypt the data messages. As a result of these out-of-sync problems, if rekey mes-
sage delivery delay is high and join/leave requests happen frequently, a user may
need to keep all of the old group keys, and buffer a large amount of rekey and data
messages that it cannot decrypt yet.

Second, individual rekeying can be inefficient. For authentication purpose,
each rekey message needs to be digitally signed to prove that it originates from
the key server, and we know that signing operation can have large computation
or bandwidth overheads. Moreover, as Snoeyink, Suri and Varghese observed
in [19], which we have also independently derived at the same time using a differ-
ent proof [25], we know that when a key server rekeys after each request and when
forward access control is required, ������� is a lower bound on the amortized
number of encrypted keys. Thus, the key tree approach has already achieved the
complexity of this lower bound, and we cannot further improve the performance of
rekey encoding if we rekey after each request. To overcome this limit and reduce
the number of signing operations, we need to consider batch rekeying.

2.3 Periodic batch rekeying

Periodic batch rekeying, which collects requests during a rekey interval and rekeys
them in a batch, can alleviate the out-of-sync problems and improve efficiency.
To alleviate the out-of-sync problems, periodic batch rekeying delays the usage of
a new group key until the next rekey interval, and rekey transport can guarantee
with a high probability that the rekey message has been delivered before the next
interval (see Section 4). As for performance, an obvious performance gain of batch

6

processing � join and � leave requests is that it reduces the number of signing
operations from � �� to 1. Moreover, the number of encrypted keys generated by
batch rekeying can be less than the sum of those generated by individual rekeying.
Consider Figure 2. Suppose both �� and �� send leave requests. If the key server
rekeys individually, it will need to update the group key twice, and at each time,
the new group key needs to be encrypted by ����. However, if the two requests are
rekeyed in a batch, the key server only needs to update the group key once.

Periodic batch rekeying improves performance at the expense of delayed group
access control, because a new user has to wait longer to be accepted by the group
and a departed (or expelled) user can stay within the group longer. Thus, we ob-
serve that group rekeying interval serves as a design parameter that allows tradeoffs
between rekeying overheads, group access delay, and the degree of forward access
control vulnerability.

To accommodate different application requirements and make tradeoffs be-
tween performance and group access control, keygem can operate in three batch
modes: 1) periodic batch rekeying, in which the key server processes both join
and leave requests periodically in a batch; 2) periodic batch leave rekeying, in
which the key server processes each join request immediately to reduce the delay
for a new user to access group communications, but processes leave requests in
a batch; and 3) periodic batch join rekeying, in which the key server processes
each leave request immediately to reduce the exposure to users who have departed,
but processes join requests in a batch. We will investigate the tradeoffs further in
Section 4.

2.4 Batch rekeying algorithms

In periodic batch rekeying mode, the key server maintains a key tree that is slightly
different from the key tree described in Section 2.1 to facilitate a key identification
strategy that we proposed in [27]. In particular, we add null nodes that represent
empty key nodes to a key tree so that the key server can always maintain a complete
and balanced key tree. To identify each node in the key tree, the key server assigns
integer IDs to tree nodes in breadth first search order, with the ID of the tree root
as �.

At the end of each rekey interval, the key server collects � join and � leave
requests and executes the following marking algorithm to update the key tree and
generate a rekey subtree. The objectives of the marking algorithm are to 1) reduce
the number of encrypted keys; 2) maintain the balance of the updated key tree; and
3) make it efficient for users to identify the encrypted keys that they need.

The marking algorithm first updates the key tree. If � � �, the key server
replaces � of the departed users that have the smallest IDs with the � newly joined

7

becomes

leaves

3 leaves
2 joins

becomes

1 leave
3 joins
d=2

becomes

j1u1 u1

j3 j1 j2u1

leave new new

j1 j2

J < L J > L (Strategy 1)

Figure 3: Example of marking algorithm for � �	 �.

users. By replacing departed users with newly joined users, the algorithm reduces
the number of encrypted keys [12]. When � � �, we notice that some of the
departed users will not be replaced. For these user nodes, the key server changes
them to null nodes (see the left figure of Figure 3 for an example). If all of the
children of a node are null nodes, the key server changes the node to null node as
well. On the other hand, if � � �, the key server first replaces the � departed users
with � of the newly joined users. However, the key server still needs to insert the
remaining � � � new users. For insertion, three strategies have been investigated
to achieve different tradeoffs among the aforementioned three objectives:

� Strategy 1. In this strategy, to add the remaining � � � new users, the key
server first splits the � replaced nodes to add the remaining new users. If
splitting the newly replaced nodes is still not enough to add all of the re-
maining new users (i.e. � � � � �), the key server splits the leaf nodes
from left to right and adds new users (see the right figure of Figure 3 for an
example). The advantage of this approach is that it reduces the number of en-
crypted keys because it first splits the replaced user nodes. The disadvantage
is that if the user nodes of some users are changed, the key server will need
to provide new IDs individually to these users in addition to newly joined
users. We notice that such notification will increase key server bandwidth
overhead.

� Strategy 2. This strategy, which we proposed and investigated in [12], achieves
a smaller number of encrypted keys than that of Strategy 1. With this strat-
egy, the key server creates a tree with new users at its leaf nodes and grafts
the tree under a departed user node with the smallest height. This strategy,
however, does not keep the key tree as balanced as Strategy 1. On the other
hand, with this strategy, the ID of at most one remaining user is modified;
therefore, the key server only needs to provide new IDs to at most one re-
maining user in addition to newly joined users.

8

� Strategy 3. This strategy, which we proposed and investigated in [27], was
designed to make it efficient for remaining users to identify the encrypted
keys that they need. With this strategy, the key server first replaces the null
nodes that have IDs between � � 	 � � and � � 	 � � with newly joined
users, where	 is the ID of the last node in the key tree that is neither a user
node nor a null node. If there are still extra joins, starting with the user node
with ID 	 � �, the key server splits a user node to add � children, moves
the content of the user node to its left-most child, and adds � � � new user
nodes. The key server repeats this process until all new users are added to
the key tree. A disadvantage of this strategy is that it generates a slightly
larger number of encrypted keys. The advantage of this strategy, however, is
that if the key server multicasts 	, the ID of the last node that is neither a
user node nor a key node, in a rekey message, each remaining user will be
able to independently derive the ID of its user node even if the structure of
the key tree has been modified. For an explanation of how each user, whose
ID has changed, determines its new ID, please see [27].

Comparing the three strategies to process the � � � case, our evaluation shows
that the difference in terms of the size of rekey subtree is small. Therefore, we
report analytical results below for Strategy 3 only.

After updating the key tree, the key server makes a copy of the key tree, and
marks the states of key nodes in the duplicated key tree. The nodes are marked
with one of the following four states: Unchanged, Join, Leave, and Replace.

We first mark the states of user nodes: 1) A user node is marked Unchanged
unless it is changed by the following rules. 2) A user node of a departed user is
marked Leave if the node is not replaced; otherwise, it is marked Replace. 3) A
user node is marked Join if it is a replacement for a null node or it is split from a
previous user node.

We then mark the states of other key nodes: 1) If all the children of a key node
are marked Leave, we mark it Leave and remove all of its children. 2) Otherwise,
if all of its children are marked Unchanged, we mark it Unchanged, and remove all
of its children. 3) Otherwise, if all of its children are marked Unchanged or Join,
we mark it as Join, create a virtual node, which contains the old key of the key
node, and use it to replace all of its Unchanged children. 4) Otherwise, if the node
has at least one Leave or Replace child, we mark it as Replace.

We call the pruned subtree rekey subtree, and we observe that each edge in the
rekey subtree corresponds to an encryption: parent node encrypted by child node.
The detail of how to traverse a rekey subtree to generate a rekey message will be
investigated in Section 3.1.

The running complexity of our marking algorithm is ���� � �� �����. Our

9

benchmark shows that on a Sun Ultra Sparc I with 167MHz CPU, the marking
algorithm takes less than

� ms for � 	 ���
, and less than �� ms for � 	

��. On the other hand, according to our benchmark, the running time of a batch
rekeying algorithm based on boolean function minimization [4] can take tens of
seconds at similar group sizes.

2.5 Worst scenario analysis

We analyze the worst scenario and average scenario performance of batch rekeying
based upon Strategy 3. (An analysis of batch rekeying based upon Strategy 2 was
presented in [12].) The metric we use is the number of encrypted keys. In this
subsection, we will show that even if we consider the worst number of encrypted
keys to rekey � leave requests, assuming no joins in a batch, batch rekeying can
still have large benefit. From our previous discussion, we know that it is because of
forward access control that makes rekey encoding difficult; therefore quantifying
the benefit of batch rekeying under this scenario can be instructive. For results on
worst case performance of other cases, we refer the interested reader to [12]. We
present the average performance in next section.

Consider a balanced tree with degree � and height �. We know that there are
� 	 �� leaf nodes. Suppose � of the users leave. We observe that the worst
scenario happens when the departed users are evenly distributed on the tree leaf
nodes, and therefore, the number of overlapped encryptions is the minimum.

Without delving into the detail of analysis (see Appendix A.1), assuming � 	
��, where � � ���, we derive that the worst number of encrypted keys is:

������������ 	 �� ����
�

�
�
�� �

�� �
(1)

On the other hand, in individual rekeying, a single departed user costs � ����� .
Suppose the � requests are processed individually, then there will be about a total
of �� ����� encrypted keys. Comparing with Equation (1), we observe that the
difference is �� ���� �. When � is large, the benefit of batch rekeying can be
substantial. When � � ���, more edges in the rekey subtree will be pruned, and
the savings become even larger.

2.6 Average scenario analysis

Let ������ �� �� denote the average number of encrypted keys when � join and
� leave requests are processed for an � user key tree. To simplify the analysis,
we assume that the key tree is balanced at the beginning of a batch, and we let
� 	 ����� denote the height of the key tree. Also, we assume that the departed

10

users are uniformly distributed over the tree leaf nodes. The scenario that users
have different leave probabilities can be utilized to further improve performance,
for example, by using a Huffman type of tree to minimize the number of encrypted
keys. However, such exploration and analysis are beyond the scope of this paper.

Since our batch rekeying algorithm depends on the relationship between � and
�, our analytical results also depend on the relationship between � and �. By
considering the number of times that a key node belongs to a rekey subtree, we
derive the following analytical expressions for the average number of encrypted
keys (see Appendix A.2):

� � 	 �:

���� ��� �� �� 	 �

����
���

�����
�	

�
�

�	

�

where �� 	 ���
�.

� � � �:

���� ��� �� �� 	 ���� �������� ��� ���
����
���

�����
���

�

��
��
��	

��

�
�����
�

�

��

�

where �� 	 ���
�, �� 	 � ���, �� 	 � � ��� ����.

� � � �:
���� ��� �� �� 	 ����	��	

��� 	�
����
���

�����
���

���� �
�	

�
�

�	

��

�
����

�
�

� ��� � �� �����

������ �	����
�

���	�
	� ���

where �� 	 ���
�, �� 	 � ���, ���� 	 � if � � �; otherwise, ���� 	 �.

Next, we plot our analytical results. Figure 4 shows the values of����� �� ��
for � 	
�� and a wide range of � and � values. We have plotted both simula-
tion results (controlled by achieving a confidence interval of 5%) and our analytical
results; our analytical results match simulations well and they are indistinguish-
able in the figure. From Figure 4, we observe that for a fixed �, ����� �� ��
grows linearly. This is expected because in our marking algorithm, joins replace
leaves and thus the rekey subtree grows linearly with the number of joins. For a

11

N=4096, d=4

computed
simulated

0
1000

2000
3000

4000
J

1000

2000

3000

4000

L

0

2000

4000

6000

8000

10000

Enc(N, J, L)

Figure 4: ����� �� �� by analysis and simulation

fixed � , ����� �� �� first increases (because more leaves means more keys to be
changed), then decreases (because now some keys can be pruned from the rekey
subtree).

N=4096, d=4

batch rekeying
individual rekeying

0
1000

2000
3000

4000
J

1000

2000

3000

4000

L

0

40000

80000

120000

#encrypted keys

Figure 5: Batch vs. individual rekeying

Next, using the analytical expressions above, we consider the performance
gains of batch rekeying when the average number of encrypted keys is used as
performance metric. Figure 5 compares batch rekeying and individual rekeying
for a wide range of � and � values. From Figure 5, we observe that the differ-
ence between batch and individual rekeying can be large. For � 	
��, � 	
��,
batch rekeying generates ��
� encrypted keys, while individual rekeying generates
����� encrypted keys, which is about
 times larger; for � 	 �, � 	
��, batch
generates ��
� encrypted keys, and individual generates ��� encrypted keys; for
� 	
��, � 	 �, batch generates ��� encrypted keys, and individual generates
�
�� encrypted keys. The difference becomes even larger when � and � become
larger.

12

3 Providing Reliable Rekey Transport

A rekey subtree generated by the rekey encoding component is sent to the rekey
transport component for delivery. We investigate two issues for rekey transport:

1. What are the special characteristics of the rekey transport workload?

2. Given the workload, how to provide reliability to the rekey packets, and what
is the performance?

3.1 Rekey transport workload

For an encoding algorithm based on key trees, we know that each user only needs
to receive the encrypted keys that are on the path from its individual key to the
new group key. To avoid the overhead of unicasting individually to each user its
encrypted keys, however, the key server partitions the users into a small number of
subgroups (we consider one subgroup using one multicast channel in this paper),
combines the encrypted keys for the subgroup of users into a rekey message, which
may be partitioned into several rekey packets if the keys cannot fit into one packet,
and multicasts the rekey message to all of the users in the subgroup. Instead of
receiving all of the packets in a rekey message, however, each user only needs to
receive those packets that contain its encrypted keys. As a result, the rekey packets
that each user needs will depend on how encrypted keys are assigned into rekey
packets. Therefore, our investigation of rekey transport workload is to address the
following questions: 1) How to assign the encrypted keys in a rekey subtree of
a subgroup of users into packets? 2) Given the assignment algorithm, how many
packets a user needs to receive? What is the average? What is the variance? and 3)
How many packets are there in a rekey message?

3.1.1 Key assignment algorithms

To improve the performance of rekey transport protocol, it is desired that a key
assignment algorithm reduces the number of packets �� that a user � needs to re-
ceive. Moreover, the overhead of rekey transport also depends on the users with the
largest numbers of packets to receive. Thus, it is desired that a key assignment al-
gorithm also reduces the variance of ����. Given these requirements, we consider
three key assignment algorithms: Breadth First Assignment (BFA), Depth First
Assignment (DFA), and Recursive BFA (R-BFA). The common characteristic of
these three key assignment algorithms is that they do not duplicate encrypted keys,
that is, each encrypted key is assigned into only one packet. In [27], we have also
proposed and investigated a different algorithm called User-oriented Assignment

13

(UKA). The advantage of the UKA algorithm is that it assigns all of the encrypted
keys for a user into the same packet, and therefore each user needs to receive only
one packet, that is, �� 	 � for all receivers. The disadvantage of this algorithm,
however, is that some encrypted keys are duplicated into several packets, and such
duplications can dominate bandwidth overhead, especially when MTU is small or
when receiver loss rates are low.

For BFA and DFA, the key server traverses a rekey subtree using either breadth
first or depth first order, and assigns sequentially the encrypted keys into packets.
By horizontally scanning a rekey subtree, BFA collects keys from different users
in a round-robin manner. This “fairness” for each user reduces the variance of
����. On the other hand, BFA spreads the keys of a user into multiple packets, and
increases the average of ����. By vertically tracing along a path, DFA first collects
the keys for one user, and then goes to the next user. Thus, we expect that the
average of ���� is smaller for DFA. However, since the shared encrypted keys are
assigned to the users processed earlier, such bias causes larger variance of ����.

To gain the benefits of both BFA and DFA, we consider R-BFA. Figure 6 shows
our R-BFA algorithm. This algorithm starts by calling R-BFA(����), where ����
is the root node of a rekey subtree.

Algorithm R-BFA (���� ��)
� ���� �� uniquely identifies a node in rekey subtree.
� ��� is a global variable, denoting a rekey packet.
� family(�) is the set containing � and its immediate children.
1. �
 create a local FIFO queue
2. put ���� �� into �
3. while (� is not empty)

�
 pop the head element head(�)
if ��� has the space to contain family(���� ��)
then put all the children of � into � sequentially

put all the encrypted keys of family(�) into ���
else ���
 generate a new rekey packet

call R-BFA (�)
while (� is not empty)
�
 pop head(�)
call R-BFA (�)

Figure 6: Recursive BFA (R-BFA) algorithm

To better understand R-BFA, we compare its bahavior with that of BFA. When

14

there is still space in the current packet, R-BFA behaves just like BFA, and thus
has performance in terms of variance similar to that of BFA. However, when the
current packet is full and a new packet is created, instead of continuing horizontally
scanning on the global rekey subtree (as BFA will do), R-BFA does BFA within
a local subtree. Thus, R-BFA puts more related keys together and reduces the
average value of ���� compared with that of BFA. Figure 7 illustrates the basic
idea of R-BFA.

P1

P2 P3 P4 P5

Figure 7: An illustration of the R-BFA algorithm

3.1.2 Comparison of assignment algorithms

We next verify that compared with BFA and DFA, R-BFA performs well in terms
of both the average and the variance of ����.

N=2048, d=4, #keys/packet=25

BFA
DFA

R-BFA

0
500

1000
1500

2000
J

500

1000

1500

2000

L

0

1

2

3

4

5

avg #packets

Figure 8: Average of ���� for different � and � values

0

1

2

3

4

5

6

0 500 1000 1500 2000

av
g

#p
ac

ke
ts

J

N=2048, L=1000, d=4, #keys/packet=25

BFA
DFA

R-BFA

Figure 9: Average of ���� for � 	 ����

First, we consider the average value of ����. Figure 8 plots the results of BFA,
DFA and R-BFA for rekey subtrees with ��
� users. From this figure, we observe

15

that over a wide range of � and � values, the average of ���� for R-BFA and DFA
is smaller than that of BFA. Since both R-BFA and DFA put related keys together,
they achieve similar performance. We also observe from this figure that for R-BFA
and DFA, on the average, users only need to receive � to
 packets even when �
and � have been varied over a wide range. For clarity, Figure 9 shows the results
for � 	 ����.

N=2048, d=4, #keys/packet=25

BFA
DFA

R-BFA

0
500

1000
1500

2000
L

500

1000

1500

2000

J

0

0.5

1

1.5

2

stdev of #packets

Figure 10: Variance of ���� for different � and � values

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

st
de

v
of

 #
pa

ck
et

s

J

N=2048, L=1000, d=4, #keys/packet=25

BFA
DFA

R-BFA

Figure 11: Variance of ���� for � 	 ����

Next, we consider the variance of ����. From Figure 10, we observe that DFA
has large variance while the variances of R-BFA and BFA are smaller. This is ex-
pected because we know that R-BFA and BFA treat users more fairly, and therefore
will have smaller variances. For clarity, Figure 11 shows the results for � 	 ����.

N=2048, d=4, #encs/packet=25

R-BFA

0
500

1000
1500

2000
J

500

1000

1500

2000

L

0
30
60
90

120
150
180

#packets

Figure 12: Average rekey message size

For comparison purpose, Figure 12 shows the average number of packets in
one rekey message over a wide range of � and � values for a rekey subtree with
��
� users. Comparing Figure 12 with Figure 8, we observe that a user only needs
to receive a small fraction of the packets in a rekey message. We refer to the

16

property that each user only needs to receive a small fraction of the packets in a
rekey message as the sparseness property.

3.2 Reliable rekey transport protocol

Given the rekey workload generated by a rekey subtree, we next investigate rekey
transport protocol. Following the convention of reliable multicast, we also refer to
a group user as a receiver.

To determine the rekey transport protocol, we need to first consider its proper-
ties. Although many reliable multicast protocols have been proposed and analyzed
in the past few years [7], we cannot consider rekey transport as a conventional re-
liable multicast because of its specific properties. Besides its sparseness workload,
we observe that rekey transport also has the following requirements:

� Eventual reliability. By eventual reliability, we mean that a receiver should
be able to receive all of its encrypted keys. This requirement comes from the
inter-dependencies discussed in Section 2.

� Soft real-time requirement. By soft real-time requirement, we mean that the
transport of a rekey message is finished with a high probability before the
start of the next rekey interval. The objective of the soft real-time require-
ment is to alleviate the out-of-sync problems.

We address the eventual reliability requirement by allowing receivers to send
re-synchronization requests [24] when they cannot recover a rekey message in time.
To provide soft real-time rekey transport, we use proactive FEC which can reduce
recovery latency. In [10, 17], the authors have shown that round-based proac-
tive FEC approaches can reduce delivery latency. Furthermore, it has been shown
in [14] that a hybrid approach combining FEC and ARQ can significantly reduce
the bandwidth requirements of a large reliable multicast session. In [15], the au-
thors compare the benefits of combining local recovery with an FEC/ARQ hybrid
technique and conclude that for many multicast scenarios, such a combination of-
fers little improvement over an FEC/ARQ hybrid technique without local recovery.
Given above, our performance evaluation of rekey transport is based on a simple
round-based proactive FEC protocol.

One potential scalability problem of a reliable multicast protocol is the feed-
back implosion problem, and mechanisms such as tree-based feedback aggregation
or NACK avoidance can be used to reduce feedback traffic [7]. Furthermore, for a
proactive FEC based reliable multicast protocol, Rubenstein, Kurose and Towsley
have observed that the number of NACK packets can be reduced by increasing
proactivity factor [17]. In [27], we have proposed and investigated an adaptive

17

proactive FEC algorithm, and our evaluations show that the number of NACK
packets to the key server can be controlled by adjusting the proactivity factor at
the beginning of each rekey interval. Given these results, in this paper, we assume
that each receiver unicasts its feedback packets directly to the key server.

send � original and ����� ��	 FEC packets
at the end of each round:

collect ���� as the largest ��
at the beginning of next round:

generate ���� FEC packets, and multicast to all receivers

Figure 13: Key server protocol

First, consider the key server protocol as specified in Figure 13. At the begin-
ning of a rekey interval, the key server first runs a key assignment algorithm to
assign the keys in a rekey subtree into � packets. Following the convention, we
refer to the � packets in a rekey message as a block and � as the block size. Af-
ter generating the � original packets, the key server makes each of the � packets
individually verifiable by flow signing [23], and generates ��� � ���	 proactive
FEC packets, where � � � is the proactivity factor at the current rekey interval.
To generate the FEC packets, the key server uses the Reed Solomon codes [16]
when block size � is small and uses the Tornado codes [3] when � is large. The
advantage of Reed Solomon code is that it allows a user to recover the � original
packets from any � distinct packets, and therefore we base our analysis on Reed
Solomon code. The Tornado codes, which may require a slightly higher number
of packets to recover all of the original packets, also have advantages because they
have smaller encoding time, and they may also allow a user to recover its packets
without recovering all of the original packets. After multicasting the original and
proactive FEC packets, the key server waits for the duration of a round, which is the
largest round-trip time of all receivers, and collects feedbacks from the receivers.
The feedback of each receiver is a NACK packet containing the number of packets
�� that it needs in order recover its packets. At the beginning of the next round,
the key server calculates ����, the largest of all ��, generates ���� new FEC re-
pair packets, and multicasts the repair packets to receivers. This process continues
until the end of this rekey interval. We notice that it is possible that the key server
may still receive NACK packets from some receivers at the end of a rekey inter-
val. In this case, the key server considers the NACK packets as re-synchronization
requests and sends re-synchronization packets to these users via reliable unicast.
Since the design objective of keygem is to make sure that this scenario will rarely

18

happen, we do not discuss this scenario in this paper. For a strategy in which the
key server targets to multicast for only one or two rounds instead of until the end
of a rekey interval, please see [27].

for the first round:
if receive its specific �� or at least � distinct packets

done
else at the end of this round

set �� 	 � � (the number of distinct packets received)
report �� to key server

for each of the following rounds:
if receive at least � distinct packets

recover the encrypted keys
done

else at the end of this round
set �� 	 � � (the number of distinct packets received)
report �� to the key server

Figure 14: Receiver protocol I (with sparseness property)

Next, consider the receiver protocol as specified in Figure 14. Assume the en-
crypted keys of a receiver � are assigned into �� packets. Then, during the first
round, the receiver checks whether it has received the �� packets. If the receiver
has received the �� packets or is able to recover the �� packets using FEC because
it has received at least � distinct packets, the receiver extracts its encrypted keys
and does not participate in the following rounds. Otherwise, the receiver will need
to participate in the following rounds to receive a total of at least � distinct pack-
ets to recover the � original packets, including its �� packets. For this case, the
receiver sets �� 	 � � �, where � is the number of distinct packets that it has
received, and reports �� to the key server. For comparison purpose, we have also
shown in Figure 15 a receiver protocol in which a receiver needs to receive all of
the � packets in a block, that is, a workload that does not have the sparseness prop-
erty. To distinguish these two protocols, we call the first protocol, which considers
sparseness property, as Protocol I, and the second protocol, which can be seen as a
conventional reliable multicast protocol, as Protocol II.

3.3 Performance of reliable rekey transport

Given the workload of rekey transport and the rekey transport protocol, we analyze
in this section the performance of reliable rekey transport. To determine the guide-

19

if receive at least � distinct packets
construct the � original packets
done

else at the end of each round
set �� 	 � � (the number of distinct packets received)
report �� to the key server

Figure 15: Receiver protocol II (conventional reliable multicast)

lines for system design, we are interested in two performance metrics. Our first
metric is bandwidth overhead, which we define as the ratio of ����, where �� is the
total number of packets that the key server sends for a block of packets, including
the repair packets to provide reliability, and � is the block size. Our second metric
is latency, which we define as the number of rounds to deliver a rekey message to
all receivers.

3.3.1 Analysis assumptions

For performance analysis, instead of considering a specific key assignment algo-
rithm, we consider general key assignment algorithms and assume the distribution
of ���� as an input to the analysis. Furthermore, for all numerical results in this
section, we assume that the number of receivers � is equal to ��
�, and that all
receivers have a �� value of �. For a balanced key tree of degree
 with ��
� users,
we know that � is the maximum number of encrypted keys that a user needs to re-
ceive. Thus, the value of �� for a user � will be less than or equal to �. As a result,
the reported numerical results are upper bounds for the results of any specific key
assignment algorithm.

As for the � receivers, we assume that �� of them have a high packet loss rate
of ��, and the other �� 	 � � �� have a low loss rate of ��. For simplicity of
analysis, we assume that receivers have independent losses, and that the losses of
different packets are independent (for simulation results of correlated losses, please
see [27]). For numerical results, we use the default values of �� 	 ���, �� 	 ���,
�� 	 �
��, and �� 	 ��.

3.3.2 Conversion from protocol I to protocol II

Since a receiver does not need to receive all of the packets in a rekey message, we
observe that previous analyses [20, 11, 14, 9, 15] of reliable multicast cannot be
directly applied. Our key observation, however, is that we can convert the analysis

20

of rekey transport workload into the analysis of conventional reliable multicast
workload. In particular, we can convert one protocol instance where receivers run
Protocol I to another protocol instance where receivers run Protocol II. Here, by a
protocol instance, we mean a session with a given number of receivers running a
given protocol.

Consider the following condition �� at the end of the first round:

C0: A receiver � has received its specific �� packets, and the total
number of packets it has received is less than �.

We observe that if we remove the receivers who satisfy condition �� at the end
of the first round, we have converted the analysis of an instance of Protocol I to
an instance of Protocol II with reduced number of receivers, and therefore we can
reuse the results of previous analyses for conventional reliable multicast. To be
more specific, let �� and �� denote the numbers of high loss and low loss receivers
in an instance of Protocol I. Let �����

�� and � ���
��

denote the random variables of
the numbers of high loss and low loss receivers who do not satisfy condition ��
at the end of the first round, where � � �����

�� � ��, and � � � ���
��

� ��. Thus,
our analysis of an instance of receiver Protocol I with �� high loss receivers and ��
low loss receivers has been converted to the analysis of an instance of Protocol II
with �����

�� high loss and ����
��

low loss receivers.

Let ��������� �� denote ��������
�� 	 ��� ���

��
	 ��. Since we assume the

losses of the receivers are independent, we have that

��������� �� 	 �
����
��

��� �����
��

���

where �����
�� ��� denotes ��������

�� 	 ��, that is, the probability of � of the ��
high loss receivers do not satisfy ��, and ����

��
��� denotes ���� ���

��
	 ��.

The remaining issues are to derive �����
�� ���, where � � � � ��, ����

��
���,

where � � � � ��, ��
����
�� �, and �� ���

��
�. The derivation details are shown in

Appendix B.
To see the benefit of the sparseness rekey workload, Figure 16 shows the num-

ber of receivers satisfying �� at the end of the first round. Since this number
represents the reduction of the number of receivers when we convert from Protocol
I to Protocol II, it reflects the savings of the sparseness rekey workload. We ob-
serve from this figure that when message block size � is large, and when proactivity
factor � is small, the performance of a rekey multicast is equal to the performance
of a conventional reliable multicast with a much smaller number of receivers.

21

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 r

ec
ei

ve
rs

block size k of a rekey message

N=2048, z=6

proactivity factor=1.0
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 16: Expected number of receivers satisfying ��

3.3.3 Bandwidth overhead

We analyze in this section the bandwidth overhead of rekey transport. Given ��
high loss and �� low loss receivers, we let ����� ��� denote the random variable
of bandwidth overhead when receivers run Protocol I. Let������ ���� denote the
mean value of this random variable. Given � high loss and � low loss receivers, we
let ������ �� denote the random variable of bandwidth overhead when receivers
run Protocol II. Let ������� ��� denote the mean of this random variable. Given
the conversion from Protocol I to Protocol II, we have that:

������ ���� 	
�
���

�����
��

��� �����
��

���������� ��� (2)

For given � and �, we can derive ������ �� by considering only Protocol II, and the
detailed derivation of ������� ��� is shown in Appendix B.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 20 40 60 80 100 120 140 160 180

ba
nd

w
id

th
 o

ve
rh

ea
d

block size k of a rekey message

N=2048, z=6

proactivity factor=1.0
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 17: Overhead ������ ����

Figure 17 shows our analytical results of rekey transport bandwidth overhead
as functions of the block size � of a rekey message and proactivity factor �. To
validate our analysis, Figure 18 shows simulation results using the ns simulator.
Comparing both figures, we observe that our analytical results match with sim-
ulation results very well over a wide range of message block size and proactivity

22

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 20 40 60 80 100 120 140 160 180

ba
nd

w
id

th
 o

ve
rh

ea
d

block size k of a rekey message

N=2048, z=6

proactivity factor=1.0
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 18: Overhead by ns simulation

factor. We observe from Figure 17 that even with the sparseness property, the band-
width overhead of reliable rekey transport is still high. Even for a rekey message
with a large block size �, which has better transport bandwidth efficiency, to reli-
ably transport the rekey message, the key server still needs to send a large amount
of repair packets. For a smaller rekey message, the overhead is even higher. For
example, for a rekey message with block size ��, the key server needs to send about
�
 (��
� � �� � ��) repair packets.

3.3.4 Rekey transport latency

We measure the latency of rekey transport by the number of rounds to deliver a
rekey message to all receivers. It is intuitive that rekey transport latency will also
depend on the block size � of a rekey message and proactivity factor �.

Figure 19 shows the simulation results for the number of rounds to transport
rekey messages with different message block size � at different proactivity factor
�. We make the following observations. First, we observe that at a large proactivity
factor �, the number of rounds to transport a rekey message with a large block size
� can be smaller than that of a smaller rekey message. This is somehow counter
intuitive because we expect the number of rounds to transport a large rekey message
should always be larger than that of a smaller rekey message. To explain this result,
we notice that for a rekey message with a large block size �, when proactivity factor
� is large, the probability that a receiver will receive at least � out of the total ���	
packets becomes higher; therefore, rekey transport latency reduces. On the other
hand, if proactivity factor � is small, the number of rounds to transport a large rekey
message is larger than that of a smaller rekey message.

Let ���� ��� denote the random variable of the number of rounds to rekey
�� high loss and �� low loss receivers when receivers run Protocol I. Let ����� ��
denote the random variable of the number of rounds to transport � packets to � high
loss and � low loss receivers when receivers run Protocol II. Similar to Equation

23

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 r

ou
nd

s
block size k of a rekey message

N=2048, z=6

proactivity factor=1.0
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 19: Rekey transport latency by ns simulation

(2), we have

� ���� ���� 	
�
���

�����
��

�������
��

���� ����� ��� (3)

Therefore, we again convert the analysis from Protocol I to Protocol II. How-
ever, an exact calculation of the number of rounds to transport a rekey message
requires complicated calculations involving modeling of transition states. There-
fore, we derive an upper bound on � ����� ���. The derivation of the upper bound
is shown in Appendix B.

3.3.5 How to determine proactivity factor �?

In our previous investigations of bandwidth overhead and rekey transport latency,
we have considered the impacts of both the block size � of a rekey message and
proactivity factor �. Given a rekey subtree and a key assignment algorithm, we
know that block size � is determined. The proactivity factor �, however, is a pro-
tocol parameter of a rekey transport protocol. We next discuss how to determine
�.

To determine �, we observe that the key server can reduce rekey transport
latency and the number of receiver feedbacks by increasing proactivity factor �.
When � is large, the key server will send more proactive repair packets in the first
round; therefore, more receivers will receive their packets in the first round, less
receivers will send feedback packets to the key server, and the key server will send
less repair packets in the following rounds. From Figure 20, for example, we ob-
serve that for a rekey message with block size ��, when the key server increases �
from � to �
�, rekey transport latency is reduced from � to about �. Therefore, the
key server can reduce rekey transport latency by increasing �. However, we also
notice that the key server may set � to be too large and therefore increase band-
width overhead. From Figure 20, for example, we observe that if the key server

24

sets � to be higher than �
�, then bandwidth overhead is dominated by proactivity
factor and increases linearly with � while rekey transport latency stays flat.

0

1

2

3

4

5

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

1

2

3

4

5

ba
nd

w
id

th
 o

ve
rh

ea
d

nu
m

be
r

of
 r

ou
nd

s

proactivity factor

N=2048, z=6, k=20

overhead
latency

Figure 20: Overhead and latency as function of �

Given the above observations, we know that the key server should choose �
such that rekey transport latency is close to � while the bandwidth overhead curve
still stays flat. For example, in Figure 20, a good choice of � will be �
�. In
real implementation, however, the key server does not know the loss properties
of the receivers (for example, independent loss assumption tends to overestimate
the amount of redundancy needed when losses are shared [14]), and the block size
of a rekey message may vary at different rounds. Thus, the key server should
dynamically adjust � at each round. For example, in one type of strategy, the
key server can adjust � using stochastic or AIMD (additive-increase-multiplicative-
decrease) control so that rekey transport latency is close to a reference value, say
� to � rounds. In another type of strategy, which we proposed and investigated
in [27], the key server adjusts � in a way such that the number of receivers sending
feedbacks is close to a small value, say �� of the receivers. For our following
performance analysis, we determine � by choosing the largest proactivity factor
that still gives the lowest bandwidth overhead.

4 Tradeoffs of Bandwidth Overhead and Rekey Interval

In Section 2, given � join and � leave requests in a rekey interval for a group
with � users, we have investigated the marking algorithm to generate a rekey sub-
tree. Given a rekey subtree, in Section 3, we have investigated rekey transport, and
evaluated bandwidth overhead. Combining the results of Section 2 and Section 3,
given � , �, and � , we can derive bandwidth overhead. Given group size � and
user behaviors, we also know that � and � will be a function of rekey interval ! .
Thus, rekey interval ! serves as a system design parameter that a group key man-
agement system can use to control bandwidth overhead. Furthermore, given user

25

behaviors and system constraints, it is possible that a group key management can-
not find a suitable ! for a given group size � . Under this scenario, the group key
management system needs to partition users into several groups to reduce group
size.

In the remainder of this section, we first discuss a simple membership model.
Then we discuss system performance metrics and the tradeoffs between bandwidth
requirements and rekey interval ! . Finally, we discuss several system constraints
and an algorithm to determine rekey interval ! as well as the number of users �
that a single key server can support.

4.1 Membership dynamics

To quantify the numbers of joins and leaves arriving in a rekey interval ! , we need
to specify the arrival rates of joins and leaves. These arrival rates, which we call
membership dynamics, depend on application and user behaviors. The only inves-
tigation about membership dynamics that we are aware of was by Almeroth and
Ammar [1]. They showed that user join and leave behaviors in an audio multicast
session follow exponential distributions.

excess life tδ

t + Tt

r joins the group r leaves the group

rekey interval T

rekey rekey

Figure 21: Illustration of excess life Æ�

To model the number of leave requests in a rekey interval ! for a group with
� users, we specify the distribution of the time each user spends in the group. Let
" ��� denote the cumulative distribution function of the time a user stays in the
group. Let Æ� denote the remaining time a user will stay in the group, given that
it is in the group at time �, which is the start time of a rekey interval. We call Æ�
the excess life of a user at time �. Figure 21 illustrates the concept of excess life.
Let 	 denote the mean value of the time that a user stays in the group. When the
system is in steady state, from renewal theory, we have

���! � 	 ���Æ� � !� 	
�

	

� �

�
��� " ������

where ���! � is the probability that a user will leave the group before the end of the
rekey interval. Therefore, for a group with � users, the expected number of leave
requests ����! � in a time period ! will be ��!��� 	 � ����! �. Here, we write

26

��!��� to indicate that the number of leaves will be a function of both ! and � .
In particular, we assume the amount of time that each receiver spends in a group
is exponentially distributed with mean value of 	. Denoting #� 	 ��	, we have
��!��� 	 ���� ����� �.

To model the number of join requests in a rekey interval ! , we can assume
user’s arrivals are Poisson with a rate of #	 . Therefore, our overall membership
dynamics can be modeled as an $�%�� system. For evaluation purpose, we
assume that the group is in steady state, that is, � 	 �.

4.2 System metrics and tradeoffs

The two types of entities that participate in a group key management system are
the key server and receivers. Accordingly, the four potential bottleneck resources
are the CPU processing demand on the key server or a receiver and the bandwidth
requirement of the key server or a receiver. Since CPU power keeps increasing, and
our evaluations show that in most cases CPU demands are not the limiting factors,
we concentrate our efforts on the bandwidth requirements. To determine the rekey
interval, another performance metric we consider is rekey transport latency since it
gives a lower bound on the rekey interval.

We formally specify the following performance metrics:

� Key server outgoing bandwidth &�����! �. Let '�����! � denote the total
bytes that a key server multicasts to the � users in order to reliably trans-
mit a rekey message. Since � and � are functions of � and ! , we rewrite
����� �� �� as �����! �. Let &�, &�� , and &� denote the packet size
of an original rekey packet, an FEC packet, and a re-synchronization packet,
respectively. Let $ denote the number of encrypted keys per packet, and
let �� denote packet duplication overhead of a key assignment algorithm
(i.e. the number of packets generated by a key assignment algorithm divided
by the number of packets generated by a key assignment algorithm without
duplicate assignment). Let ���� denote the mean value of multicast band-
width overhead as we defined in Section 3.3. Let �(� denote the mean
number of re-synchronization packets that the key server needs to transmit.
We have

&�����! � 	
'�����! � �&� ��(�

!
(4)

where

'�����! � 	 �� � �
�����! �

$
	

��&� � ������ ��&���

27

� Receiver incoming bandwidth &����! �. Let '����! � denote the total
bytes that a receiver receives from multicast. Let �� denote the packet loss
rate of receiver �. We know that '����! � 	 '�����! ���� ���. Assuming
the probability that a receiver needs re-synchronization is small, we have

&����! � 	
'����! �

!
(5)

� Rekey transport delay)���! �. Let ���! � denote the number of rounds
for the key server to transmit a rekey message to the� users. Let)� denote
the largest round trip time from the key server to receivers. We have

)���! � 	 ���! � �)� (6)

Our first observation is that &�����! �, &����! �, and)���! � are all in-
creasing functions of� , that is, bandwidth requirements and rekey latency increase
as we increase group size. We also observe that �� is generally not very high; there-
fore, &�����! � and &����! � are close to each other. Since a key server is likely
to have much larger bandwidth than receivers, we plot overall bandwidth require-
ment for &����! � only.

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180

ba
nd

w
id

th
 (

kb
ps

)

rekey interval (seconds)

mean_time=180 sec, packet_size=25*20+57, #enc/packet=25, J=L

N=512
N=1024
N=2048
N=4096

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180

ba
nd

w
id

th
 (

kb
ps

)

rekey interval (seconds)

mean_time=3600 sec, packet_size=25*20+57, #enc/packet=25, J=L

N=512
N=1024
N=2048
N=4096

Figure 22: Bandwidth requirement vs. rekey interval
Figure 22 plots &����! � as functions of � and ! . The upper figure assumes

that each receiver stays in the group for � minutes, and the lower figure assumes
that each receiver stays in the group for � hour. We observe from both figures that
&����! � is a decreasing function of ! . We also observe clearly from these curves
the tradeoffs between bandwidth requirements and access control effectiveness. To
determine a suitable rekey interval, a balance between performance requirements
and access control effectiveness has to be achieved.

28

4.3 System constraints and algorithm

To decide the rekey interval and the maximum number of users a key server can
support, we identify the following four potential system constraints.

1. &�����! � � &���
�� . Here &���

�� is a system specified bandwidth limit for
the key server. For example, &���

�� can be ��� of the key server’s outgoing
bandwidth. This constraint specifies a lower bound on ! .

2. &����! � � &���
� . Similar to &���

�� , &���
� is a receiver bandwidth limit.

This constraint specifies another lower bound on ! .

3.)���! � � ! . This is to ensure that a rekey transport can finish before the
start of the next rekey interval. We notice that with this constraint, the num-
ber of receivers sending re-synchronization requests can be greatly reduced.
Therefore, this constraint specifies the third lower bound on ! .

4. ! � !���. !��� is a constant determined either by business model or
by application security requirements, and it specifies an upper bound on ! .
For example, one possible specification can be that the number of departed
users that still have the group key is less than �% of the total users. For our
membership model, it means that � � ����� � �
��; therefore, we can set
!��� to be �����
���#� to satisfy this constraint.

Given the above constraints, we choose ! 	 !��� to minimize bandwidth re-
quirement, if the three lower bounds are smaller than !���. However, it is possible
that no rekey interval can satisfy all four constraints. In that case, we need to deter-
mine the maximum group size that one key server can support, and partition users
into smaller groups. An algorithm to determine the maximum group size one key
server can support is shown in Figure 23. For how to partition users into smaller
groups according to their behaviors and two architectures to extend a centralized
key server to distributed key servers, one of which is based on Kronos [18], please
see [26]. see Section 5.

�� 	 ����� � &����� !���� � &
���
�� �

�� 	 ����� � &���� !���� � &
���
�� �

�� 	 ����� �)��� !���� � !����
� 	 ������� ��� ���

Figure 23: Algorithm to determine �

29

5 Extension to Distributed Architectures

In the previous section, we have shown that given the membership dynamics and
system constraints, it is possible that a single key server cannot support a given
number of users. To extend the scalability of a single key server and to provide
fault tolerance, it may be necessary to have multiple key servers in one group key
management system. Our performance evaluations of multiple key servers show
that partitioning users into active and inactive groups can further improve system
scalability. Here, by an active (inactive) subgroup, we mean its users have higher
(lower) probability of joining/leaving. However, due to page limitation, we will
report our results in a separate paper. For completeness, we present two distributed
key server architectures. The two architectures differ on their functionalities and
how they coordinate multiple key servers.

5.1 Architecture 1

Figure 24 illustrates our first architecture, which is based on Kronos [18]. In this
architecture, users are partitioned into several subgroups and all users also form a
multicast group. Each subgroup has a key server (KS) and one or more registrars
(REG), and operates just like our previous single key server. The key servers are
synchronized using NTP protocol, and one of the key server is designated as the
principle key server (PKS). Upon system initialization, a non-PKS authenticates
itself with the PKS and receives the system parameters such as rekey interval ! ,
the index of the current rekey interval, and a secret key *�. At the �-th rekey
interval, each key server generates its new subgroup key by encrypting � using
*�. Since all key servers are synchronized and therefore have the same index �,
each key server will generate the same key. Therefore the subgroups form a larger
virtual group with a common group key. To send a data packet to the whole group,
a sender simply encrypts the packet by the group key and multicasts it to the whole
group. Upon receiving the packet, a receiver decrypts the packet by the group key.

The first architecture introduces no overhead on data delivery across subgroups.
The overhead of synchronizing key servers is also low. However this architecture
requires all key servers use the same rekey interval. Also, it becomes harder ensure
reliable data delivery across subgroups. Therefore it is most suitable for applica-
tions that do not require reliable application data delivery, such as teleconferencing
or pay-per-view.

30

REG

U
U

U
REGKS2

GK2

U
U

U
KS3

GK3 REG

REG

U
U

U

(PKS)

KS1

REG

REG

GK1 (subgroup 2)

(subgroup 3)

(whole group)

NTP

NTP
NTP

(subgroup 1)

Figure 24: Architecture 1

5.2 Architecture 2

Figure 25 illustrates the second architecture. Users are also partitioned into several
subgroups and each subgroup is managed by a key server. However each subgroup
operates on its own, and the users do not share a common group key1. To ensure
communications across subgroups, the key servers are organized into a mesh via
TCP just like in RMX [5]. Also, all key servers share a common secret key (*�).
The establishment of this key is similar to Architecture 1. To send a data packet to

(subgroup 2)

(subgroup 3)

(subgroup 1)

U
U

U
KS1

REG

REG

U
U

U
KS3

GK3 REG

REG

REG

U
U

U
REGKS2

GK2

TCP
TCP

TCP

GK1

Figure 25: Architecture 2

the whole group, a sender encrypts the packet by its subgroup key and multicasts it
to its subgroup. The sender also reliably unicasts the packet to its local key server.
Upon receiving the packet, the local key server decrypts the packet, re-encrypts it
by *�, and forwards the packet to other key servers through the mesh. Other key
servers relay the packet to its subgroup.

The advantage of this architecture is that the relaying among key servers are

1It is easy to modify Architecture 2 so that the subgroups share the same group key.

31

reliable; therefore, if each subgroup provides reliable data delivery, the whole de-
livery process will be reliable. As a result, this architecture is suitable for applica-
tions that require reliable data delivery, like software distribution. This architecture
is also flexible in the sense that a subgroup does not need to coordinate with other
subgroups.

6 Conclusion

In this paper, we have investigated the scalability issues of reliable group rekey-
ing, and provided a performance analysis of keygem. Instead of rekeying after
each join or leave, we use periodic batch rekeying to improve scalability and al-
leviate out-of-sync problems. Our analyses show that batch rekeying can achieve
large performance gains. As for rekey transport, our investigations show that rekey
transport has an eventual reliability and a soft real-time requirement, and that the
rekey workload has the sparseness property. We then present a reliable rekey trans-
port protocol based upon the use of proactive FEC. We show that reliable rekey
transport in our design can be analyzed by converting it to conventional reliable
multicast. We have also showed the tradeoffs between bandwidth requirements and
rekey interval. Considering four system constraints, we provide some guidelines
for choosing an appropriate rekey interval and determining the maximum num-
ber of users a key server can support. Our future work includes investigations of
dynamic partitioning of group users, more detailed trace based experimental eval-
uations, and investigations of FEC encoding schemes that work better for a work-
load with the sparseness property. The investigation of FEC encoding schemes
for sparseness workload is especially interesting because it can also apply to other
applications such as stock quote delivery.

7 Acknowledgments

We thank Ellen Zegura for her constructive comments in shepherding the final
revision of this paper. We also thank Min S. Kim, Dong-Young Lee, Yanbin Liu,
and Peiyu Wang for their assistance.

References

[1] K. Almeroth and M. Ammar. Collection and modeling of the join/leave be-
havior of multicast group members in the mbone. In Proceedings of High
Performance Distributed Computing Focus Workshop (HPDC ’96), Syracuse,
New York, USA, August 1996. link: http://imj.ucsb.edu/publications.html.

32

[2] D. Balenson, D. McGrew, and A. Sherman. Key Management for Large
Dynamic Groups: One-way Function Trees and Amortized Initialization,
INTERNET-DRAFT, 1999.

[3] J. W. Byers, M. Luby, M. Mitzenmacher, , and A. Rege. A digital fountain
approach to reliable distribution of bulk data. In Proceedings of ACM SIG-
COMM ’98, Vancouver, B.C., Sept. 1998.

[4] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key manage-
ment for secure Internet multicast using boolean function minimization tech-
niques. In Proceedings of IEEE INFOCOM ’99, volume 2, Mar. 1999.

[5] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable multicast for
heterogeneous networks. In Proceedings of IEEE INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000.

[6] H. Harney and E. Harder. Logical Key Hierarchy Protocol, INTERNET-
DRAFT, Mar. 1999.

[7] I. R. T. F. (IRTF). Reliable Multicast Research Group.
http://www.nard.net/ tmont/rm-links.html.

[8] I. R. T. F. (IRTF). The secure multicast research group (SMuG).
http://www.ipmulticast.com/community/smug/.

[9] S. K. Kasera, J. Kurose, and D. Towsley. A comparison of server-based and
receiver-based local recovery approaches for scalable reliable multicast. In
Proceedings of IEEE INFOCOM ’98, San Francisco, CA, Mar. 1998.

[10] R. G. Kermode. Scoped Hybrid Automatic Repeat reQuest with Forward
Error Correction (SHARQFEC). In Proceedings of ACM SIGCOMM ’98,
Vancouver, Canada, Sept. 1998.

[11] B. Levine and J. Garcia-Luna-Aceves. A comparison of known classes of
reliable multicast protocols. In Proceedings of IEEE ICNP ’96, Columbus,
OH, Oct. 1996.

[12] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch rekeying for secure
group communications. In Proceedings of Tenth International World Wide
Web Conference (WWW10), Hong Kong, China, May 2001.

[13] M. J. Moyer, J. R. Rao, and P. Rohatgi. Maintaining Balanced Key Trees for
Secure Multicast, INTERNET-DRAFT, June 1999.

33

[14] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-based loss recovery
for reliable multicast transmission. In Proceedings of ACM SIGCOMM ’97,
Sept. 1997.

[15] J. Nonnenmacher, M. Lacher, M. Jung, E. Biersack, and G. Carle. How
bad is reliable multicast without local recovery? In Proceedings of IEEE
INFOCOM ’98, San Francisco, CA, Mar. 1998.

[16] L. Rizzo. Effective erasure codes for reliable computer communication pro-
tocols. Computer Communication Review, Apr. 1997.

[17] D. Rubenstein, J. Kurose, and D. Towsley. Real-time reliable multicast using
proactive forward error correction. In Proceedings of NOSSDAV ’98, July
1998.

[18] S. Setia, S. Koussih, S. Jajodia, and E. Harder. Kronos: A scalable group
re-keying approach for secure multicast. In Proceedings of IEEE Symposium
on Security and Privacy, Berkeley, CA, May 2000.

[19] J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key
distribution. In Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska,
Apr. 2001.

[20] D. Towsley, J. Kurose, and S. Pingali. A comparison of sender-initiated reli-
able multicast and receiver-initiated reliable multicast protocols. IEEE Jour-
nal on Selected Areas in Communications, 15(3):398–406, 1997.

[21] D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues
and Architectures, INTERNET-DRAFT, Sept. 1998.

[22] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communications
using key graphs. In Proceedings of ACM SIGCOMM ’98, Sept. 1998.

[23] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts.
IEEE/ACM Transactions on Networking, Aug. 1999.

[24] C. K. Wong and S. S. Lam. Keystone: a group key management system. In
Proceedings of ICT 2000, Acapulco, Mexico, May 2000.

[25] Y. R. Yang. A secure group key management communication lower bound.
Technical Report TR–00–24, The University of Texas at Austin, July, Revised
September 2000.

34

[26] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable group rekeying: A
performance analysis. Technical Report TR–01–21, The University of Texas
at Austin, June 2001.

[27] X. B. Zhang, S. S. Lam, D.-Y. Lee, and Y. R. Yang. Protocol design for
scalable and reliable group rekeying. In Proceedings of SPIE Conference on
Scalability and Traffic Control in IP Networks, Denver, CO, Aug. 2001.

A Number of Encrypted Keys Using Batch Processing

A.1 Worst case analysis

First, consider the worst case. Consider a balanced tree with degree � and height
�. We know that there will be a total of � 	 �� leaf nodes. Suppose � of the
users leave. We can see that the worst scenario happens when the receivers left are
evenly distributed on the tree leaf nodes and therefore, the amount of sharing is
minimum.

Let the level of the tree root be �. Suppose the number of receivers that will
leave is � 	 ��, where � � ���. Then when the leaving receivers are distributed
evenly at the leaf nodes, the keys from level � to level � all need to be changed.
Each of these ��	���

��� keys will need to be encrypted by its � children.
For each of the �� nodes at level �, there will be a path from level � � � to level

�� � on which all keys along the path need to be encrypted by its � children.
At the �� � level, a total of �� keys need to be encrypted by its �� � children.
Therefore, the worst case number of keys to be updated is:

������� 	 ��	���
��� �� ����� �� ���� ����� ��

	 �� ����

� � ���

���

(7)

When � � ���, each extra left receiver will reduce the number of updated
keys. For the first �� � ������ extra left receivers, the number of reduced key
update is � for each extra left receiver. For the next �� � ������ left receivers,
each will reduce �. For the next ��� ������ left receivers, each will reduce � key
updates.

A.2 Average case analysis

We now show the derivation for the average number of encrypted keys for batch
rekeying. We write ��

� to mean from � choose �, the number of ways to choose a
�-element subset from an �-element set. We use the convention ��� 	 � if � � �.

35

Intuitively, the number of encrypted keys is strongly related to the size of the
rekey subtree. For example, if a node belongs to the rekey subtree due to leaves,
then it should be encrypted � times, each time by one of it’s � children, assuming
none of its children are pruned. According to our marking algorithm, a node (key)
will be pruned if all its users have left. Therefore, our general technique is to
consider the probability that an individual node belongs to the rekey subtree, and
the node’s expected number of children. The average number of encryptions is
the sum of the product of these two amounts, over all non-leaf nodes. Figure 26
illustrates this idea. We divide the derivation into three cases: � 	 �, � � �, and
� � �.

N1 N2N0

node i

node 0

level h

level l

level 0

Figure 26: Batch rekeying derivation.

A.2.1 � 	 �

We first consider the case when � 	 �. This scenario happens when the system is
in a steady state and it forms the basis of our analysis for the next two cases. Since
� 	 �, we can pick one leave request and replace it with a join request.

Assume the level of the root of the key tree as �, and the level of the leaves as
� 	 ����� . Consider any one of the �� nodes at level �. Out of the total �	

 ways
to pick � users out of the � tree leaves, in �	

�
���
of the cases there will be no

tree leaves below this node that will leave. Therefore, the node will be rekeyed in
�	

 � �	

�
���
cases. We know that if the node is rekeyed in one case, it will be

encrypted by its � children, therefore, the average number of encrypted keys can
be expressed as:

���� ��� �� �� 	 �

����
���

�����
�	

�
�

�	

� (8)

where �� 	 ���
�.

36

A.2.2 � � �

When � � �, we can only replace part of the leaves with joins. A simple and
efficient method is to replace leaves from left to right. A node’s probability of
belonging to the rekey subtree is similar to the previous case, but a node also has
the probability of being pruned out, because all the leaf nodes under that node are
all leaves, without joins to replace them. Consider the �-th node, � � � � �� � �,
on level �. The probability that this node is pruned is when all the leaf nodes in it’s
subtree are leaves, and there are at least � leaves on the left of it’s subtree. Thus,
the number of encrypted keys is:

���� ��� �� �� 	 ���� ������� � ��� ���
����
���

�����
���

�

��
��
��	

��

�
�����
�

�

��

�
(9)

where �� 	 ���
�, �� 	 � ���, �� 	 � � ��� ����.

A.2.3 � � �

When � � �, there are extra joins after we replace the leaves by joins. An efficient
method to put the extra joins is to first put the joins under the replaced leaves, then
put the joins from left to right under the leaf nodes. This method not only tries
to reduce the number of encryptions, but also tries to keep the tree balanced. We
have to consider two cases, the first is that a node belongs to the rekey subtree due
to joins, the second is that a node belongs to the rekey subtree due to leaves and
replacing joins. In the former case, the new key only needs to be encrypted by
its old counterpart; in the latter case, the new key needs to be encrypted by all its
children. Thus, the number of encrypted keys is:

���� ��� �� �� 	 ����	��	
��� 	�

����
���

�����
���

��� ��� ��
��

�
�

��

�

����
���

��

�
����

�

��

��

(10)

where�� 	 ���
�,�� 	 ����,�� 	 ���������,$ 	 ������������	��.

A.2.4 � � � alternative strategy

In the alternative strategy, we add the remaining � �� users from left to right after
replacing the � departed users by � joining users. For this strategy, consider the

37

potential states of the �-th node, � � � � ��� �, on level �. If the node is in Update
state (there is a leave), then the probability in this state will be � � ��
�
�

���

 ,

and there will be � edges coming to this node in the rekey subtree. Next, consider
the case that the node is not in Update state. If there is no join in the subtree below
this node, there will not be any edge in the rekey subtree; otherwise, the number of
edges coming to this node in the rekey subtree when there is joined node below this
node will be ������ �	����
�

���	�
	���, that is, the number of children that have join

below them plus the key for the old key. Given these cases, the average number of
encrypted keys will be:

���� ��� �� �� 	 ����	��	
��� 	�

����
���

�����
���

���� �
�	

�
�

�	

��

�
����

�
�

� ��� � �� �����

������ �	����
�

���	�
	� ���

(11)

where�� 	 ���
�,�� 	 ����,�� 	 ���������,$ 	 ������������	��.

B Reliable Transport
Performance Analysis

Define the following four conditions at the end of the first round:

� ��: A receiver � has received its specific �� packets, and the total number of
packets it has received is less than �.

� ��: A receiver � has received its specific �� packets, and the total number of
packets it has received is greater than or equal to �.

� ��: A receiver � did not receive its specific �� packets, and the total number
of packets received is less than �.

� ��: A receiver � did not receive its specific �� packets, and the total number
of packets received is greater than or equal to �.

B.1 Reduction from protocol I to protocol II

We notice that the difference between receiver protocol I and II is the conditions
under which a receiver can successfully receive its packets.

38

Consider a receiver � with loss probability �� and the number of specific pack-
ets it needs in protocol I is ��. We define ������ ��� as the probability of the
receiver to satisfy condition �� after the first round. We have

������ ��� 	 ��� ���
 �

�
��� ���

��� ��
��!�� �

��� ���
��
��!�� ���
�

	
��� ���

��� ��
��!�� �

��� ���
 �
��

��!�� ���
�

(12)

Assume all users require ���� packets, where ���� is the maximum number
of packets each receiver needs, and we define

������ � ������ ����� (13)

Now, we consider �����
�� , the r.v. of the number of high loss receivers who are

in receiver protocol II. We have

�����
��

��� 	 ��������
��

	 �� (14)

	 ��
��
� ��� �������

� � ��������
���� (15)

And the expected value of �����
�� can be expressed as:

������
��

� 	

���
���

� ������
��

��� (16)

Similarly, we have

����
��

��� 	 ���� ���
��

	 �� (17)

	 � �
��
� ��� �������

� � ��������
���� (18)

And the expected value of ����
��

can be expressed as:

�� ���
��

� 	

���
���

� �����
��

��� (19)

B.2 Bandwidth overhead of protocol II

Consider the overhead of protocol II. Assume there are � high loss receivers and
� low loss receivers in protocol II. Assume the sender will send �� � �	 packets,
among which � are original data packets, and ���	 � � are proactive FEC repair
packets.

39

Consider a receiver � with loss rate ��. Denote +� as the number of packets �
needs to receive its �-th different packets. Define)�	� �� ��� as ���+� � 	�,
we have

)�	� �� ��� 	

��
���

����
��� ��� ���

����� (20)

Extend)�	� �� ��� to all of the � high loss and � loss receivers. Define
)�	� �� as ��������+� � 	�, we have

)�	� �� 	
�
��

)�	� �� ��� (21)

	 �)�	� �� ����
� � �)�	� �� ����

� (22)

Therefore, the expected value of the overhead is

������� ��� 	 	���� �
�

�

��
���

���)�	� ���� �� (23)

All of our reported results are based on the above analysis. However, we notice
that in order to reduce the calculation overhead, it is possible to derive an approxi-
mation of bandwidth overhead.

Given 	 packets, consider the probability that a receiver � will receive at least
� of them. Denote this probability as)��	� �� ���. We have

)��	� �� ��� 	

��
���

��
� � ��� ���

� � ��
��� (24)

Extend)��	� �� ��� to all of the � high loss and � loss receivers. Define
)��	� �� as the probability of each receiver will receive at least � out of	 packets,
we have

)��	� �� 	
�
��

)��	� �� ��� (25)

	 �)��	� �� ����
� � �)��	� �� ����

� (26)

Consider a confidence probability that is close to 1. We can determine an
appropriate 	 such that)��	� �� � , that is, we can choose 	 to guarantee
that all the receivers get at least � packets with a probability larger than . Then
	���	��� �� will be an approximation of bandwidth overhead ������ ��.

40

B.3 Upper bound of rounds for Protocol II

We derive an upper bound on the mean number of rounds � ����� ���. From
our simulation, high loss receivers dominate the number of rounds. Therefore, we
consider a homogeneous high loss rate environment. We denote ��� as the r.v.
of the number of rounds to transfer � packets to � receivers. We denote ���� 	
� ����.

Consider any system state , 	 ���� ��� � � � � ���, where �� is the number of
packets receiver � still needs in order to have a total of � packets. We know that
� � �� � �. Define function ��,� as the number of receivers whose �� is greater
than 0, that is, ��,� denotes the number of receivers who are still missing at least
one packet to have � packets when the system state is ,. Denote 	�,� as the
maximum of �� in state ,.

With the above definitions, we first define '� as the terminal states:

'� 	 �, � ��,� 	 �� �� 	�,� 	 ��

Denote '���� �� as a set of states that the � receivers who are still missing packets
miss the same number of packets, �:

'���� �� 	 �, � ��,� 	 ����� � � � � �� �- �� �	 �� �� 	 ��

Denote '���� �� as another set of states that the highest number of packets that is
still missing is �:

'���� �� 	 �, � ��,� 	 ��	�,� 	 ��

It is easy to see that '���� �� � '���� ��.
Now, denote ��,� as the expected number of rounds to go from state , to enter

any one of the terminal states in '�. In particular, define ���� �� as ��,�, where , is
any one of the states in '���� ��. Since we assume homogeneous environment, we
know that it does not matter exactly which one of the states in '���� �� we start.
Therefore, ���� �� is well-defined. Further, consider any state , in '���� ��, we can
see that ��,� � ���� ��.

Next, we apply one step analysis. Assume at the beginning of the round the
state is ,� � '���� ��. Since 	�,�� 	 �, the sender will send � repair packets.
Denote the set of potential subsequent states as " �,��. We know that

" �,�� �
��

���

����
"��

'���� �� �� .� (27)

41

Therefore,

" �,�� 	

��
���

����
"��

�'���� �� �� .� � " �,��� (28)

Denote ��,�� ,� as the transition probability from state ,� to any state ,. Define
��,�� �� .� as:

��,�� �� .� 	
�

���#��������"	�� ���		

��,�� ,� (29)

Then we have

���� �� 	 � �
�

��� ���	
��,�� ,���,�

	 � �
��

���

����
"��

�
��#��������"	�� ���	

��,�� ,���,�

� � �
��

���

����
"��

�
��#��������"	�� ���	

��,�� ,����� �� �� .�

	 � �
��

���

����
"�� ��,�� �� .����� �� �� .�

	 � �
����

���

����
"�� ��,�� �� .���� � �� �� .�

(30)

Therefore,
���� �� 	
�
�
����

�
�

����
	
�

����
�
�

����
	
� 	�������"	��������"	

����������	

Now, the only unknown is ��,�� �� .�, where ,� � '���� ��. To derive expres-
sions, we consider two cases. We first consider the general case where the sender
will sender 	�,� packets. However, at the first round, the sender may send proac-
tively, therefore, we consider it as the second case.

Now first consider the case where the sender sends 	�,� repair packets if the
state at the start of a round is ,. Consider the potential states at the end of the round.
Among the � receivers, we know that exactly � of them have received all of the �
packets sent by the sender for this round. Also, we assume that � receivers will
have received . packets, where � � � � �� �. The remaining �� � � . receivers
will have received between . � � to �� � packets. Therefore, we have

��,�� �� .� 	 ��
���� ���

���

�
����

��� �
�
���

�
�"
���

��" � ��� ���
"
��

�)��� . � �� �� ����
�����

(31)

42

where)�	��� /� ��� is the probability of a receiver � with loss probability �� gets
at least � packets but less than / packets out of a total of	 packets, and we have

)�	��� /� ��� 	

$���
���

��
���� ���

� � ��
��� (32)

Next, we consider the case of the first round. The state at the beginning of the
first round is ��� �� � � � � ��, that is, ��� ��. However, instead of sending � packets,
the sender sends ���	 packets. Denote �� 	 ���	, we have

��,�� �� .� 	 ��
�

����

��� �
�
����� ���

� � ��
���

�

��

�
����

��� �
�
���

�
�"
�� � ��

���" � ��� ���
"�
��

�)���� . � �� �� ����
�����

(33)

0

2

4

6

8

10

20 40 60 80 100

nu
m

be
r

of
 r

ou
nd

s

number of receivers

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 27: Analytical Upper bound of rounds for �� 	 ���, � 	 ��

To validate the accuracy of our upper bound, Figure 27 shows the upper bounds
derived using our analysis, and Figure 28 shows simulation results using ns. Com-
paring the two figures, we conclude that our upper bound does sensitively express
the effect of the number of receivers and the proactivity factor. When the number
of receivers is not extremely large and the proactivity factor is not too small, the up-
per bound is close to the actual value. Therefore, when decide system constraints,
we use the upper bound to derive the third constraint.

0

2

4

6

20 40 60 80 100

nu
m

be
r

of
 r

ou
nd

s

number of receivers

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 28: Number of rounds for using ns �� 	 ���, � 	 ��

43

B.4 Latency analysis for one receiver

B.4.1 Expected number of rounds for one receiver in Protocol II

Consider Protocol II. Consider the number of rounds ��� for a receiver r with
loss rate ��, to get its specific ���� packets or the block. If we do not consider
the existence of other receivers, then the number of rounds derived, denoted by
 �

������	 is an upper bound.
We use ��� to define the receiver’s states, where � indicates that � still needs

� packets. So the terminal state is ,� 	 ���, and initial state is ,� 	 ���. Use
��,� to denote the expected number of rounds needed to go from state , to enter
the terminal state. For convenience, we use ���� to denote ����. So we can get the
following inductive formulas:

For the first round:

��,�� 	 � �

����
���

%���� �� ��� � ��� � �� �

�!�
���

%���� �� ��� � ����

	 � �
����
���

%���� �� ��� � ��� � ��

From the second round to the end:

��	� 	 � �
��
���

%�	� �� ��� � ��	� ��

	 � �%�	� �� ��� � ��	� �

��
���

%�	� �� ��� � ��	� ��

Therefore,

��	� 	
� �
��

���%�	� �� ��� � ��	� ��

��%�	� �� ���

where %�	� �� ��� denotes the ���� gets � packets out of	 packets:

%�	� �� ��� 	 �
�
���� ���

�����

Therefore, ��,�� is the upper bound � �
������	� we need.

B.4.2 Expected number of rounds for one receiver in Protocol I

Consider Protocol I. We consider the number of rounds, denoted by �, for one
receiver r with loss rate ��, to get its specific ���� packets or the block. If we do

44

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 r

ou
nd

s

block size

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 29: � �
������	� for low loss rate receiver

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 r

ou
nd

s

block size

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 30: � �
������	� for high loss rate receiver

not consider the existence of other receivers, then the number of rounds derived,
denoted by �

�� is an upper bound. The only difference between Protocol I and II
is the first round. For the first round in Protocol I:

��,�� 	 � �
����
���

%���� �� ��� ��� � ��� � �� �

��Condition C0, C1 or C3 holds� � ����

	 � �

����
���

%���� �� ��� ��� � ��� � ��

where %�	� �� ��� ��� denotes the ���� gets � packets out of	 packets,
and these � does not contain all its specific �� packets�:

%�	� �� ��� ��� 	
 ����
���

��
 ��

���
�� ���� ���

� � ����

And the second round induction is the same as Protocol II.

45

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 r

ou
nd

s

block size

z_r = 6

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 31: � �
��� for low loss rate receiver

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 r

ou
nd

s

block size

z_r = 6

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 32: � �
��� for high loss rate receiver

B.4.3 Conditional expected latency in Protocol I

In this section, we will derive an upper bound for ��� � � ����� �� � � �����
and ��� � � �� � �� �� � � ��� �� for receiver �.

��� � 	 �� 	 �	Condition C0, C1 or C3 holds�

To derive an low bound for ��� � 	 ��, we consider the case that there are only
one receiver �.

����� � 	 �� 	

 ����
���

������
"��

��
 �

"
��!�� ��� ���

� � ��
��!����"

� �� � � �� 	 � �

��
����

�� � ��� � 	 ���

	 � �

��
����

�� � ��� � 	 ��� � ��� � 	 ��

	 � �� ��� ��� � 	 ��

46

So, for the upper bound:

��� �� � � �� 	 �� ��� � 	 ������ ��

Similarly, we can get:

��� �� � � �� 	 �� ��� � 	 �� � � � ����� � 	 ������ ��

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120 140 160 180

va
lu

e

block size

the value of Pr{R_r > 1}(E[R_r | R_r > 1] - 1) for low loss rate

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 33: ��� � � �� � �� �� � � ��� �� at low loss rate

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180

va
lu

e

block size

the value of Pr{R_r > 1}(E[R_r | R_r > 1] - 1) for high loss rate

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 34: ��� � � �� � �� �� � � ��� �� at high loss rate

47

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120 140 160 180

va
lu

e

block size

the value of Pr{R_r > 2}(E[R_r | R_r > 2] - 2) for low loss rate

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 35: ��� � � �� � �� �� � � ��� �� at low loss rate

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180

va
lu

e

block size

the value of Pr{R_r > 2}(E[R_r | R_r > 2] - 2) for high loss rate

proactivity factor=1
proactivity factor=1.1
proactivity factor=1.2
proactivity factor=1.5

Figure 36: ��� � � �� � �� �� � � ��� �� at high loss rate

48

