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Abstract

We investigate the fairness, smoothness, responsiveness, and ag-
gressiveness of TCP and three representative TCP-friendly congestion
control protocols: GAIMD, TFRC, and TEAR. The properties are
evaluated both analytically and via simulation by studying protocol
responses to three network environment changes. The first environ-
ment change is the inherent fluctuations in a stationary network en-
vironment. Under this scenario, we consider three types of sending
rate variations: smoothness, short-term fairness, and long-term fair-
ness. For a stationary environment, we observe that smoothness and
fairness are positively correlated. We derive an analytical expression
for the sending rate coefficient of variation for each of the four pro-
tocols. These analytical results match well with experimental results.
The other two environment changes we study are a step increase of net-
work congestion and a step increase of available bandwidth. Protocol
responses to these changes reflect their responsiveness and aggressive-
ness, respectively.

∗Research sponsored in part by NSF grant no. ANI–9977267 and ONR grant no.
N00014–99–1–0402. Experiments were performed on equipment procured with NSF grant
no. CDA–9624082.



1 Introduction

In a shared network such as the Internet, end systems should react to con-
gestion by adapting their transmission rates to share bandwidth fairly, to
avoid congestion collapse, and to keep network utilization high [8]; the ro-
bustness of the Internet is due in large part to the end-to-end congestion
control mechanisms of TCP [13]. However, while TCP congestion control is
appropriate for applications such as bulk data transfer, other applications
such as streaming multimedia would find halving the sending rate of a flow
to be too severe a response to a congestion indication as it can noticeably
reduce the flow’s user-perceived quality [22].

In the last few years, many unicast congestion control protocols have
been proposed and investigated [16, 24, 21, 6, 19, 22, 17, 25, 10, 28, 20].
Since the dominant Internet traffic is TCP-based [23], it is important that
new congestion control protocols be TCP-friendly. By this, we mean that
the sending rate of a non-TCP flow should be approximately the same as
that of a TCP flow under the same conditions of round-trip time and packet
loss rate [16, 4].

Evaluations of these protocols, however, have been focused mainly on
protocol fairness in stationary environments. Two methods were proposed
to establish the fairness of a protocol. The first is Chiu and Jain’s phase
space method [7], which can be used to show that a protocol will converge
asymptotically to a fair state, ignoring such operational factors as random-
ness of the loss process and timeouts. The second method is to show that
the long-term mean sending rate of a protocol is approximately the same as
that of TCP. However, it has been observed in experiments [28, 10, 9] that
flows with TCP-friendly long-term mean sending rates can still have large
rate variations when loss rate is high.

Furthermore, fairness is only one of several desirable properties of a
congestion control protocol. We identify four desired properties: 1) fairness:
small variations over the sending rates of competing flows; 2) smoothness:
small sending rate variations over time for a particular flow in a stationary
environment; 3) responsiveness: fast deceleration of protocol sending rate
when there is a step increase of network congestion; and 4) aggressiveness:
fast acceleration of protocol sending rate to improve network utilization
when there is a step increase of available bandwidth.

The objective of this paper is to evaluate these properties by studying
the transient behaviors of several congestion control protocols under three
network environment changes. Proposed congestion control protocols in the
literature fall into two major categories: AIMD-based [21, 6, 19, 28, 20] and
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formula-based [16, 24, 22, 17, 10]. For our study, we select TCP [13] and
GAIMD [28] as representatives of the first category. GAIMD generalizes
TCP by parameterizing the congestion window increase value and decrease
ratio. That is, in the congestion avoidance state, the window size is increased
by α per window of packets acknowledged and it is decreased to β of the
current value whenever there is a triple-duplicate congestion indication. In
our evaluation, we choose β = 7/8 because it reduces a flow’s sending rate
less rapidly than TCP does. For β = 7/8, we choose α = 0.31 so that the flow
is TCP-friendly [28]. In what follows, we use GAIMD to refer to GAIMD
with these parameter values. We select TFRC [10] as a representative of
the formula-based protocols. In addition to these three protocols, we select
TEAR [20] which uses a sliding window to smooth sending rates.

The first environment change we study is the inherent network fluctua-
tions in a stationary environment. We evaluate three types of sending rate
variations: smoothness, short-term fairness, and long-term fairness. For a
stationary environment, we observe that smoothness and fairness are posi-
tively correlated. To quantify the smoothness of a flow, we derived an analyt-
ical expression for the sending rate coefficient of variation (CoV) for each of
the four protocols. We found that our analytical results match experimental
results very well. We observe that with increasing loss rate, smoothness and
fairness become worse for all four protocols. However, their deteriorating
speeds are different. In particular, at 20% loss rate, TFRC CoV increases to
be the highest. TEAR maintains a relatively stable smoothness and fairness
performance, but it scores the lowest in experiments on responsiveness and
aggressiveness (see below). Also, while TFRC and TEAR have smoother
sending rates than those of TCP and GAIMD, they have undesirable fair-
ness behaviors at high loss rate, i.e., TFRC sending rate dropping to almost
zero and TEAR sending rate being too high compared with TCP.

The second environment change we study is a step increase of network
congestion. Protocol responses to this change reflect their responsiveness.
In our experiments, TCP is the most responsive of the four protocols. How-
ever, TCP overshoots and has to recover from its overshot state. We also
found that TEAR does not reduce its sending rate under persistent con-
gestion. From this finding, we suggest that the self-clocking mechanism of
window-based protocols should be included in congestion control protocols
to improve protocol responsivess. This shows that our evaluation frame-
work can be a valuable tool for evaluating congestion control protocols and
detecting undesirable protocol behaviors.

The third environment change we study is a step increase of available
bandwidth. Protocol responses to this change reflect their aggressiveness.
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In our experiments, we found that TCP is the most aggressive of the four
protocols to use newly available bandwidth. Again TCP overshoots. TFRC
with history discounting and GAIMD have similar aggressiveness. TEAR is
the lest aggressive to utilize newly available bandwidth.

The balance of this paper is organized as follows. In Section 2 we discuss
our evaluation methodology. In Section 3 we evaluate protocol responses in
stationary environments. In Section 4, we evaluate protocol responses to a
step increase of network congestion. Protocol responses to a step increase
in available bandwidth are shown in Section 5. Our conclusion and future
work are in Section 6.

2 Evaluation methodology

2.1 Loss models

Network loss process is a major factor in determining the performance of
a congestion control protocol. In our simulations, we use four simple and
representative loss models. We distinguish between loss models for high
multiplexing environments and low multiplexing environments. By high
multiplexing environment, we mean that loss is relatively insensitive to the
sending rate of the flow under study. This is intended to be a model for
backbone routers. By low multiplexing environment, we mean that loss is
somewhat sensitive to the sending rate of a flow.

Our first loss model is deterministic periodic loss. Though this model
may be unrealistic, it is simple and protocol responses for this model are
representative and clear.

The second loss model is Bernoulli loss. In this model, each packet is lost
with probability p, which is independent and identically distributed (i.i.d.)
for all packets. We consider this model as one representative for high multi-
plexing environments. For example, in today’s Internet, packets are dropped
by routers without regard to which flows they belong to when buffers over-
flow. Though packet losses can be correlated, a number of studies [3, 27, 29]
show that loss bursts in the Internet are short and any loss correlation does
not span long, typically less than one RTT.

The third loss model for high multiplexing environments is the loss pro-
cess when background traffic consists of ON/OFF sources. Since the domi-
nant traffic in the Internet is web-like traffic, we believe that it is important
to model the effects of competing web-like traffic (short TCP connections
and some UDP flows). It has been reported that WWW-related traffic tends
to be self-similar in nature [18]. Willinger et al. shows that self-similar traffic
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can be generated by using several ON/OFF UDP sources whose ON/OFF
times are drawn from a heavy-tailed distribution such as the Pareto distri-
bution [26]. Therefore, we choose ON/OFF UDP flows as our third type
of background traffic. In our experiments, we set the mean ON time to be
1 second, and the mean OFF time to be 2 seconds. During ON time each
source sends at 500Kbps. The shape parameter of the Pareto distribution
is set to be 1.5. The number of ON/OFF sources in our experiments is 5.

The fourth loss model is the loss process when N flows are competing
with each other. We consider this loss model as a representative for low
multiplexing environments.

2.2 Simulation configurations

Our network topology is the well-known single bottleneck (“dumbbell”) as
shown in Figure 1. In this topology, all access links have a delay of 10
ms, and they are sufficiently provisioned to ensure that packet drops due to
congestion occur only at the bottleneck link from R1 ro R2. The bottleneck
link is configured to have a bandwidth of 2.5 Mbps and a propagation delay
of 30 ms. We repeat each simulation twice by configuring the bottleneck
link as either a drop-tail or a RED link. For drop-tail link, we set a buffer
size of 50 packets with packet size 1000 bytes. The parameters of RED link
are scaled as in [10]. For most cases, the results for drop-tail and RED are
similar. Therefore, the reported results are for drop-tail link unless we state
otherwise.

Source 1

Source N Sink N

Sink 1

10ms

2.5Mbps/30ms

R1 R2

Figure 1: Network topology

We use GAIMD based on TCP/Reno. Most of our reported results on
TCP are based on TCP/Reno unless we explicitly point out. TFRC is based
on the code from ns June 12th, 2000 snapshot. In our initial set of TEAR
experiments, we used the code from the authors’ web site. However, we
found that the timeout mechanism described in their paper [20] was not
implemented. Therefore, we modified their code to implement timeout. For
most of the experiments, differences between the modified and unmodified
versions are small. However, there are big differences in some experiments;
in those cases, we will point them out.
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To avoid phase effects [11] that mask underlying dynamics of the pro-
tocols, we introduce randomizations by setting the overhead parameter of
TCP, GAIMD, and TFRC to a small non-zero value.

3 Responses to Stationary Fluctuations

We first investigate protocol responses in stationary environments. The
properties we study in this section are smoothness and fairness.

3.1 Performance metrics

We use coefficient of variation (CoV) to measure protocol smoothness and
fairness. First, we clarify three types of coefficient of variation.

3.1.1 Three types of coefficient of variation

The definition of CoV depends on measurement timescale: the longer the
timescale, the smaller the CoV is. For our purpose, we measure smoothness
and short-term fairness at a timescale of round-trip time; we define long-
term fairness at a timescale of multiple round-trip times.

1. Smoothness CoVtime. Consider any solid dot in Figure 2a, which rep-
resents the sending rate during a round-trip time of a specific flow. We
define CoVtime as the coefficient of variation of this time series. We
observe that CoVtime measures the smoothness of a flow.

Rate

(a)  Time fluctuation
Time

Rate

t
(b)  Short term fairness

Time

Figure 2: CoV time and CoV sf

2. Short-term fairness CoV sf . Consider the solid dots in Figure 2b, which
are samples of the sending rates of several competing flows during the
same round-trip time. The coefficient of variation CoV sf of this data
series measures short-term fairness among competing flows.

3. Long-term fairness CoVlf . Instead of measuring the sending rates of
competing flows during the same round-trip time, we can measure
their sending rates during multiple round-trip times. Therefore, we
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define long-term fairness CoVlf as the coefficient of variation over the
sending rates of competing flows in a longer time period.

With the definitions above, next we discuss their relationships. First con-
sider the relationship between smoothness and fairness at a given timescale.
Assuming competing flows are i.i.d. (the flows will then have the same mean
sending rate if the measurement interval is infinity) and ergodic, we know
that time distribution and population distribution are equal, that is,

CoVtime samples = CoVpopulation samples (1)

Thus we observe that generating smoother traffic (measured by time sam-
ples) improves fairness (measured by population samples).

Next, consider the relationship between short-term and long-term CoV.
It is intuitive that long-term CoV will be smaller than short-term CoV. De-
fine an epoch as a time interval long enough such that the sending processes
of a flow between epochs are independent and identically distributed. Let
Sj denote the flow’s average sending rate during the jth epoch, and de-
fine R(n) =

∑n
j=1 Sj/n as its average sending rate in n epochs. Since we

assume the random variables {Sj}n
j=1 are i.i.d., by the central limit theo-

rem, we know that the distribution of R(n) can be approximated by normal
distribution when n is large:

CoV [R(n)] ≈ CoV [{Sj}n
j=1]√

n
(2)

3.1.2 Metrics

In our evaluations, instead of using CoV sf to measure short-term fairness,
we follow [14] and use fairness index F , defined as (

∑
xi)2/(K

∑
x2

i ), where
{xi}K

i=1 are the sending rates of competing flows. Let X denote the underly-
ing random variable of samples {xi}K

i=1. We observe that F ≈ E[X]2/E[X2].
Rearranging, we have

F (X) ≈ 1
(1 + CoV (X)2)

(3)

In summary, the performance metrics we use in this section are CoVtime,
which measures smoothness; F , which measures short-term fairness; and
CoVlf , which measures long-term fairness. However, the detailed behavior
of a flow cannot be fully characterized by these metrics. Moreover, our
analytical results are derived for specific loss models. Therefore, to gain
intuition, we will also show sending rate traces and the fluctuations of the
bottleneck queue length for some simulations.
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3.2 Analytical results

We present our analytical results on CoV time for TCP, GAIMD, TFRC, and
TEAR. The derivations of these results are put in the Appendix.

3.2.1 AIMD

At low loss rate, under Poisson loss arrival, we derive CoV time for AIMD
(including GAIMD and TCP Reno as special cases) to be (see Appendix):

CoV AIMD
time =

√
1− β

1 + β
(4)

where β is the reduction ratio of congestion window size when there is a
congestion indication.

Plugging β = 1/2 for TCP into Equation (4), we have

CoV TCP
time =

√
1
3
≈ 0.58 (5)

Plugging β = 7/8 for GAIMD into Equation (4), we have

CoV GAIMD
time =

√
1
15

≈ 0.26 (6)

When loss rate is high, both GAIMD and TCP Reno will be in timeout
states most of the time. Modeling timeout as a Markovian process, we derive
CoV time to be (see Appendix):

CoV AIMD
time =

√
64(t−1)+32p+16p2+8p3+4p4+2p5+p6

64−32p−16p2−8p3−4p4−2p5−p6

where p is packet loss rate, and t is the ratio of timeout interval to round-trip
time.

Plugging p = 20% and t = 4 into the expression above, for GAIMD and
TCP Reno, we have

CoV AIMD
time ≈ 1.7 (7)

3.2.2 TEAR

At low loss rate, assuming Poisson loss, we derive CoV time for TEAR to be
(see Appendix):

CoV TEAR
time ≈ 0.21 (8)
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3.2.3 TFRC

At low loss rate, assuming Bernoulli loss, we derive CoV time for TFRC to
be:

CoV TFRC
time ≈ 0.22 (9)

At high loss rate (about 20%), we derive in the Appendix that CoV time

for TFRC will be between 0.8 and 2.4.

3.3 Simulation results

3.3.1 High multiplexing environments

We start our simulation with periodic loss. Figure 3 shows flow sending
rate traces when the loss rate is 5%. For this figure, the horizontal axis is
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Figure 3: Sending rates (periodic loss, p = 5%)

measured in the number of round-trip times (RTT), and the vertical axis
is the flow sending rate during a round-trip time. This simple experiment
shows that the sending rates of TFRC and TEAR are smoother than those
of TCP and GAIMD at low loss rate. Figure 4 shows flow sending rate traces
under Bernoulli loss model at the same loss rate. Comparing Figure 3 with
Figure 4, we observe that because of the randomness of Bernoulli loss, all
four protocols exhibit much larger fluctuations even at this relatively low
loss rate.

The result for 20% Bernoulli loss is even worse. We observe from Figure 5
that at 20% loss, the sending rate of TFRC drops to almost 0 and the average
sending rate of TEAR is much higher than those of TCP and GAIMD.
Therefore, at high loss rate, the behaviors of neither TFRC nor TEAR are
desirable.
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Figure 4: Sending rates (Bernoulli loss, p = 5%)
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Figure 5: Sending rates (Bernoulli loss, p = 20%)
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Figure 6: CoVtime of sending rates (Bernoulli loss)
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Figure 6 summarizes CoVtime from simulations for all four protocols when
Bernoulli loss rates are varied from 0.5% to 20%. We make the following
observations:

• For all protocols, the overall trend is that CoVtime increases with in-
creasing loss rates. In other words, the smoothness of the protocols
reduces with increasing loss rate.

• At the low loss rate of 1%, TCP has the largest CoVtime of 0.51, which
indicates that TCP smoothness at low loss rate is the worst. GAIMD
CoVtime at this loss rate is the second largest with a value of 0.3.
TFRC and TEAR have similar CoVtime at this loss rate with values
of 0.23 and 0.22, respectively. We observe that these experimental
values, 0.51, 0.3, 0.23 and 0.22, are close to the analytical predictions
of 0.58 from Equation (5), 0.26 from Equation (6), 0.22 from Equation
(9), and 0.21 from Equation (8), respectively.

• At 8% loss rate, GAIMD CoVtime increases to be the same as that of
TCP. This is not surprising since at high loss rate, timeout dominates
AIMD approaches. From Equation (7), we anticipate a CoV time of
1.73 at 20% loss rate. We observe that this analytical prediction is
close to the measured value of 1.6.

• TFRC CoV time stays low for up to 4% loss rate. Then it increases
very fast and exceeds TCP and GAIMD at 15% loss rate. At 20%
loss rate, CoV time of TFRC increases to 2, which is in the analytical
prediction range of 0.8 to 2.4. Since TFRC has the highest CoV time at
high loss rate, it indicates that TFRC smoothness and fairness become
the worst at high loss rate.

• TEAR keeps a low CoV time of 0.2 to 0.4 across the range of measured
loss rates. These experimental values agree with the analytical predic-
tion of 0.21. These results show that TEAR can maintain a relatively
stable smoothness and fairness performance over a wide range of loss
rates.

Besides Bernoulli loss model, for high multiplexing environment, we also
study protocol responses to the ON/OFF loss model. From Figure 7 we
observe that under this loss model protocol smoothness is slightly worse than
that under Bernoulli loss model. To understand the reason for the higher
fluctuations, we investigate the bottleneck queue length. Figure 8 shows
that ON/OFF traffic causes large fluctuations for bottleneck queue length.
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Therefore, we can expect large fluctuations in sending rates of responsive
competing traffic.
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Figure 7: Sending rates (1 flow + 5 ON/OFF)
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Figure 8: Queue length (1 flow + 5 ON/OFF)

3.3.2 Low multiplexing environments

We again start from the simplest environment. Figure 9 shows flow send-
ing rate traces when a single flow is sending across the bottleneck link.
From simulation configuration, we know that the bandwidth delay product
is about 30 packets and the bottleneck link has a buffer size of 50 packets,
therefore, there can be only 80 outstanding packets. When the congestion
window size of a TCP/GAIMD flow exceeds 80 packets, a packet will be
dropped and the flow’s window size will be reduced. However, since most
of the time the congestion window allows sending at a rate that is higher
than the bottleneck link speed as shown in Figure 10, the achieved sending
rate is limited by ACK arrivals. Therefore, TCP/GAIMD sending rates are
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Figure 9: Sending rates (1 flow)

stable at the bottleneck link speed until they experience packet loss and the
window size drops below 30 packets.
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Figure 10: Congestion window sizes (1 flow)
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Figure 11: Queue length (1 flow)

As in the previous ON/OFF case, to understand the reason for sending
rate fluctuations, we plot in Figure 11 the fluctuations of the bottleneck
queue length. We make the following observations: 1) The queue length
under TCP exhibits large variations. TCP builds up the queue very quickly;
when the queue is full and a packet is dropped, TCP backs off, and the
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queue drains to be empty very quickly. 2) GAIMD behavior is similar, but
the fluctuations of queue length are much smaller than those of TCP. 3)
TEAR queue behavior is similar to TCP — fast ramp up to the peak and
quickly drain out, but the cycle of TEAR queue fluctuation is about two
times of TCP. We notice that during half of the cycle TEAR queue is
almost empty. The reason, as we will see in Section 5, is that TEAR is
very slow in accelerating its sending rate. 4) Similar to GAIMD, TFRC
does not drain the queue to be empty, and its queue length fluctuations are
smaller. Similar to TEAR, the cycle of TFRC queue length fluctuation is
much longer than those of TCP and GAIMD.

Following the simplest low multiplexing environment, we next consider
an environment with several competing congestion avoidance flows. Figure 12
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Figure 12: Sending rates (1 flow + 7 TCP)

shows flow sending rate traces when 7 TCP flows are competing with the
flow under study. We observe that TFRC and TEAR can maintain rela-
tively smooth sending rates, while the sending rates of TCP and GAIMD
fluctuate.
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Figure 13: Fairness index (1 flow + 7 TCP)

Since in this environment 8 TCP-friendly flows are competing against
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each other, we investigate the fluctuations of short-term fairness index. Fig-
ure 13 plots fairness index at each round-trip time. As we stated in Sec-
tion 3.1.1, short-term fairness is correlated to sending rate smoothness. We
know that TCP smoothness metric CoV TCP

time is 0.58, and the 7 TCP flows
dominate in this experiment. Therefore, plugging CoV = 0.58 into Equation
(3), we predict a short-term fairness index of F = 1/(1 + 0.582) = 0.7. From
Figure 13, we see that the simulation results fluctuate around the analytical
value. We have also repeated this simulation with RED link, which has a
different loss model; the result is similar.
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Figure 14: Queue length (1 flow + 7 TCP)

Figure 14 presents this experiment from another perspective: the fluc-
tuations of the bottleneck queue length. Comparing Figure 14 with Fig-
ure 11, we observe that the queue behavior in this experiment is similar to
the queue behavior of a single TCP flow, but the fluctuations have shorter
cycles. Therefore, we get higher fluctuations in sending rates.
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Figure 15: Sending rates (same protocol, 8 flows)

Protocol behaviors are different in an environment consisting of flows
that belong to the same protocol. Figure 15 shows flow sending rate traces
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when the 7 competing flows belong to the same protocol as the flow un-
der study. Comparing with Figure 12, we observe that in single protocol
environment the smoothness of GAIMD, TFRC, and TEAR improves.
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Figure 16: Fairness index (same protocol, 8 flows)

Figure 16 investigates the fluctuations of short-term fairness. It is par-
ticularly interesting to notice that the short-term fairness indices of TFRC
and TEAR are close to 1, and the indices do not exhibit large variations.
Therefore, it shows that TFRC and TEAR have better short-term fairness
performance than that of TCP.

We next compare our analytical results of short-term fairness index with
those from simulations. First consider TFRC and TEAR. We know that
their CoVtime are about 0.21. Plugging this value into Equation (3), we
have F = 1/(1 + 0.212) = 0.96, which is close to 1. As for GAIMD, we
know its CoVtime is 0.26. Plugging this value into Equation (3), we have
F = 1/(1 + 0.262) = 0.93, which is slightly higher than the experimental
result in Figure 16.
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Figure 17: Queue length (same protocol, 8 flows)

Figure 17 investigates the fluctuations of the bottleneck queue length for
this experiment. The queue behaviors are different between Figure 17 and
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Figure 14. In particular, when all flows belong to TFRC or TEAR, they can
maintain a high and stable queue length. The queue length of GAIMD is
also relatively high and stable. Therefore, for these three protocols, we can
expect smaller delay jitter and smoother sending rates than those of TCP.
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Figure 18: CoVlf (same protocol, 32 flows, 15 second average)

In the last experiments in stationary environments, we evaluate the long-
term fairness CoVlf . Figure 18 shows the simulation results for CoVlf of 32
flows belonging to the same protocol when Bernoulli loss rates are varied
from 0.5% to 17%. In this simulation, TCP is based on TCP/SACK, and
the measurement interval is 15 seconds. We observe that this figure is very
similar to Figure 6 in terms of trend and relative orders among the four
protocols. This is not surprising given the relationship we observed from
Equation (2). In another experiment, we have also evaluated CoVlf when the
measurement interval is 60 seconds, which is 4 times longer. We observe in
Figure 19 that, at low loss rate, CoVlf with 60 second measurement interval
is about half of that with 15 second measurement interval. These results
validate the relationship in Equation (2).
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Figure 19: CoV lf of sending rates (16 flows per protocol, 60 second average)
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4 Responses to step increase of congestion

In this section, we evaluate protocol responsiveness. In the terminology
of control theory, what we study are protocol responses to a step increase
function.

We first define the metrics. Our first metric to measure protocol respon-
siveness is the number of round-trip times D for a protocol to decrease its
sending rate to half under a persistent congestion, i.e., one loss indication
for each round-trip time. This metric has also been used in [10, 9]. We no-
tice that this metric does not measure the complete responding process. We
have also defined protocol adaptation round-trip time, R. Let Tn denotes
the sending rate of a protocol at the nth RTT after the disturbance. We
define T0 as the rate just before the disturbance, and T∞ as the rate at the
new steady state. Then T is the smallest n0 such that for any n ≥ n0,∣∣∣∣Tn − T∞

T0 − T∞

∣∣∣∣ ≤ α (10)

where α is a small threshold, say 5%. We notice that the evaluation of
R depends on the protocol sending rates before and after the increase of
congestion.

4.1 Analytical results

Since TCP takes only one round-trip time to reduce its sending rate to
half, its responsiveness DTCP = 1. For GAIMD, DGAIMD = log7/8 0.5 ≈ 5.
As for TFRC, from [10], we have DTFRC = 5. For TEAR, denote W as
the steady state window size just before persistent congestion. We know
that TEAR sending rate is 3W/4 per RTT before persistent congestion,
and that all of the 8 entries in its history window are 3W/4. After 5 con-
secutive congestion indications, the 8 entries in its history window become
{W/32,W/16,W/8,W/4,W/2, 3W/4, 3W/4, 3W/4}. Therefore, TEAR send-
ing rate after 5 loss indications will be reduced to half, and we have DTEAR =
5.

To derive results for R, to avoid the complexity of randomness in states,
we only consider the periodic loss model. Also, as we will see that the
protocol adaption speed R depends on the loss rates before and after the
step increase.

Suppose that the periodic loss rate changes from p0 to p. tn denotes the
time when the nth packet loss occurs since the loss rate has changed, and
Tn the sending rate at t = tn−.
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AIMD We model the window size in the interval (ti−1, ti) as W (t) =
βW (ti−1−) + α

R (t − ti−1), where R is round-trip time. Then the number
of packets sent in the interval, which is the integration of the sending rate,
should be 1

p .

∫ ti

ti−1

1
R

(
βW (ti−1−) +

α

R
(t− ti−1)

)
dt =

1
p

From this equation we get ti and W (ti−).

ti =
−√pRβW (ti−1−) + R

√
2α + pβ2W (ti−1−)2

α
√

p

W (ti−) =
√

2α
p

+ β2W (ti−1−)2

Then the sending rate is W (ti)−
R .

Ti =
√

2α
pR2

+ β2T 2
i−1

TFRC Since the length of a loss interval is 1
p0

before the loss rate change,
and 1

p after the change, the average loss interval is

ŝi = ai
1
p0

+ (1− ai)
1
p

where a0 = 1, a1 = 5
6 , a2 = 2

3 , a3 = 1
2 , a4 = 1

3 , a5 = 1
5 , a6 = 1

10 , a7 = 1
30 , and

a8 = 0. Then we get the following throughput of TFRC ignoring timeout.

Ti =
1
R

√
3ŝi2 =

1
R

√
3
2

(
ai

1
p0

+ (1− ai)
1
p

)

When the loss rate becomes higher, TFRC keeps its rate constant until
it sees a new packet loss event. Thus the time length of the i-th loss interval
is 1

pTi−1
, and we get ti = ti−1 + 1

pTi−1
.
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TEAR We model the window size of TEAR in the interval (ti−1, ti) as
follows:

W (t) =
1
2
W (ti−1−) +

2
pW (ti−1−)

Then the average window size in the i-th interval W i is

W i =
{ 3

4W0 if i ≤ 0
Wi
2 + Wi−1

4 if i > 0

Then the throughput is the weighted average of these average window sizes.

Ti =
1
R

8∑
k=1

wkW k+i−8

where w1 = 1
6 , w2 = 1

6 , w3 = 1
6 , w4 = 1

6 , w5 = 2
15 , w6 = 1

10 , w7 = 1
15 , and

w8 = 1
30 .

The equation for the length of the i-th interval is the same as that of
TFRC.

ti = ti−1 +
1

pTi−1

We plot the rate adaption
∣∣∣ Tn−T0
T∞−T0

∣∣∣ in Figure 20 to show the rate decrease
speed of each congestion control scheme using the results of the previous
section, when the loss rate changes from 1% to 4%. TCP is the fastest one
and the other three look similar except that GAIMD becomes slower after 10
RTT’s. But in practice, GAIMD decreases faster than shown in this figure
because the window size is rounded down when a packet loss occurs.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

R
at

e 
ad

ap
ta

tio
n 

(%
)

RTT

TCP
GAIMD

TFRC
TEAR

Figure 20: Rate decrease
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Figure 21: Sending rates (periodic loss, p=1% → p=4%)

4.2 Simulation results

We start our simulation with periodic loss model. Figure 21 shows protocol
responses when loss rate is increased from 1% to 4% at round-trip time
1000, which is indicated as a vertical line in the figure. Clearly, TCP is
the fastest of the four protocols to respond to loss rate increase; GAIMD
follows; TFRC, and TEAR have similar responding speed and are obviously
slower than TCP and GAIMD. However, we observe that TCP over-reacts
and drops its sending rate to almost 0. Due to this behavior, TCP takes as
long to reach its new stable state as the other three protocols.
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Figure 22: Sending rates (Bernoulli loss, p=0.5% → p=100%)

Next we consider protocol responses to Bernoulli loss rate change. Fig-
ure 22 shows protocol responses when at round-trip time 1000 Bernoulli loss
rate is increased from 0.5% to 100%, i.e., all data packets are dropped at the
bottleneck link from the sender to the receiver. Since no data packet can
go through, we expect that a responsive protocol would reduce its sending
rate to almost 0. Among the four protocols, TCP responds at the high-
est speed and reduces its sending rate to almost 0. GAIMD is the second;
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it also reduces its rate to almost 0. The behaviors of TCP and GAIMD
are expected because they are window-based protocols and the self-clocking
mechanism provided by acknowledgement prevents the protocols to send
any further packets until timeout. TFRC is the third with a reasonable re-
sponding speed. The responding speed of TEAR is very slow. Furthermore,
what we show here is the behavior of TEAR with timeout mechanism added.
In our initial experiments, where TEAR timeout mechanism is not imple-
mented, TEAR does not reduce its sending rate at all. To rectify similar
problems and improve the responsiveness of rate-based congestion control
protocols, we suggest that the self-clocking mechanisms of window-based
protocols should be included.
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Figure 23: Sending rates (Bernoulli loss, p=1% → p=4%)

Protocol responses in the previous experiment are mainly determined
by their timeout and self-clocking mechanisms (either at the sender or at
the receiver); they show different responses when data packets can still go
through the bottleneck link. Figure 23 tests the protocols when Bernoulli
loss rate is increased from 1% to 4% at round-trip time 1000. Since these
loss rates are relatively low, we expect a TCP-friendly protocol to reduce its
sending rate to half. From Figure 23 we observe that TCP is the fastest to
respond, and GAIMD follows. However, TCP drops below the new target
state and recovers slowly from its over-reaction. On the other hand, GAIMD,
TFRC, and TEAR have slower response speed than that of TCP, but none
of them has over-reaction.

Instead of controlling loss rate directly, next we test the protocols by
introducing new flows into a steady environment. We first consider the case
when 8 new TCP flows start at time 1000 when one flow of the protocol
under study and 7 competing TCP flows are in steady state. Figure 24
shows the sending rate traces for this experiment. Comparing Figure 24 to
Figure 26, we do not see substantial differences.
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Figure 24: Sending rate (1 flow + 7 TCP → 1 flow + 15 TCP)
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Figure 25: Queue length (1 flow + 7 TCP → 1 flow + 15 TCP)
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In this experiment, we find the queue behavior is particularly interesting.
Figure 25 shows queue length traces at the bottleneck link. At about round-
trip time 1025, the queue lengths for all four protocols exhibit large dips.
This suggests that the old flows back off due to the introduction of new
flows. Thus, the bottleneck queue length decreases.
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Figure 26: Sending rates (same protocol, 8 → 16 flows)

Next, we study protocol responses in a single protocol environment. Fig-
ure 26 shows the response of a flow as 8 new flows start at time 1000 when
the flow and the 7 competing flows are in steady state. It is clear from this
figure that TCP and GAIMD respond very fast, but both protocols over-
shoot to 0. TFRC and TEAR reduce their speeds slower. However, they do
manage to reduce gradually to the new states.
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Figure 27: Queue length (same protocol, 8 → 16 flows)

We next study the behavior of the bottleneck queue. We expect that
the queue will be in overload state for a longer period of time for a less
responsive protocol. Figure 27 investigates queue lengths before and after
we increase the number of flows. In this figure, increasing the number of
flows generates a large dip of queue length for TEAR around round-trip
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time 1050. This dip indicates that the responses of TEAR flows are much
longer delayed.

As another measure of protocol transient behaviors when network con-
gestion is increased, we consider fairness indices before and after the dis-
turbance. Figure 28 shows the fluctuations of fairness indices when the
number of flows belonging to the same protocol is doubled. The fairness
indices of TFRC and TEAR reduce from close to 1 to 0.5 right after the
increase. Afterwards, their short-term fairness indices gradually increase to
1 and become stable at a value close to 1. The slow increase of TEAR’s in-
dex indicates that the new TEAR flows are slow in increasing their sending
rates, which is also observed in Figure 27. As we have already observed in
Section 3, the fairness indices fluctuate for both TCP and GAIMD. We also
notice that their fairness indices reduce after the number of flows is doubled.
This decrease of fairness index is a result of increased loss rate.
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Figure 28: Fairness index (same protocol, 8 → 16 flows)

5 Responses to step increase of bandwidth

We evaluate protocol aggressiveness in this section. In the terminology of
control theory, what we will study are protocol responses to a step increase
function of available bandwidth.

As in the previous section, we first define our metric. Our single-number-
of-merit metric to measure protocol aggressiveness is a protocol’s increasing
speed I per RTT. Since protocol increasing speed depends on other factors
such as feedback interval, what we derive is an upper bound. However, we
do observe that the metric I can be used to optimize application perfor-
mance [15]. To evaluate the complete adaptation speed of a protocol, we
again should use the protocol adaptation speed as defined in the previous
section.
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5.1 Analytical results

TCP increases its rate by 1 per RTT in congestion avoidance state. Thus
its aggressiveness metric ITCP equals to 1; likewise IGAIMD = α = 0.31. As
for TFRC, from [10], we have ITFRC = 0.12 without history discounting and
ITFRC = 0.22 with history discounting. For TEAR, we know that, when
there is no loss, the receiver increases its estimation of the sending rate from∑t

i=0
W+i
t+1 (= W + t

2) at round-trip time t to W + t+1
2 at round-trip time

t + 1. Since the weight of the most recent epoch is 1/6, the upper bound of
ITEAR is 1/12.

Figure 29 shows the analytical responding speed using the derivations in
Section 4.1.
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Figure 29: Rate increase

5.2 Simulation results
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Figure 30: Sending rates (periodic loss, p=4% → p=1%)

We again start with periodic loss. Figure 30 shows protocol responses
when loss rate is decreased from 4% to 1% at round-trip time 1000. It is
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obvious from this figure that TCP is the fastest to utilize new bandwidth.
GAIMD and TFRC with history discounting have similar increasing speed
but GAIMD is slightly faster. TEAR is the slowest to increase its sending
rate. For this experiment, we observe that the relative order of the protocols
to increase their sending rates conforms to our analytical result.
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Figure 31: Sending rates (periodic loss, p=3% → p=2%)

Figure 31 shows another experiment where periodic loss rate is decreased
from 3% to 2%. In this experiment, the history discounting mechanism of
TFRC is not activated, and we observe that TEAR and TFRC become
similar. Comparing the aggressiveness of TFRC with and without history
discounting, we suggest that such mechanisms need to be considered by
other protocols, such as TEAR.

Next, we consider Bernoulli loss model. In Figure 32, we reduce Bernoulli
loss rate from 10% to 0% at t = 1000. Since no loss event occurs when
p = 0, TFRC uses history discounting and increases its sending rate faster
than usual. We observe that TCP is the fastest, and GAIMD is faster than
TFRC. TEAR is very slow compared with the other three protocols.
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Figure 32: Sending rates (Bernoulli loss, p=10% → p=0%)

Instead of testing the extreme case when there is no loss at all, Figure 33

27



shows protocol responses when we reduce Bernoulli loss rate from 4% to 1%.
As is shown in the interval (1000, 1050), TCP is the fastest in increasing its
sending rate. GAIMD, TFRC, and TEAR follow it.
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Figure 33: Sending rates (Bernoulli loss, p=4% → p=1%)

Instead of controlling the loss rate directly, next we test the protocols by
stopping some flows in a steady environment to increase available bandwidth
to remaining flows.
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Figure 34: Sending rates (1 flow + 15 TCP → 1 flow + 7 TCP)

We first consider the case when 8 of the 15 TCP flows stop at time 1000
in Figure 34. Since we decrease the total number of flows from 16 to 8, the
sending rates of remaining flows should be doubled. In this figure, TCP
and GAIMD respond almost instantaneously, while TFRC and TEAR take
much longer to utilize the newly available bandwidth. From a control theory
perspective, it appears TEAR is over-damped.

Next we study protocol responses in a single protocol environment. In
this experiment, 8 of the 16 flows stop at time 1000. Figure 35 shows
the adaptation of fairness indices. While fairness indices of TFRC and
TEAR do not change when the number of flows decreases, those of TCP and
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GAIMD increase almost instantaneously. This conforms to the behaviors
in Figure 28, where TCP and GAIMD fairness indices decrease when the
number of flows is increased.
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Figure 35: Fairness index (same protocol, 16 → 8 flows)

Another point to notice is how fast each protocol occupies newly available
bandwidth. Figure 36 shows queue length traces for this experiment. For
all four protocols, queue lengthes drop to zero when the 8 flows stop. TCP
takes only 20 RTT’s to fill the queue again. GAIMD and TFRC takes 42
and 45 RTT’s, respectively. TEAR takes more than 200 RTT’s because its
sending rate increasing speed is very slow.
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Figure 36: Queue length (same protocol, 16 → 8 flows)

6 Conclusion and Future Work

We studied analytically and via simulation the transient behaviors of TCP,
GAIMD, TFRC, and TEAR. Table 1 summarizes our quantitative results.
The first row shows fairness measured by the short-term fairness index F dis-
cussed in Section 3. From this metric, we infer that TFRC and TEAR have
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TCP GAIMD TFRC TEAR

Fairness F = 0.7 at
low loss

F = 0.9 at
low loss

F ≈ 1 at low loss; F ≈ 1 at low loss;

sending rate drops to
0 at high loss

sending rate too high
at high loss

Smoothness 0.58 at 2%
loss,

0.26 at 2%
loss,

0.22 at 2% loss, 0.2 at 2% loss,

(CoVtime) 1.7 at 20%
loss

1.7 at 20%
loss

2 at 20% loss 0.4 at 20% loss

Responsive-
ness (D)

1 RTT 5 RTTs 5− 6 RTTs 5− 6 RTTs, slower if
no feedback

Aggressive- 1.0/RTT 0.31/RTT 0.12/RTT wo/ his-
tory discounting

0.08/RTT,

ness (I) 0.22/RTT w/ history
discounting

slower with delayed
feedback

Table 1: Summary of quantitative results

better fairness performance at low loss rate than TCP and GAIMD. How-
ever, they have undesirable behaviors at high loss rate, i.e., TFRC sending
rate dropping to almost zero and TEAR sending rate being too high com-
pared to TCP. The second row summarizes protocol smoothness measured
by CoVtime. From this metric, we observe that TFRC and TEAR have bet-
ter smoothness performance at low loss rate. While TEAR can maintain
a stable smoothness performance up to 20% loss rate, TFRC becomes the
worst of the four protocols at 20% loss rate. The third row summarizes pro-
tocol responsiveness measured by D defined in Section 4. From this metric,
we see that TCP is the most responsive among the four protocols. The
other three have similar responsive speed. The last row summarizes proto-
col aggressiveness measured by I defined in Section 5. This metric shows
that TCP is the fastest protocol in utilizing extra bandwidth. TFRC, with
history discounting, is slightly slower than GAIMD. TEAR is the slowest
to increase sending rate.

Some issues that we have not studied include the impact of different
round-trip times, and the transient behaviors of congestion control protocols
in diffserv environments. Also, it will be interesting to investigate the impact
of variations of sending rates (especially for TCP and GAIMD) on protocol
responsiveness and aggressiveness. We defer these issues to a future study.
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A AIMD mean and CoV derivations when loss
rate is small

A.1 AIMD sending rate mean and variance derivation using
stochastic difference equation and Palm inversion

Consider the window size Wn just before a packet loss. We can express the
congestion window update rule as:

Wn+1 = βWn + αXn (11)

Notice that we use α instead of α
RTT for ease of typing.

From [5, 12, 1], we know that the above stochastic difference equation
has a stationary solution,

W ∗
n = α

∞∑
k=0

βkXn−1−k (12)

Moreover, even if W0 starts from an arbitrary value, it will converge
almost surely to the above stationary distribution, i.e.,

limn→∞|Wn −W ∗
n | = 0 (13)

Now, we can evaluate the mean and variance of Wn. Follow the conven-
tion, denote m1 = E[Xi], m2 = E[X2

i ] and R(k) = E[XnXn+k], then

E[W ∗
n ] = m1

α

(1− β)
(14)

As for variance, we have

E[(W ∗
n)2] =

α2

1− β2
(R(0) + 2

∞∑
k=1

βkR(k)) (15)

However, the above expectations are event average, we are more inter-
ested in time average. Through Palm inverse formula [2], we have

E[g(W (t))] =
1

m1
E0[

∫ X0

0
g(W (t))dt] (16)
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First we consider E[W (t)], and we have

E[W (t)] =
1

m1
E0[

∫ X0

0
(βW0 + αt)dt] (17)

=
1

m1
E0[βW0X0 +

α

2
X2

0 ] (18)

=
1

m1
E0[αβ

∞∑
k=0

βkX−1−kX0] (19)

+
α

2m1
E0[X2

0 ] (20)

=
α

m1
[
1
2
R(0) +

∞∑
k=1

βkR(k)] (21)

Next, we consider E[W (t)2], we have

E[W (t)2] =
1

m1
E0[

∫ X0

0
(βW0 + αt)2dt] (22)

=
E0[β2W 2

0 X0 + αβW0X
2
0 + α2

3 X3
0 ]

m1
(23)

=
1

m1
E0[α2β2(

∞∑
k=0

βkX−1−k)2X0 (24)

+ α2β(
∞∑

k=0

βkX−1−k)X2
0 (25)

+
α2

3
X3

0 ] (26)

(27)

Next, we consider two special cases.

A.1.1 The {Xi} are I.I.D.

In this case, we assume the loss interval follow an exponential arrival with
parameter λ.

E[(W ∗
n)] =

αm1

1− β
(28)

E[(W ∗
n)2] =

α2

1− β2

[
m2 +

2βm2
1

1− β

]
(29)
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CoV [W ∗
n ] =

√
1− β

1 + β
(30)

E[W (t)] =
α

m1

[
m2

2
+

βm2
1

1− β

]
(31)

=
α

λ

1
1− β

(32)

and the average sending rate is:

T =
E[W (t)]

RTT
(33)

=
α

λRTT

1
1− β

(34)

Next, we consider E[W (t)2]. From the above, we know that

E[W (t)2] = α2β2(
m2

1− β2
+

2β
1− β2

m2
1

1− β
) (35)

+α2β
m2

1− β
(36)

+
α2

3
m3

m1
(37)

Plug in the parameters, and we have

V ar[W (t)] =
α2

(1− β2)λ2
(38)

And

CoV [W (t)] =

√
1− β

1 + β
(39)

B AIMD CoV in timeout states

In this section, we derive the CoV formula for AIMD when timeout loss
indications dominate. From [28], we can see that this will happen when loss
rate is above 20%.
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Figure 37: Timeout state transition diagram

Figure 37 shows a Markovian state transition diagram. Each state rep-
resents one back-off factor. We have also analyzed a model considering slow-
start effect, but the result is similar. Finding the steady state distribution
for this Markovian chain, we have

p2i = (1− p)pi 0 ≤ i ≤ 5
p64 = p6 (40)

Denote t as the ratio of the timeout value and round-trip time. We
know that in state 1, the sender will send one packet in t round-trip times,
in state 2, the sender will send one packet in one of the 2t round-trip times,
etc. Therefore, the probability of sending a packet in a round-trip time will
be π1 =

∑k=6
k=0 p2k

1
2kt

.
Therefore, the CoV will be

CoV =√
64(t−1)+32p+16p2+8p3+4p4+2p5+p6

64−32p−16p2−8p3−4p4−2p5−p6

(41)

C TEAR CoV

TEAR is based on TCP with a sliding window to smooth sending rate. Be
specific, the per round-trip time sending rate of TEAR will be:

TTEAR =
8∑

i=1

wi

∑k=Wi− 1
2
Wi−1

k=0
1
2Wi−1 + k

Wi − 1
2Wi−1 + 1

(42)

Consider any term in the above summation:

Yi =
∑k=Wi− 1

2
Wi−1

k=0
1
2Wi−1 + k

Wi − 1
2Wi−1 + 1

(43)

=
1
2
Wi +

1
4
Wi−1 (44)
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Therefore,

V artime[TTEAR] =
8∑

i=1

wiYi (45)

= 0.07708V ar[Wi] (46)

where V ar[Wi] is the variance of the window sizes just before a loss indica-
tion arrives.

Therefore,

CoVtime[TTEAR] = 0.37CoV [Wi] (47)

From Equation (30), we have

CoVtime[TTEAR] = 0.37 ∗ 0.58 = 0.21 (48)

D TFRC CoV

At low loss rate, the sending rate of TFRC per round-trip time becomes

R(t) =

√
3s
2

(49)

where s is the weighted average of 8 loss intervals {si}8
i=1,

s =
8∑

k=1

wisi (50)

First, without considering the smooth effect, we consider the CoV of the
sending process

R′(t) =

√
3si

2
(51)

Denote p as the per packet loss probability, and q = 1− p. Consider the
Markovian model in Figure 38. The reason that the departure rate at state
i is proportional to

√
i is that we assume Bernoulli loss model, therefore,

the higher the sending rate is, the faster the rate to leave the state.
Solve the local balance equation:

Piλ
√

ipqi−1 = Pjλ
√

jqj−1 (52)
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Figure 38: TFRC low loss rate state model

We have that the probability in each state is given by:

Pi = c
qi

√
i

(53)

where c is the normalizing factor so that the summation of Pi is 1.
With the distribution, we can find E[R′] as

E[R′] =
∞∑

k=1

λ
√

ic
qi√
i

(54)

E[(R′)2] =
∞∑

k=1

λ2ic
qi√
i

(55)

From the above two expressions, we can derive the expression for CoV [R′].
Numerically calculating the value, we have CoV [R′] have values between 0.66
to 0.54 when the loss rate varies from 0.5% to 9%.

Approximate the smoothed version of TFRC CoV by

CoV [R] = (
8∑

k=1

w2
i )CoV [R′] (56)

We know that CoV [R] varies between 0.25 to 0.21.
Under high loss rate, as a first approximation, the sending rate will be

proportional to the inverse of p
3
2 . Similar to the above approach, we can

calculate the CoV [R′] at about 2.2 when loss rate is about 20%, and the
smoothed version will have CoV of about 0.8.

As another approximation, we consider the case when the sending rate
is proportional to the inverse of p

5
2 (which is the middle of 3/2 and 7/2),

we can calculate the CoV [R′] at about 6.4 when loss rate is about 20%, and
the smoothed version will have CoV of about 2.4.
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