
A Secure Group Key Management Protocol
Communication Lower Bound�

Yang Richard Yangy, Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
fyangyang, lamg@cs.utexas.edu

TR2000-24
July, 2000

Revised: September 2000

Abstract

We discuss in this paper a lower bound on communication cost for se-
cure group key management protocols. To model a rekeying process, we
introduce the concept ofrekey encryption graphs. Using the rekey encryp-
tion graphs, we show that given the forward access control requirement, i.e.
a user who has left the secure group cannot have access to future group keys,
there exists a sequence of2n user join and leave requests such that the amor-
tized per request communication cost is
(ln(n)). Given the known proto-
cols that have achieved this lower bound, in order to further improve the
scalability of group rekeying communication protocol performance, future
research needs to either allow more types of operations or to relax security
requirements to achieve better performance.

�Research sponsored in part by National Science Foundation grant No. ANI-9977267 and
grant no. ANI-9506048. Experiments were performed on equipment procured with NSF grant no.
CDA-9624082.

yContact author, Phone: (512)471-9599, Fax: (512)471-8885

1



1 Introduction

Many emerging network applications (such as teleconference and information
dissemination services) are based upon a group communications model. As a
result, securing group communications becomes a critical networking research is-
sue. Recently, Internet Research Task Force (IRTF) has formed Secure Multicast
Research Group (SMuG)[6] to investigate the problem of securing group commu-
nications. One major problem area in securing group communication is the group
key management problem, which is concerned with the secure distribution and
refreshment of user keying material.

The objective of a key management system is to add access control on top of
efficient multicast communication such as over IP multicast [5]. A standard tech-
nique to this end is to maintain a common group key that is known to all multicast
group members, but is unknown to non-group members. All group communica-
tion will be encrypted using this shared key. The main problem for this approach
is that in a dynamic membership environment, users will join and leave the group,
therefore, efficiently changing the group key becomes a performance issue.

It is clear that user join requests do not pose a issue because all users in the
group share a common group key before the new user joins, and therefore can
change to a new group key using the current group key. It is user leave requests
that pose the scalability issue. Since the leaving user shares the group key with
other users, in order to distribute a new group key to the remaining users, other
keys may have to be used. In the simplest case, the key server may have to send
the new group key encrypted by a remaining user’s individual key, which is only
shared between a user and the key server. If the number of users in the group isn,
the complexity of this simple scheme has a complexity ofO(n).

In the past few years, several schemes have been proposed to improve rekeying
performance, and these schemes can improve the rekeying complexity fromO(n)
to O(ln(n)) [9, 8, 1]. Besides the group key and individual keys, these schemes
use auxiliary keys to improve rekeying performance. In particular, for two keysk

andk0, they will usek to encryptk0 and then send the encryption to all users. Any
user who havek will be able to decryptk0.

With these proposed schemes, one remaining question is whether these schemes
have achieved the best possible performance. In another words, can we do better?
In order to answer this question, a study of the rekeying protocol lower bound
will be helpful because it can not only show whether the proposed schemes have
achieved the lower bound, it can also point out which constraints play an impor-
tant role to derive the lower bound. In order to further improve performance,

2



either more types of operations have to be considered or some constraints have to
be relaxed.

In the past few years, several lower bounds on broadcast encryption have been
derived [2, 7, 3]. However, these lower bounds are mostly concerned with the
the tradeoffs between communication cost and storage cost. The lower bound
closest to our result is derived in [3]. In [3], Canetti, Malkin and Nissim derived
lower bounds on the tradeoffs between communication and user storage costs for
group rekeying in a dynamic multicast group with one key server. In particular,
they have derived the following two results: (1) LetM denote the set of users
in a session. Letb(n) + 1 be the maximal number of keys held by any user
in M , wheren is the number of receivers in the session. Denote the rekeying
communication costc(n) as the worst case number of keys to be encrypted when a
user leaves. Then the rekeying communication cost satisfiesc(n) � n1=b(n)�1. (2)
Define a special class of rekeying protocols calledstructure preservingprotocols.
Intuitively, structure preserving protocols are those that maintain the property of
“the setU has advantage over the userv” across updates, for any subsetU and
userv. That is, if there is a set of usersU all sharing a keyk, and a userv which
does not have this key, then after removing another userv0 (whetherv0 2 U or
not), the users inU still hold some keyk0 thatv does not hold. For this special
class of rekeying protocol, the authors proved that the rekeying communication
cost satisfiesc(n) � bn1=b � b, whereb + 1 denotes the maximal number of keys
held by any user inM .

These two results are the first to show the tradeoff between user storage cost
b(n) and communication costc(n) when a user leaves. From the communication
lower bound ofc(n) � bn1=b � b, we may draw the conclusion that if we in-
crease the number of keys each user holds to be very large, we may reduce the
communication cost to be very low.

However, the bandwidth utilized by a rekeying protocol includes both user
join communication cost and user leave communication cost, and the authors have
only considered the leave communication cost. Intuitively, the storage costb(n) is
related to join cost because the higher the number of keys a user holds, the higher
the bandwidth to distribute these keys to the newly joined users. In the extreme
case, when the key server distributes one key for each potential user subset when a
user joins, the key server can reduce the leave communication cost to be constant.
However, under this scheme, the communication cost to distribute the keys can
be very high. From this discussion, we see that even if we are just interested in
communication cost, we have to consider both user join communication cost and
user leave communication cost.

3



The objective of this paper is to derive a lower bound on rekeying commu-
nication cost, considering both user join requests and leave requests. We show
that given the forward access control requirement, i.e. a user who has left the
secure group cannot have access to future group keys, there exists a sequence of
2n user joins and leaves such that the amortized per request communication cost
is
(ln(n)).

The balance of this paper is organized as follows. In Section 2, we discuss
our system model. We present our lower bound in Section 3. We conclude in
Section 4.

2 System Model

2.1 Forward and backward access controls

There are two types of security requirements on a secure group key management
system:

� Backward access control: A newly joined user cannot gain access to past
group keys.

� Forward access control: After a user has left the secure group, she should
not be able to gain access to future group keys.

When the only requirement is backward access control, a simple key manage-
ment scheme withO(1) complexity can be designed. Assume the current group
key is gi. When thei + 1-th new user joins, the key server setsgi+1 = H(ki),
whereH(:) is a secure one way function. Then what the key server needs to do
is to sendgi+1 to the new user, and also multicasts a signal to other users so that
these users will do the hash to get the new key. As another approach without us-
ing secure one way function, the key server can encryptgi+1 by gi. Again, this
approach hasO(1) complexity.

The major difficulty arises when we have to provide forward access control.
As we will see later, even without backward access control, in order to provide for-
ward access control, the communication cost will have a lower bound of
(ln(n)),
wheren is the number of user join requests, and number of user leave requests.
Hereafter, we only consider forward access control.

4



2.2 Rekey assumptions

To derive any lower bound on a system or to prove the security property of a
system, we need to first define our system model. The assumptions we made
about the system are:

� There is only one key server.

� After the key server has finished processing a request, all users in the session
(joined, but has not left yet) share a common group key. The user who has
left the secure group or has never joined the group does not have access
to the key. We denote the group key after thei-th request asgi. Notice
that when thei-th request is a join request, and backward access control is
not required, the key server may not change the group key, therefore, it is
possible thatgi is the same asgi+1 in this case.

� When updating the keys, the key server uses one keyk to encrypt another
keyk0.

� The communication cost is in terms of the number of times the key server
encrypts one key with another key and distribute it. When we say a message,
we mean one key encrypted by another key. In implementation, several
encrypted keys can be put in one data packet.

� The adversary has infinite storage power, i.e., all messages distributed by
the key server can be saved by the adversary.

2.3 Rekey encryption graphs

Inspired by the key graph approach [9] by Wong, Gouda and Lam, we use directed
graphs to represent the rekeying process. However, we notice that a key graph
in [9] represents just a snapshot of the rekeying process. In order to represent a
whole rekeying process, and therefore make it possible to count the communica-
tion cost, we need to extend the key graph to include history informations. We
call our extended graphsrekey encryption graphs.

Our rekey encryption graphs consist of a sequence of graphsfGig
1
i=1, where

graphGi models the rekeying process for the firsti requests. Intuitively, we desire
that the number of edges inGi represents the number of messages that the key
server has sent for rekeying the firsti requests.

Next, we describe the nodes and edges in a rekey encryption graphGi.

5



Gi will include two types of nodes: key nodes, and user nodes. The set of user
nodesM includes all potential users. The second type of nodes is key node. We
distinguish two types of key nodes. We first include a special class of key nodes
called individual key nodes. These individual key nodes will be distributed by the
key server using a secure channel established between a user and the key server at
authentication time. The other key nodes represent the keys that the key server has
ever generated and distributed by encrypting it using another key inGi in order to
process the firsti requests.

Gi includes two types of edges. The first type of edges is from a user nodeu

to its individual key nodek. The second type of edges is inserted when a keyk is
distributed by the key server by encrypting it with another keyk0. If the key server
sends out such a message, we have an edge fromk0 to k.

For a graphGi, we define a subgraphSi. First,Si includes a user nodeu if the
user should be in the secure group after the firsti requests (joined but not left).
Second,Si includes the current group key nodegi. Third, a key node or an edge
is in Si if it is on a path from a user nodeu in Si to the current group key nodegi.

Gi

G i+1

S i+1

g i g i+1

Figure 1: An example of rekey encryption graphs

Figure 1 shows examples of rekey encryption graphs. The whole graph rep-
resentsGi+1. InsideGi+1 in the dashed cycle isGi. The six square nodes at the
bottom of the graph are user nodes. The six dashed circle nodes just above the
square nodes are the individual key nodes. There is an edge from a user node to
its individual key node. Each edge from one key nodek0 to another key nodek
represents that the key server has sent outk encrypted byk0. gi andgi+1 are the
group keys ofGi andGi+1, respectively. Also shown in Figure 1 isSi+1, which
includes the four user nodes on the right bottom, the group key nodegi+1, and all

6



the key nodes and edges that are on a path from a user node inSi+1 to the group
key nodegi+1.

2.4 Rekey encryption graph properties

From our construction of rekey encryption graphGi, we know that the number
of edges inGi represents the number of messages that the key server has sent to
process the firsti requests. We also notice thatGi � Gj, for anyi < j.

However, not all graphs can represent a rekeying process. To represent a
rekeying process that satisfy the forward access control requirement, a rekey graph
Gi has to at least satisfy these following necessary properties:

� There is at least one path from a user nodeu to the current group keygi if u
is a member of the current group.

� There should be no path to the group keygi if a useru is not in the current
group.

� For the following property, we limit toSi � Gi. Denoten as the total
number of user nodes inSi. Definei(x) as the in-degree of a nodex in Si.
DefineP (u) as the set of key nodes that are on a path from a user nodeu to
the group key nodegi. We define the costc(u) of u as:

c(u) =
X

x2P (u)

i(x) (1)

DenoteC as the maximal ofc(u) among then users inSi:

C = max
8user node u

c(u) (2)

Defines(n) as the summation of the cost of all users inSi:

s(n) =
X

all user node u

c(u) (3)

Now, we can prove the following Lemma:

Lemma 1 s(n) � nln(n)

7



Proof: Definen(x) as the number of user nodes inSi that can lead tox. We
observe that,

s(n) =
X

all user node u

c(u) =
X

all key node x

i(x)n(x) (4)

Next, we proves(n) � nln(n) by induction on the height of the group
key. It is obvious that the lemma holds for group key height1. Assume the
lemma is true for height less than or equal toh. First, we can see that we
can reduceSi into a tree by pruning some edges. Assume the group key has
t non-overlaping connected children. Apply the induction assumption on
each child branch, we have

s(n) � tn +
tX

i=1

niln(ni) (5)

whereni is the number of user nodes that are below thei-th child.

It is easy to verify thatf(x) = x ln(x) is a convex function, therefore, we
have

tX

i=1

niln(ni) � t

Pt
i=1 ni

t
ln(

Pt
i=1 ni

t
) (6)

� nln(
n

t
) (7)

Plug (7) into (5), we have

s(n) � nt + nln(n)� nln(t) (8)

We know thatt� ln(t) > 0 for t � 1, therefore,s(n) � nln(n). �

Using Lemma 1, we have that

C � ln(n) (9)

2.5 Rekey encryption graph limitations

Before we present our lower bound, we discuss the limitation of our model in this
subsection. The major limitation of this model is that we only allow the operation

8



of single encryption, i.e. encryption of one key by another key. It does not support
other operations. For example, it is possible that one keyk can be protected by
two keysk0 andk00 [4]. One way to implement this protection is to use the XOR
of two keys,k0 andk00, to encryptk. In this case, for an adversary to getk, it has
to have bothk0 andk00. To model this type of operation, we will have to increase
the expressing power of rekey graph by adding AND edges. We will address this
extension later.

3 Lower Bound of Rekeying Communication

With the preparation of the previous section, we prove in this section a lower
bound on the secure rekeying communication cost, considering both join requests
and leave requests. We notice that even though backward access control may not
be required, the key server may want to distribute some keys at join time in order
to reduce the cost of processing user leave request. Therefore, intuitively, it is
important that we consider a sequence of operations instead of a single operation.

u S i+1

S i

g i+1

g i

Figure 2: Useru leaves

Suppose thei-th request is the leave request of useru. For the purpose of our
construction, we assume thatu does not re-join. Then because of forward access

9



control requirement, we know that there should not be a path fromu to any group
keygj inGj, wherej > i. LetP (u) denote the set of key nodes on the path fromu

to the group key nodegi in Gi. To satisfy the forward access control requirement,
we know that no node inP (u) should be inSj, for anyj > i, because otherwise
useru can gain access to future group keys. Figure 2 shows the scenario.

From the definition of the cost of a user node, we know that there are at least
c(u) edges inSi, and these edges will not be inSj, wherej > i. In particular, if
we choose the user node with the largest cost, we know that there will be at least
ln(n) edges inSi, but these edges will not be inSj, for anyj > i.

Now, we can construct a sequence of2n requests to have
(nln(n)) edges. In
another words, we will show thatG2n has at least
(nln(n)) edges. Remember
that the number of edges inGi is the number of messages a key server has to send
to process thei requests. Therefore, the amortized number of edges per request is

(ln(n)).

To construct the sequence, first assumen user join requests. These join re-
quests are followed by a sequence ofn user leave requests. Consider the first
leave request. We know that this is then + 1-th request because there aren join
requests ahead of it. We select the leaving useru as the user who has the maxi-
mumc(u) of the remaining users. From previous discussion, we know that there
are at leastln(n) edges inSn but not inSn+1. Since all previous requests are
join requests, we know that all these edges are added to process then join re-
quests. Continue this process on the next leave request. In this case, we can get
ln(n�1) edges. We notice that the edges in the second leave may be either added
when the key server is processing then join requests or processing the first leave
request. Continue this process for a total ofn times, we have at least a total of
ln(n) + ln(n � 1) + ::: + 1 = �(nln(n)) non-overlapping edges in the rekey en-
cryption graphG2n. Since there is a total of2n requests, the amortized bandwidth
requirements per request is
(ln(n)). Therefore, we have proved the following
theorem:

Theorem 1 Given forward access control security requirement, and the key server
distributes non-individual keys by encrypting one key using another key, there ex-
ists a sequence of2n requests such that the amortized per request communication
cost is
(ln(n)).

10



4 Conclusion

We discussed in this paper a lower bound on communication cost for secure group
key management system. To model the rekeying process, we introduced the con-
cept ofrekey encryption graphs. Using the rekey encryption graphs, we were able
to show that given the forward access control requirement, there exists a sequence
of 2n join and leave requests such that the amortized per request communica-
tion cost is
(ln(n)). This lower bound indicates that when the only allowed
operation for the key server to distribute a non-individual key is to encrypt it by
another key, the communication cost will be�(ln(n)), given the known protocols
that have achieved this lower bound. Therefore, in order to further improve the
scalability of group rekeying communication cost, other operations will have to
be investigated. Another potential way to improve rekeying scalability is to relax
the security requirements. For example, one potential is to allow some users to
enjoy free ride when the lost of value can be offsetted by the saving of rekeying
cost. We are currently investigating these possibilities.

References

[1] David Balenson, David McGrew, and Alan Sherman.Key Management for
Large Dynamic Groups: One-way Function Trees and Amortized Initializa-
tion, INTERNET-DRAFT, 1999.

[2] C. Blundo, L. A. Frota Mattos, and D. R. Stinson. Trade-offs between com-
munication and storage in uncondinationally secure schemes for broadcast
encryptioin and interactive key distribution. InAdvances in cryptology–
CRYPTO ’96, Santa Barbara, CA, 1996.

[3] Ran Canetti, Tal Malkin, and Kobbi Nissim. Efficient communication-storage
tradeoffs for multicast encryption. InEuroCrypto ’99, 1999.

[4] Isabella Chang, Robert Engel, Dilip Kandlur, Dimitrios Pendarakis, and De-
banjan Saha. Key management for secure Internet multicast using boolean
function minimization techniques. InProceedings of IEEE INFOCOM ’99,
volume 2, March 1999.

[5] S.E. Deering and D.R. Cheriton. Multicast routing in datagram internetworks
and extended LANs.ACM Transactions on Computer Systems, 8(2):85–110,
May 1990.

11



[6] Internet Research Task Force (IRTF). The secure multicast research group
(SMuG). http://www.ipmulticast.com/community/smug/.

[7] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In
Advances in cryptology–EUROCRYPT ’98, Espoo, Finland, 1998.

[8] D. Wallner, E. Harder, and Ryan Agee.Key Management for Multicast: Issues
and Architectures, INTERNET-DRAFT, September 1998.

[9] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group
communications using key graphs. InProceedings of ACM SIGCOMM ’98,
September 1998.

12


