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Abstract

Multicast sessions may have a large number of receivers
with heterogeneous reception capacities. To accommodate
this heterogeneity, various multi-rate schemes, based upon
the use of layering or replication, have been proposed. We
consider in this paper the optimal partitioning of receivers
into groups for multi-rate schemes. For a general class of
utility functions, we formulate the partitioning problem as
an optimization problem to maximize the sum of receiver
utilities. We present an efficient dynamic programming al-
gorithm to solve the partitioning problem, and prove that
the solution it finds is optimal. We also show that the ma-
jority of the benefit of a multi-rate scheme can be gained
by using a small number of groups (or layers), say 4 to
5. To illustrate our solution approach, we apply it to the
case where receiver capacities are determined by multi-rate
max-min fair rates. A complete protocol for receiver rates
computation, rates collection, optimal receiver partition-
ing, and receiver adaptation is presented. We then compare
our approach with other multi-rate approaches as well as
a single-rate approach. Experimental results show that our
approach provides substantial performance improvements.

1. Introduction

A multicast session may have numerous receivers with
heterogeneous data reception capacities. The reception ca-
pacity of a receiver may be limited by its own bottleneck
or by the sender-to-receiver network path. To accommo-
date such heterogeneity, both single-rate and multi-rate ap-
proaches have been proposed.

In a single-rateapproach [6, 24, 8, 2], the sender trans-
mits at a fixed rate to all receivers. The rate is chosen
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either to conform to the slowest receiver or to maximize
an inter-receiver fairness function [9]. Single-rate mecha-
nisms, however, are inherently limited in accommodating
significant heterogeneity and may not achieve certain desir-
able fairness properties [18].

In a multi-rateapproach, the sender transmits at several
rates to different sets of receivers using either a replicated
scheme [5] or a layering scheme [19, 15, 13, 20, 12, 22].

In the replicated scheme [5], receivers are partitioned
into groups. The sender generates and sends separate data
streams to different groups. The sending rate to a group
is adjusted according to the capacities of receivers in the
group, and is restricted to be in some fixed range. Note
that replicated schemes are not bandwidth efficient due to
redundant data transmission whenever data streams to dif-
ferent groups share the same link [11].

In a layering scheme, the sender provides data in several
layers organized in a hierarchy. Receivers subscribe to the
layers cumulatively, i.e., if a receiver subscribes to layerk,
it also subscribes to layers1; : : : ; k � 1. In some layering
schemes, the sending rate of each layer is assumed to be
fixed. As a result, the sending rates may not match receiver
capacities very well.

Recently, Jiang et al. studied an approach to partition re-
ceivers into groups and determine group transmission rates
dynamically [10]. They formulated the problem of parti-
tioning receivers as an optimization problem and proposed
the use of three heuristics as guidelines for partitioning de-
cisions, rather than finding an optimal one.

In this paper, we consider the partitioning of multicast
receivers in a general framework, and present an efficient
algorithm to find an optimal solution to the problem. For
any multi-rate scheme, based upon the use of either layer-
ing or replication, the following two problems need to be
addressed:

1. How many groups?A session with a large number of
groups can accommodate wide receiver heterogeneity.
However, a large number of groups would incur high



overheads in sender encoding, multicast address allo-
cation, network state, and receiver decoding. There-
fore, the number of groups should be determined to
achieve as much benefit as possible without incurring
excessive overheads.

2. What are the sending rates?For some applications,
the group rates are determined regardless of receiver
capacities; for example, in a layered transmission, the
rates may be determined by encoding considerations.
However, for applications with diverse and changing
receivers, it is desirable to determine group or layer
rates dynamically according to receiver capacities.

In this paper, we investigate and present solutions to
these problems. We first consider a fixed number of groups
and pose the problem of determining the sending rates
for the groups as an optimal receiver partitioning problem.
Specifically, letK denote the number of groups. Receivers
are to be partitioned into groupsG1; G2; : : : ; GK with the
objective of maximizing the sum of receiver utilities. (The
notion of utility is motivated and defined in Section 2. As
an example, the utility of a receiver may be the data rate
it receives.) We show that there is an efficient dynamic
programming algorithm to find an optimal partition. For
a given partition, an optimal group transmission rateg�k for
the receivers in groupGk can be determined.

Our main results presented in Section 2 do not depend
upon whether layering or replication is used in the multi-
rate scheme. However, our implementation and experimen-
tal evaluation have been carried out for a layered approach
(because layering is more bandwidth efficient than replica-
tion). In what follows, we use the termgroup rate for a
particular group to denote the aggregate sending rate to a
receiver in the group, and the termlayer rateto denote the
rate of a particular layer in a layered transmission. Suppose
the receivers are partitioned intoK groups, with group rates
g�1 � g�2 � � � � � g�K . Then there would beK transmis-
sion layers, with layer ratesg�1 ; g

�
2 � g�1 ; : : : ; g

�
K � g�K�1.

A receiver in groupk subscribes to layers from1 to k and
receives an aggregate data rate ofg�k.

We also evaluate the impact of the number of groups on
the utility of a session. We show that for a session of a
reasonable size, the majority of the benefit of a multi-rate
scheme can be gained even with a small number of groups,
say 4 to 5.

To demonstrate the usage of our method for optimal re-
ceiver partitioning, we apply it to the case where receiver
capacities are determined by multi-rate max-min fair rates.
A complete protocol for rates computation, rates collec-
tion through aggregation, optimal receiver partition, and re-
ceiver adaptation is presented. We also compare our ap-
proach with other multi-rate approaches as well as a single-
rate scheme. Experimental results show that our approach

provides substantial performance improvements over the
other approaches.

The balance of this paper is organized as follows. In
Section 2 we formulate the optimal receiver partition prob-
lem. We present an efficient algorithm for its solution and
prove that the solution is optimal. In Section 3, we apply it
to the case where receiver “isolated” rates are their multi-
rate max-min fair rates. In Section 4, we show experimen-
tal evaluation results and compare with other schemes. We
conclude in Section 5.

2. The Optimal Partitioning Problem

2.1. Problem formulation

We first consider a predetermined number of groups. The
impact of the number of groups is evaluated in the last sub-
section. Before defining the problem, we first introduce
some terms. LetN denote the number of receivers andK
the number of groups.

Receiver partition Given receiversf1; 2; : : : ; Ng, a set
P = fG1; G2; : : : ; GKg is said to be areceiver parti-
tion if P is a partition off1; 2; : : : ; Ng.

Isolated rate This is the reception rate of a receiver in a
multicast session if there is no constraint from other
receivers in the same session. The reception rate may
be limited by a bottleneck in the receiver itself, or by
the sender-to-receiver network path. Letri denote the
isolated rate of receiveri. For ease of presentation, the
receivers are numbered such that their isolated rates are
sorted in nondecreasing order, i.e.,r1 � r2 � � � � �
rN .

Loss toleranceL This specifies the largest loss rate a re-
ceiver can tolerate. Consider a receiver with isolated
rater. If the sending rate to this receiver isx > r, then
it is possible for the receiver to have a loss rate ofx�r

x
.

A loss tolerance ofL requiresx�r
x
� L. Rearranging,

we havex � r
1�L

. Therefore, the receiver should not
be included in a group with sending rate higher than
r

1�L
.

Receiver utility function u(r; g) The utility of a receiver
is determined by its isolated rater and the sending rate
g of its group. Ifg is equal tor, the receiver’s capacity
is fully utilized. Otherwise the capacity of the receiver
is either underutilized or overutilized.

Group utility U(Gk; g) For a groupGk with sending rate
g, its utility U(Gk; g) is defined to be

P
i2Gk

u(ri; g).

Optimal group transmission rate g�(Gk) For a group
Gk, its optimal transmission rateg�(Gk) is defined



to be the rate that maximizes the group utility subject
to the constraint that the loss tolerance of every group
member is satisfied, i.e.,

U(Gk; g
�(Gk)) = max

0<g�
mini2Gk

ri

1�L

U(Gk; g)

When multiple rates exist that satisfy the above re-
quirement,g�(Gk) is chosen to be the smallest.

Maximum group utility U�(Gk) This is the value of
U(Gk; g

�(Gk)).

Session utilityV (P ) of a partition P = fG1; G2; : : : ; GKg
This is the sum of maximum group utilities,PK

k=1 U
�(Gk).

Definition 1 (Optimal Receiver Partition) Given a set of
receivers with isolated ratesr1; r2; : : : ; rN , K groups, re-
ceiver utility functionu(r; g), and loss toleranceL, a re-
ceiver partitionP � = fG�

1; G
�
2; : : : ; G

�
Kg is anoptimal re-

ceiver partitionif V (P �) � V (P ) for any receiver partition
P .

Because there will be only finite number of partitions,
we know that there exists at least one optimal partition. It
is also obvious that the optimal partition will depend upon
the receiver utility functionu(r; g). Before we proceed to
present an algorithm to find an optimal receiver partition,
we first discuss what is desired of the functionu(r; g), de-
fined forr � 0 andg � 0. Intuitively, the closer arer and
g to each other, the larger shouldu(r; g) be. And the farther
apart arer andg, the smaller shouldu(r; g) be. In particu-
lar,u(r; g) should achieve its maximum value whenr = g.
This intuition is formalized below.

Receiver Utility Property For a fixedr, u(r; g) is nonde-
creasing in the interval[0; g] and nonincreasing in the
interval[g;1). For a fixedg, u(r; g) is nondecreasing
in the interval[0; r] and nonincreasing in the interval
[r;1).

2.2. Optimal partition and ordered optimal parti-
tion

A straightforward way to find the optimal partition is to
enumerate all possible partitions and choose the one that
maximizes the session utilityV . This is impractical because
of the required computational complexity.

For a better solution, we first define an ordered receiver
partition and ordered optimal receiver partition:

Definition 2 (Ordered Receiver Partition) A partition
P = fG1; G2; : : : ; GKg is anorderedreceiver partition if
ri, for all i 2 Gk , is less than or equal torj , for all j 2 Gl,
for any two groupsGk andGl, wherek < l.

Definition 3 (Ordered Optimal Receiver Partition) A
partition P � = fG�

1; G
�
2; : : : ; G

�
Kg is an ordered optimal

receiver partition if V (P �) � V (P ) for any ordered
receiver partitionP .

In the next subsection, we present an efficient algorithm
to find an ordered optimal partition. Furthermore, by the
following theorem, Receiver Utility Property guarantees
that there exists an optimal partition which is also ordered.
Thus, the ordered optimal receiver partition found by our al-
gorithm will indeed be optimal over all possible partitions.

Theorem 1 For any receiver utility functionu(r; g) satis-
fying Receiver Utility Property, there exists a receiver par-
tition that is both ordered and optimal.

A proof is shown in Appendix A. By Theorem 1, an ordered
optimal partition is also an optimal partition.

2.3. Dynamic programming algorithm to find an
ordered optimal partition

In this section, we describe a dynamic programming al-
gorithm to find an ordered optimal partition.

Let V �(i;m) denote the maximum session utilityV of
an ordered partition of receivers1; : : : ; i into m groups.
The key observation is that

V �(i;m) = max
1�j<i

[V �(j;m� 1) + U�(fj + 1; : : : ; ig)]

This equation is in the classic form solvable using a
dynamic programming algorithm. Algorithm details are
shown in Figure 1. Note that this algorithm is applicable
to any optimal receiver partition problem when the receiver
utility functionu(r; g) satisfies Receiver Utility Property.

The complexity of the algorithm isO(KN2) if
U�(fj; j+1; : : : ; ig) is pre-computed for allj andi, j � i.
However, to computeU�(fj; j + 1; : : : ; ig), we need to
know the definition ofu(r; g). Moreover, the complex-
ity also depends on rate constraints from loss toleranceL
and from the set of possible sending rates. In the next sub-
section, we first consider the case when the receiver utility
function is piecewise convex. We consider partitioning with
constraints in Section 2.5.

2.4. Computing group utility for piecewise convex
functions

We first study the following utility function,

uIRF(r; g) =
min(r; g)

max(r; g)
(1)

which was first defined in [9]. The authors introduced it in
the context ofInter-Receiver-Fairness(IRF); therefore, we



OPTIMAL PARTITION(K; r1; r2; : : : ; rN )
1 . Assume thatr is sorted in nondecreasing order.
2 for i 1 to N
3 V �(i; 1) U�(f1; : : : ; ig)
4 p(i; 1) �1
5 for m 2 to K
6 for i 1 to N
7 V �(i;m) V �(i;m� 1)
8 p(i;m) i
9 for j  1 to i� 1

10 v  V �(j;m� 1) + U�(fj + 1; : : : ; ig)
11 if V �(i;m) < v then
12 V �(i;m) v
13 p(i;m) j
14 j  N
15 for m K downto 1
16 i j
17 j  p(i;m)
18 Gm  fj + 1; : : : ; ig

Figure 1. Optimal Partition Algorithm
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r

u(r; g)

g

Inter-Reveiver Fairness receiver utility function uIRF(r; g)

Figure 2. Receiver utility function uIRF(r; g)

refer to this utility function asuIRF(r; g). Figure 2 shows
the shape of the utility function. It is clear thatuIRF(r; g)
satisfies Receiver Utility Property. Hence, we can apply our
dynamic programming algorithm to solve it.

Further, observe thatuIRF(r; g) is a convex function of
g in intervals[0; r] and[r;1). For this type of utility func-
tions Theorem 2 says that we can computeU�(G) by con-
sidering only the points whereg is equal to one of the iso-
lated rates in groupG.

Theorem 2 If G is given and the receiver utility function
u(r; g) is a convex function ofg in interval [0; r] and in
interval [r;1), U(G; g) is maximized wheng is equal to

one of the rates infri : i 2 Gg.

A proof is shown in Appendix B.
Therefore, we know that for a given groupG, U(G; g)

has a maximum value wheng is equal to the isolated rates
of one of the receivers in groupG. Thus, a straight-
forward way to determine the optimal group sending rate
g�(fj; : : : ; ig) is to compute the value ofU(fj; : : : ; ig; rk)
for all k, j � k � i, and choose the largest one. Then the
time complexity to calculateU�(fj; : : : ; ig) for each pair of
j andi isO(N2), and the total complexity for allj, i pairs
becomesO(N4) if carried out in a straightforward manner.

However, we have found a more efficient algorithm
by removing redundant computations. The details of the
algorithm are shown in Figure 3. For this algorithm
pre-computation takesO(N3) and OPTIMAL PARTITION()
takesO(KN2). Therefore, the total complexity isO(N3+
KN2). SinceK is much smaller thanN , the total complex-
ity is O(N3).

COMPUTEGROUPUTILITY (r1; r2; : : : ; rN )
1 . Assume thatr is sorted in nondecreasing order.
2 for i 1 to N
3 M(i; i) 0
4 for j  i+ 1 to N
5 M(i; j) M(i; j � 1) + u(rj ; ri)
6 M(i; i) u(ri; ri)
7 for j  i� 1 downto 1
8 M(i; j) M(i; j + 1) + u(rj ; ri)
9 for i 1 to N

10 m 0
11 for j  i to N
12 G fi; : : : ; jg
13 m m+ u(rj ; ri=(1� L))
14 g�(G) ri=(1� L)
15 U�(G) m
16 for k  i to j
17 if rk > ri=(1� L) then break
18 u M(k; i) +M(k; j)
19 if U�(G) < u then
20 U�(G) u
21 g�(G) rk

Figure 3. Algorithm to compute group utilities

2.5. Computing group utility for discrete sending
rates and zero loss tolerance

We first consider the constraint of discrete sending rates.
The algorithm in Figure 3 assumes that the sender can
control its sending rate with fine granularity. While some
encoding schemes such as PVH [14] and H.261 [3] can



control sending rates by adjusting refresh rate, quantizer,
and movement detection threshold, some others such as
WWHVQ [23] cannot send at an arbitrary rate. For exam-
ple, the sending rates can only be 16kbps, 32kbps, 64kbps,
128kbps, and so on, or they must be multiples of a fixed
value like 16kbps. When usinguIRF(r; g), our algorithm
chooses one of the isolated rates as a group rate, which may
not be one of the possible sending rates. Next, we show
that our algorithm can handle this constraint with just mi-
nor modifications.

Consider any groupG = fj; : : : ; ig, where j < i.
We know from the proof in Appendix B thatU(G; g) is
a convex function ofg in any interval[rk ; rk+1], where
j � k < i. Suppose there areNk possible sending rates
in the interval[rk ; rk+1], Rk;1 � Rk;2 : : : � Rk;Nk

. Then
we knowU(G; g) is convex in[Rk;1; Rk;Nk

]. Therefore,
U(G; g) will have its maximum value wheng = Rk;1 or
g = Rk;Nk

. Thus, in order to find the optimal sending rate
g�(G), we should computeU(G;Rk;1) andU(G;Rk;Nk

)
instead ofU(G; rk) in the algorithm. Although the required
amount of computation doubles with this modification, the
time complexity remains the same.

We next consider the loss tolerance constraint. We note
that under certain circumstances it is undesirable for the
group rate to be higher than the isolated rates of some re-
ceivers, not only because these receivers experience packet
loss, but also because it hurts network fairness by taking
bandwidth from other sessions. If this is considered to
be important, we can specifyL to be 0 so that the op-
timal group rate is always the lowest isolated rate in the
group. As a result, we do not need the innermost loop in
COMPUTEGROUPUTILITY (), and the time complexity to
compute group utilities is reduced toO(N2). The over-
all complexity of optimal receiver partitioning is reduced to
O(KN2).

Next we consider the case including both zero loss tol-
erance and sending rate constraints. Figure 4 shows an ex-
ample of a partitioning of receivers with sending rate con-
straints. Given zero loss tolerance, the group rate should
be the largest possible sending rate that is smaller than the
lowest isolated rate in the group.

Clearly we can still use the utility functionuIRF(r; g)
when there are both types of constraints. However, to
demonstrate the versatility of our framework, we next in-
troduce a different utility function. One possible interpreta-
tion of the utility of a multicast session is the total received
bandwidth. To achieve this session utility, the receiver util-
ity function can be defined as

u(r; g) , urate(r; g) = min(r; g) (2)

Figure 5 shows the shape of this utility function. It is easy
to see that with this utility function and zero loss tolerance
the session utility is the sum of the bandwidth received at

1 5432 6r

possible
sending
ratesselected sending rates

receiver
isolated
rates

R1 R3 R4 R5R2

r r r r r

Figure 4. A receiver partition with sending
rate constraints
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r

u(r; g)

g

Rate receiver utility function urate(r; g)

Figure 5. Receiver utility function urate(r; g)

all receivers.
For the rate utility function, the partitioning algorithm

can be simplified by first changing each receiver isolated
rate to the largest possible sending rate just below it. Ob-
serve that this change will not affect the utility of any
receiver. Then we apply our algorithm to find the opti-
mal receiver partition. Observe also that we can compute
the group utilities in OPTIMAL PARTITION() without pre-
computation as follows:

U�(fj + 1; : : : ; ig) = rj+1 � (i� j)

Although it does not require COMPUTEGROUPUTILITY (),
the time complexity of optimal receiver partitioning is still
O(KN2).

2.6. How many groups?

In the previous subsections, the number of groups is as-
sumed to be given and fixed. We next study quantitatively
the impact of the number of groups on session utility.



To quantify this impact, for a given configuration of re-
ceivers, we define

QK =
V �(K; r1; : : : ; rN )

V �(N ; r1; : : : ; rN )

whereV �(K; r1; : : : ; rN ) is the maximum session utility
when we haveK groups. With Receiver Utility Property, it
is easy to see that the number of groups needed to achieve
the maximum utility isN , the number of receivers.
QK depends on the distribution of receiver isolated rates.

In our experiments, we used the following distributions:

� A uniform distribution over the interval[1; 10).

� A normal distribution with mean 5 and standard devi-
ation 2.

� A bi-modal distribution consisting of two normal dis-
tributions. The means are 2 and 8 respectively, and the
variance is 1 in both distributions. One third of the
receivers belong to the first normal distribution.

Figure 6 demonstrates how much improvement we can
achieve through increasing the number of groups for each
distribution of 300 receivers. We useduIRF(r; g) as the
receiver utility function in (a), andurate(r; g) in (b). QK

increases in each case as we add more groups. However,
most of the benefit is obtained with about 4 groups. We be-
lieve that applications are unlikely to provide more than 5
groups because of encoding complexity, e.g., the number of
filters required. Also, the higher is the number of groups,
the higher the network overhead will be to keep routing
states. Therefore, we think 4 or 5 is the most reasonable
number of groups for most applications. With 4 groups, our
algorithm achieves about 80% of the maximum utility.

3. Protocol for Max-min Fair Rates

The optimal partitioning algorithm presented in the pre-
vious section is applicable to any network environment
where receivers can compute their isolated rates; it does not
depend on how to compute those rates.

Receiver isolated rates are generally determined by re-
ceiver device constraints or network fairness requirements.
As an example, we can define the isolated rate of a re-
ceiver to be its TCP-fair rate. In this case, the receiver
measures the loss rate and round-trip time between itself
and the sender, and calculates its TCP-fair rate using a TCP
throughput formula [16, 7]. In a high multiplexing envi-
ronment, the rate calculated this way would be accurate be-
cause the loss rate is independent of the sending rate. How-
ever, in a low multiplexing environment, the loss rate would
depend on the sending rate, and an iterative algorithm is re-
quired to find TCP-fair rates.
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Figure 6. Effects of the number of groups

In the experiments to be presented, we consider the iso-
lated rate of a receiver to be its multi-rate max-min fair
rate [18].

Our protocol consists of four steps: isolated rates com-
putation, rates collection, optimal receiver partitioning, and
receiver adaptation. In the following subsections we specify
each step of the protocol. Figures 7, 8, and 9 summarize the
sender, router, and receiver algorithms.

3.1. Isolated rates computation

We use the algorithm proposed in [17] to calculate max-
min fair rates. The sender initiates the protocol everyT sec-
onds by multicasting a messagehcompute-rates;ri, where
r is its desired sending rate. When sendingr for the first
time, the sender setsr to its maximum sending rate. Once it
has received feedbacks from all receivers, it adjustsr (to be
used in the next round). If the highest reported rate is equal
to ther just sent, it indicates that some receivers are likely
to have higher isolated rates than the reported rate, and the
sender increasesr.

The multicast messagehcompute-rates;ri is propagated



1 . M is the number of intervals.
2 . Ii is theith interval [left, right].
3 . ni is the number of receivers in theith interval.

4 At everyT seconds:
5 Determine the desired rater.
6 Multicasthcompute-rate;ri to all children.

7 On receivinghrate intervals;(I1; n1); : : : ; (IM ; nM )i:
8 Mark the child as received.
9 Store the message.

10 if all children are markedthen
11 Retrieve all messages and sort rates intori,

1 � i � N assuming uniform distribution
in each interval.

12 Call COMPUTEGROUPUTILITY (r1; : : : ; rN )
and OPTIMAL PARTITION(K; r1; : : : ; rN ).

13 Unmark all children.
14 Multicasthgroup-rates;g1; : : : ; gKi.

Figure 7. Sender Algorithm

throughout the multicast tree. Each intermediate router
computes the max-min fair share� for each downstream
link [21], and, if� is less thanr, replacesr with � before it
forwards the message through that link.

When a receiver getshcompute-rates;ri, it knows that
r is its max-min fair rate. It assigns[r; r] to each of the
intervalsIi, 1 � i � M , and sets the number of receivers
n1 for I1 to be 1. The number of receivers in every other
intervalni; 1 < i �M is set to 0.

3.2. Rates collection

Receivers report their isolated rates to their parent
routers in the multicast tree. However, if there is a large
number of receivers, these messages should be aggregated
to avoid feedback implosion. When a router receives inter-
val reports from all its children, it distributes all the reported
intervals intoM new intervals, assuming uniform distribu-
tion.

3.3. Optimal partitioning

After receiving rates from all child nodes, the sender de-
termines the optimal partition and the group rates using the
algorithm proposed in Section 2. The determined rates are
sent to all receivers by multicast so that they can make de-
cisions to join the appropriate layers.

1 On receivinghcompute-rate;ri:
2 Calculate the fair share�.
3 Multicasthcompute-rate;min(r; �)i to all children.

4 On receivinghrate intervals;(I1; n1); : : : ; (IM ; nM )i:
5 Mark the child as received.
6 Store the message.
7 if all children are markedthen
8 Retrieve all messages and distribute rates into

new intervals assuming uniform distribution
in each interval.

9 Sendhrate intervals;(I 01; n
0
1); : : : ; (I

0
M ; n0M )i

to the parent.
10 Unmark all children.

Figure 8. Router Algorithm

1 Upon receivinghcompute-rate;ri:
2 risolated  r
3 Ii  [r; r] for all i, 1 � i �M .
4 Sendhisolated-rates;(I1; 1); (I2; 0); : : : ; (IM ; 0)i

to the parent.

5 Upon receivinghgroup-rates;g1; : : : ; gKi:
6 for k  1 to K
7 if gk � risolated=(1� L) then
8 Subscribe to layerk.
9 else

10 Unsubscribe to layerk.

Figure 9. Receiver Algorithm

3.4. Receiver adaptation

A receiver compares its isolated rate with the group rates
announced by the sender, and joins a layer such that its loss
tolerance will not be exceeded.

4. Experimental Evaluation

In this section we first examine errors introduced by ag-
gregation at routers, and then compare our optimal parti-
tioning algorithm (using the protocol in the previous sec-
tion) with other approaches.

For all experiments in this section, we show results
for two different receiver utility functions,uIRF(r; g) and
urate(r; g), defined in equations (1) and (2), respectively.
The loss toleranceL is set to0 because a nonzeroL makes
some receivers use more bandwidth than their max-min fair
rates and violates max-min fairness.



4.1. Aggregation accuracy

Our partitioning algorithm finds the optimal rates for
groups (layers) given receiver isolated rates. However, since
routers in our protocol aggregate reported rates for scalabil-
ity, it may introduce inaccuracy. In this section, we examine
aggregation accuracy for different distributions of isolated
rates.

Because a router assumes a uniform distribution of rates
in an interval, the aggregation is accurate for flat distri-
butions. For example, when isolated rates distribute uni-
formly, the inaccuracy was less than 3% even with only one
interval. But uniform distribution may not always be the
case. In most networks, the actual distribution is more likely
to have several peaks because receivers are grouped by their
connection types, e.g., dial-up modems, ISDN, DSL, etc.

We next evaluate the effect of distributions on aggrega-
tion accuracy. We use the same normal distribution and bi-
modal distribution as in Section 2.6. The aggregation accu-
racy is measured by the difference between maximum ses-
sion utility achieved with aggregation,Vag, and that without
aggregation,Vnag. Figure 10 shows the errors,Vnag�Vag

Vnag
,

induced by aggregation. In this experiment, the number of
receivers is 200, and the number of groups is 4.

Although the results in Figure 10 have some randomness,
it is clear that the error decreases as we increase the number
of intervals. From the figure we can see that 4 or 5 is a
reasonable number of intervals to use, because the error is
less than 3% with 4 intervals and further increase would
not have enough benefit to justify the additional overhead
imposed on routers.

4.2. Comparison with other approaches

In this section, we first highlight the differences between
our approach and two other approaches: one layering and
one replicated. Then we compare the achieved session util-
ities of our approach and other approaches.

Most layering schemes use fixed layer rates.
Shacham [19] presented a method to assign bandwidth to
layers to maximize the average signal quality of receivers.
Although he did not explicitly define the concept of utility
function, his average signal quality can be considered an
instance of our utility function and thus his paper was
possibly the first to address the problem of partitioning re-
ceivers. He did not, however, adequately address optimality
because he did not try to show the existence of an optimal
partition that is ordered. In comparison, we solved the
optimal receiver partitioning problem for a general class
of utility functions. Our Theorem 1 shows the existence
of an optimal partition that is ordered, which gives rise to
efficient algorithms to find an optimal partition based upon
dynamic programming.
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Figure 10. Aggregation Accuracy

Among replicated schemes, the representative approach
is DSG [1, 4]. Jiang et al. extended DSG to partition re-
ceivers and determine group transmission rates dynamically
[10]. They formulated the problem of partitioning receivers
as an optimization problem by using receiver utility func-
tion uIRF(r; g). However, they used three heuristics as
guidelines for partitioning decisions, rather than finding an
optimal one. It is easy to come up with examples that do
not work well using their heuristics. From Section 2 ob-
serve that we solved their problem optimally as a special
case.

4.2.1 Comparison with a single-rate scheme and a lay-
ering scheme with equal partition

In this section, we compare our approach with a single-rate
scheme and a layering scheme with equal partition. The
sending rate of the single-rate scheme is the isolated rate
of the slowest receiver,rmin. For the layering scheme with
equal partition the first (base) layer has ratermin; the rates
of the other layers arermax�rmin

K
, wherermax is the largest

isolated rate. This scheme is better than sending at a fixed



rate because it adapts to receiver capacities.
In the experiments presented below, the receiver isolated

rates have the same distributions as in the aggregation ac-
curacy experiments. The number of receivers is 200, and
the number of layers is 4. We ran simulations for receiver
utility functionsuIRF(r; g) andurate(r; g).

Figure 11 shows the achieved session utilities of the three
layered approaches: equal partition, optimal partition with
aggregation, and optimal partition without aggregation. The
optimal parition without aggregation scheme gives the high-
est achievable session utility.

Not shown in the figures are the session utilities achieved
with the single-rate scheme. The session utilities of the
single-rate scheme are50:2, 200, 54:6, and200 for (a), (b),
(c), and (d), respectively, which are substantially lower than
session utilities of the layered approaches. Both optimal
partition and equal partition achieve a session utility more
than three times of the utility achieved by the single-rate
scheme. This is expected because the session utility of the
single-rate scheme is determined by the slowest receiver,
therefore its utility is usually much lower than that of layer-
ing unless the isolated rates are very close to each other.

Notice that equal partition would be an optimal partition
if the isolated rates are distributed uniformly. Since this is
not the case in general, there is always a gap between the
highest achievable utility and the utility obtained with equal
partition. We can clearly see the gaps in the figures of Fig-
ure 11. This gap becomes bigger as the distribution of iso-
lated rates deviates more from the uniform distribution. The
optimal partition (with aggregation) achieves utility in this
gap and outperforms the equal partition for both receiver
isolated rate distributions. Furthermore, even with a small
number of intervals for aggregation, our approach achieves
a utility close to the maximum.

4.2.2 Comparison with replicated scheme

To compare our approach with the replicated scheme DSG,
we use the same network topology as the one in [10], which
is shown in Figure 12.A is the sender of a multicast session,
andA1, A2, andA3 are receivers.B andC are sets of two
and nine unicast sessions, respectively.

Table 1 shows the sending rates of all sessions with dif-
ferent multicast mechanisms. It also showsVIRF andVrate
of the multicast sessionA, which are the session utilities
for two different receiver utility functionsuIRF(r; g) and
urate(r; g).

The first row is for the single-rate case where the mul-
ticast rate is determined by the lowest rate among all re-
ceivers’ rates. The table has two rows for the 2 layer opti-
mal partition because there are two ways to partition three
receivers into two groups: the first one maximizesVIRF and
the second maximizesVrate.

S2 S3S4 S1

A2A3 A1B(2)

A C(9)B(2)

C(9)

0.9

1.01.0

Figure 12. Network Topology

Although both the replicated and layering schemes sig-
nificantly improve utilities compared with the single-rate
scheme, layering always achieves a higher utility because,
with a replicated scheme, each receiver utilizes only a por-
tion of the bandwidth in links shared by several groups.
Consider the case where receiversA1, A2, andA3 are par-
titioned into three groups. In our topology, the link between
A andS1 is shared by all three groups with shares of 0.10,
0.23, and 0.57. In a replicated scheme, since a receiver can
join only one group, its achieved rate is limited by these
rates. However, in a layering scheme, a receiver can sub-
scribe to more layers incrementally as long as the cumula-
tive rate does not exceed its isolated rate.

Figure 12 is a very simple topology. For a more complex
topology where there are many receivers sharing links, the
benefit of our approach is even more pronounced.

5. Conclusion

To accommodate multicast sessions with diverse receiver
capacities, various multi-rate schemes, based upon the use
of layering or replication, have been proposed. We con-
sidered the optimal partitioning of receivers into groups for
multi-rate schemes. For a general class of utility func-
tions, we formulated the partitioning problem as an opti-
mization problem to maximize the sum of receiver utilities.
We proved that there exists an an optimal partition that is or-
dered (Theorem 1). We then presented an efficient dynamic
programming algorithm to find an optimal ordered receiver
partition. We also showed that the majority of the benefit of
a multi-rate scheme can be gained by using a small number
of groups (or layers), say 4 to 5.

To illustrate our solution approach, we applied it to the
case where receiver capacities are determined by multi-
rate max-min fair rates. A complete protocol for receiver
rates computation, rates collection, optimal receiver parti-
tioning, and receiver adaptation was designed. For scal-
ability, receiver rates information is aggregated at routers.
We showed that error introduced by aggregation is smaller
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Figure 11. Comparison of layering schemes

Mechanism Sending rates VIRF(A) Vrate(A)
A1 A2 A3 B C

single-rate 0.10 0.10 0.10 0.45 0.10 1.41 0.30
DSG:fA1g; fA2; A3g 0.10 0.23 0.23 0.33 0.10 1.95 0.56

2 layers 0.10 0.33 0.33 0.33 0.10 2.37 0.77
0.10 0.10 0.90 0.33 0.10 2.30 1.10

DSG:fA1g; fA2g; fA3g 0.10 0.23 0.57 0.33 0.10 2.33 0.90
3 layers 0.10 0.33 0.90 0.33 0.10 3.00 1.33

Table 1. Comparison with replicated scheme



than 3% when more than 4 aggregation intervals are used.
We then compared our approach with other multi-rate ap-
proaches as well as a single-rate approach. Experimental
results showed that our approach provides substantial per-
formance improvements.
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A. Proof of Theorem 1

First, we restate Receiver Utility Property using formal
notation as follows:

1. 8g, 8i, 8j, 1 � i; j � N ,

ri < rj � g ! u(ri; g) � u(rj ; g)
g � ri < rj ! u(ri; g) � u(rj ; g)

2. 8r, 8i, 8j, 1 � i; j � K,

gi < gj � r ! u(r; gi) � u(r; gj)
r � gi < gj ! u(r; gi) � u(r; gj)

Consider an optimal partitionP and choose any two
groupsGa andGb in P , whose group rates arega and
gb, wherega � gb. Let rm = maxk2Ga

rk, and rn =
mink2Gb

rk. If rm � rn for any two groups,Ga and
Gb, thenP is already ordered. Otherwise there are three
possibilities. For each of the following cases, we make a
new partitionP 0 by removing a misordering and show that
�V = V (P 0)� V (P ) � 0.

i. rm � gb

G0
a = Ga � fmg

G0
b = Gb [ fmg

�V � u(rm; gb)� u(rm; ga) � 0

ii. rn � ga

G0
a = Ga [ fng

G0
b = Gb � fng

�V � u(rn; ga)� u(rn; gb) � 0

iii. ga < rn < rm < gb

G0
a = (Ga [ fng)� fmg

G0
b = (Gb [ fmg)� fng

�U(Ga) � �u(rm; ga) + u(rn; ga) � 0

�U(Gb) � �u(rn; gb) + u(rm; gb) � 0

�V � �U(Ga) + �U(Gb) � 0

For each case,V (P 0)� V (P ) = �V � 0, whereP 0 =
(P�fGa; Gbg)[fG

0
a; G

0
bg. However, sinceP is an optimal

partition,V (P 0) cannot exceedV (P ). ThusV (P 0) is equal
to V (P ). By repeating this until there are noGa andGb

such thatrm > rn, whererm = maxk2Ga
rk andrn =

mink2Gb
rk, we get an ordered optimal receiver partition.

�

B Proof of Theorem 2

Without loss of generality, assumeG = f1; 2; : : : ;mg.
Following our convention, we assumer1 � r2 � � � � � rm.

Consider any receiveri, wherei 2 G. We notice that
with Receiver Utility Propertyu(ri; g) is nondecreasing
with respect tog in the interval[0; r1] and nonincreasing
in the interval[rm;1). SinceU(G; g) =

P
i2G u(ri; g),

we knowU(G; g) is nondecreasing in the interval[0; r1]
and nonincreasing in the interval[rm;1). Therefore, to
find the maximum ofU(G; g), we only need to consider the
interval[r1; rm].

Next, again consider any receiveri, wherei 2 G. Con-
sider any interval[rj ; rj+1] for 1 � j < m. We know
that in this intervalu(ri; g) is a convex function ofg. Since
U(G; g) is the sum ofu(ri; g), for i 2 G, it is also con-
vex in each of the intervals. According to the property of
convex functions, we know thatU(G; g) will have a maxi-
mum value atg = rj or g = rj+1 wheng is in the interval
[rj ; rj+1]. �
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