
Automated Control of Multiple Virtualized Resources

Pradeep Padala,
Kai-Yuan Hou, Kang G. Shin

The University of Michigan

{ppadala,karenhou,kgshin}@umich.edu

Xiaoyun Zhu ∗

VMware, Inc.

xzhu@vmware.com

Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant

HP Labs

firstname.lastname@hp.com

Abstract
Virtualized data centers enable sharing of resources among
hosted applications. However, it is difficult to satisfy service-
level objectives (SLOs) of applications on shared infras-
tructure, as application workloads and resource consump-
tion patterns change over time. In this paper, we present
AutoControl, a resource control system that automatically
adapts to dynamic workload changes to achieve application
SLOs.AutoControl is a combination of an online model es-
timator and a novel multi-input, multi-output (MIMO) re-
source controller. The model estimator captures the com-
plex relationship between application performance and re-
source allocations, while the MIMO controller allocates the
right amount of multiple virtualized resources to achieve ap-
plication SLOs. Our experimental evaluation with RUBiS
and TPC-W benchmarks along with production-trace-driven
workloads indicates thatAutoControl can detect and miti-
gate CPU and disk I/O bottlenecks that occur over time and
across multiple nodes by allocating each resource accord-
ingly. We also show thatAutoControl can be used to provide
service differentiation according to the application priorities
during resource contention.

Categories and Subject Descriptors D.4.8 [OPERATING
SYSTEMS]: Performance—Performance of Virtualized Data
Center; I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem
Solving, Control Methods, and Search—Control theory;
C.4 [PERFORMANCE OF SYSTEMS]: [Modeling tech-
niques]

Keywords Data center, server consolidation, virtualization,
control theory, automated control, application QoS, resource
management

∗ Xiaoyun Zhu worked on this project while employed at HP labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

Figure 1. An example forshared virtualized infrastructure:
Each physical node hosts multiple application tiers running
on VMs; Multi-tier applications can span multiple nodes.

General Terms DESIGN, EXPERIMENTATION, MAN-
AGEMENT, PERFORMANCE

1. Introduction
Virtualization is causing a disruptive change in enterprise
data centers and giving rise to a new paradigm:shared virtu-
alized infrastructure. Figure 1 shows a three-node subset of
a virtualized infrastructure shared by multiple applications,
where each tier of an application is hosted in a virtual ma-
chine (VM), and a multi-tier application (such as app1 or
app4) may span multiple nodes. Unlike the traditional host-
ing model where applications run on dedicated nodes, re-
sulting in low resource utilization, this model allows appli-
cations to be consolidated onto fewer nodes, reducing cap-
ital expenditure on infrastructure as well as operating costs
on power, cooling, maintenance, and support. It also leads to
much higher resource utilization on the shared nodes.

Data center administrators need to meet the service-level
objectives (SLOs) for the hosted applications despite chang-
ing resource requirements and unpredictable interactionsbe-
tween the applications. They face several challenges:

• Complex SLOs: It is non-trivial to convert individual ap-
plication SLOs to resource allocations on the virtualized
nodes. For example, it is difficult to determine the CPU
and disk allocations needed to process a specified number
of financial transactions per unit of time.

• Time-varying resource requirements: The intensity and
the mix of typical enterprise application workloads change
over the lifetime of an application. As a result, the de-

 0

 20

 40

 60

 80

 100

 0 48 96 144 192 240 288

R
e

so
u

rc
e

 u
til

iz
a

tio
n

 (
%

)

Time interval (every 5 mins)

CPU util
Disk util

Figure 2. Average CPU utilization and peak disk utilization
measured every 5 minutes in a production SAP application
server for a 24-hour period.

mands for individual resources also change over time.
For example, Figure 2 shows the CPU and disk utiliza-
tion of a production SAP application for a 24-hour pe-
riod. The utilization for both resources varied over time
considerably, and the peaks of the two resource types
occurred at different times of the day. This implies that
static resource allocation can meet application SLOs only
when the resources are allocated for peak demands, thus
wasting resources.

• Distributed resource allocations: Multi-tier applications
spanning multiple nodes require resource allocations
across all tiers to be at appropriate levels to meet end-
to-end application SLOs.

• Resource dependencies: Application-level performance
often depends on the application’s ability to simultane-
ously access multiple types of system-level resources.

Researchers have studied capacity planning for such an
environment by using historical resource utilization traces
to predict application resource requirements in the future
and to place compatible sets of applications onto shared
nodes [Rolia 2005]. This approach aims to ensure that each
node has enough capacity to meet the aggregate demand of
all the applications, while minimizing the number of active
nodes. However, past demands are not always accurate pre-
dictors of future demands, especially for Web-based, inter-
active applications. Furthermore, in a shared virtualizedin-
frastructure, the performance of a given application depends
on other applications sharing resources, making it difficult to
predict its behavior using pre-consolidation traces. Other re-
searchers have considered use of live VM migration to alle-
viate overload conditions that occur at runtime [Wood 2007].
However, the CPU and network overheads of VM migration
may further degrade application performance on the already-
congested node, and hence, VM migration is mainly effec-
tive for sustained, rather than transient, overload.

In this paper, we proposeAutoControl, a feedback-based
resource allocation system that manages dynamic resource
sharing within the virtualized nodes.AutoControl com-
plements the capacity planning and workload migration

schemes others have proposed to achieve application-level
SLOs on shared virtualized infrastructure.

Our main contributions are twofold. First, we design an
online model estimator to dynamically determine the re-
lationship between application-level performance and the
allocations of individual resources. Our adaptive model-
ing approach captures the complex behavior of enterprise
applications including time-varying resource demands, re-
source demands from distributed application tiers, and shift-
ing demands across multiple resource types. Second, we
design a two-layer,multi-input, multi-output (MIMO) con-
troller to automatically allocate multiple types of virtual-
ized resources to individual tiers of enterprise applications to
achieve their SLOs. The first layer consists of a set ofappli-
cation controllers that automatically determine the amount
of resources necessary to achieve individual application
SLOs, using the estimated models and a feedback-based ap-
proach. The second layer is comprised of a set ofnode con-
trollers that detect resource bottlenecks on the shared nodes
and properly allocate multiple types of resources to individ-
ual application tiers. Under overload, the node controllers
provide service differentiation according to the priorities of
individual applications.

We have built two testbeds using Xen [Barham 2003] to
evaluateAutoControl in various scenarios. Our experimen-
tal results show that, (i)AutoControl can detect and adapt
to bottlenecks in both CPU and disk across multiple nodes;
(ii) the MIMO controller can handle multiple multi-tier ap-
plications running RUBiS and TPC-W benchmarks along
with workloads driven by production traces, and provide bet-
ter performance than work-conserving and static allocation
methods; and (iii) priorities can be enforced among different
applications during resource contention.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview ofAutoControl. This is followed
by a detailed description of the design of the model estimator
and the MIMO controller in Section 3. Section 4 discusses
experimental methodology and testbed setup. We present ex-
perimental evaluation results in Section 5, followed by dis-
cussion and future work in Section 6. Section 7 discusses
related work, and finally, conclusions are drawn in Section 8.

2. Overview, Assumptions and Goals
In AutoControl, operators specify the application SLO as a
tuple(priority,metric,target), wherepriority represents the
priority of the application,metric specifies the performance
metric in the SLO (e.g., transaction throughput, response
time), andtarget indicates the desired value for the perfor-
mance metric. Currently, our implementation supports onlya
single metric specification at a time, but the architecture can
be generalized to support different metrics for different ap-
plications.AutoControl can manage any resource that affects
the performance metric of interest and that can be allocated
among the applications. In this paper, we use CPU and disk

I/O as the resources, and application throughput or average
response time as the performance metric.

A fundamental assumption behindAutoControl is that the
initial placement of applications onto nodes has been han-
dled by a separate capacity planning service. The same ser-
vice can also perform admission control for new applica-
tions and determine if existing nodes have enough idle ca-
pacity to accommodate the projected demands of the appli-
cations [Rolia 2005]. We also assume that a workload migra-
tion system [Wood 2007] may rebalance workloads among
nodes at a time scale of minutes or longer. These problems
are complementary to the problem solved byAutoControl.
Our system deals with runtime management of applications
sharing virtualized nodes, and dynamically adjusts resource
allocations over short time scales (e.g., seconds) to meet the
application SLOs. When any resource on a shared node be-
comes a bottleneck due to unpredicted spikes in some work-
loads, or because of complex interactions between co-hosted
applications,AutoControl provides performance differenti-
ation so that higher-priority applications experience lower
performance degradation.

We set the following goals in designingAutoControl:

Performance assurance:If all applications can meet their
individual performance targets,AutoControl should allo-
cate resources to achieve them; otherwise,AutoControl
should provide service differentiation according to appli-
cation priorities.

Automation: While performance targets and certain param-
eters withinAutoControl may be set manually, all alloca-
tion decisions should be madeautomatically.

Adaptation: The controller should adapt to variations in
workloads or system conditions.

Scalability: The controller architecture should be distributed
so that it can handle many applications and nodes.

Based on these principles, we have designedAutoControl
with a two-layer, distributed architecture, including a set of
application controllers (AppControllers) and a set ofnode
controllers (NodeControllers). There is one AppController
for each hosted application, and one NodeController for
each virtualized node. Figure 3 shows the logical controller
architecture for the system shown in Figure 1.

For each application, its AppController periodically polls
an application performance sensor for the measured perfor-
mance. We refer to this period as thecontrol interval. The
AppController compares this measurement with the applica-
tion performance target. Based on the discrepancy, it deter-
mines the resource allocations needed for the next control
interval and sends these requests to the NodeControllers for
the nodes hosting the individual tiers of the application.

For each node, based on the collective requests from all
relevant AppControllers, the corresponding NodeController
determines whether it has enough resource of each type to
satisfy all demands, and computes the actual resource allo-

Figure 3. Logical controller architecture: Each applica-
tion has an application controller that determines the appli-
cation’s resource needs; each node has a node controller that
arbitrates the requests from multiple application controllers.

cations using the methods described in Section 3. The com-
puted allocation values are fed into the resource schedulers
in the virtualization layer for actuation, which allocate the
corresponding portions of the node’s resources to the VMs.
Figure 3 shows the CPU and disk schedulers as examples.

The AutoControl architecture allows the placement of
AppControllers and NodeControllers in a distributed fash-
ion. For example, each NodeController can be hosted in the
physical node it controls, and each AppController in a node
where one of its application tiers is located. We do not man-
date this placement, however, and the data center operator
can choose to host a set of controllers in a node dedicated for
control operations. We assume that all nodes in the data cen-
ter are connected with a high speed network, so that sensing
and actuation delays withinAutoControl are small compared
to the control interval.

3. Design
In the following subsections, we will describe the internals
of the AppController and the NodeController. Each appli-
cation has an AppController, whose goal is to compute the
amount of resources required for the application to meet its
performance target independent of other applications. Each
AppController forwards the estimated resource requirements
to related NodeControllers. Each node has a NodeController,
which arbitrates among multiple applications sharing the
node based on its resource availability and individual appli-
cation priorities.

For easy reference, Table 1 summarizes the mathematical
symbols that will be used for key parameters and variables
in these controllers.

3.1 Design of AppController

As introduced in Section 2, every application has an App-
Controller associated with it. Every AppController has two
modules as illustrated in Figure 4: (1) amodel estimator that

Table 1. Notation
A set of all hosted applications
Ta set of all the tiers in applicationa ∈ A,

e.g.,Ta = {web,db}
R set of all resource types controlled,

e.g.,R = {cpu,disk}
x(k) value of variablex in control intervalk
ūa,r,t requested allocation of resource typer

to tier t of applicationa, 0≤ ūa,r,t(k) ≤ 1
(ūa,r for single-tier applications)

ua,r,t actual allocation of resource typer
to tier t of applicationa, 0≤ ua,r,t(k) ≤ 1
(ua,r for single-tier applications)

ya measured performance of applicationa
ȳa performance target for applicationa
ŷa normalized performance for applicationa,

where ˆya = ya/ȳa

wa priority weight for applicationa
q stability factor in the AppController

Figure 4. AppController’s internal structure

automatically learns and periodically updates a model for
the dynamic relationship between the application’s resource
allocations and its performance under the current operating
conditions, and (2) anoptimizer that predicts the resource
allocations required for the application to meet its perfor-
mance target based on the estimated model.

To simplify the notation, for each applicationa ∈ A, we
define the resource-allocation vectorua (all vectors are in
boldface) to represent all the resource allocations for ap-
plication a that are being managed by the controller. That
means,ua contains all the elements in the set{ua,r,t : r ∈
R,t ∈ Ta}. For example, for a two-tier application whose
performance depends on two critical resources, e.g.,Ta =
{web,db} andR = {cpu,disk}, ua is a 4-dimensional vector.
ua(k) represents the resource-allocation values for applica-
tion a during intervalk.

3.1.1 Model estimator

In classical control theory, “transfer functions” have been
used to model the dynamic relationship between a set of met-
rics and a set of control knobs for physical systems. How-
ever, most computing systems, such as the one considered in
this paper, cannot be represented by a single, linear transfer

function (or model) because their behavior is often nonlin-
ear and workload-dependent. We assume, however, that the
behavior of the system in the neighborhood of an operat-
ing point can be approximatedlocally by a linear model. We
periodically re-estimate the model based on real-time mea-
surements of the relevant variables and metrics, allowing the
model to adapt to different operating points and workloads.

For every control interval, the model estimator re-computes
a linear model that approximates the quantitative relation-
ship between the resource allocations to applicationa (ua)
and its normalized performance (ˆya) around the current oper-
ating point. More specifically, the following auto-regressive-
moving-average (ARMA) model is used to represent this
relationship:

ŷa(k) = a1(k) ŷa(k−1)+ a2(k) ŷa(k−2)

+b0
T (k)ua(k)+b1

T (k)ua(k−1), (1)

where the model parametersa1(k) anda2(k) capture the cor-
relation between the application’s past and present perfor-
mance, andb0(k) andb1(k) are vectors of coefficients cap-
turing the correlation between the current performance and
the recent resource allocations. Bothua(k) and ua(k − 1)
are column vectors, andb0

T (k) andb1
T (k) are row vectors.

In our experiments, we have found that the second-order
ARMA model in Eq. (1) (i.e., one that takes into account
the past two control intervals) can predict the application
performance with adequate accuracy. This applies to cases
where either throughput or response time is used as the per-
formance metric.

We model the normalized performance rather than the
absolute performance because the latter can have an arbitrary
magnitude. Using the normalized performance ˆya, which has
values between 0 and 1, comparable to those of the resource
allocations inua, improves the numerical stability of the
algorithm.

Note that the model represented in Eq. (1) is itselfadap-
tive, because the model parametersa1, a2, b0 andb1 are also
functions of control intervalk. These parameters are updated
at the end of every intervalk using the recursive least squares
(RLS) method [Astrom 1995], when the measurement for
the normalized performance ˆya(k) for that interval becomes
available. The approach assumes that drastic variations in
workloads that cause significant changes in the underlying
model parameters occur infrequently relative to the control
interval, thus allowing the model to converge before the op-
erating point changes significantly. The recursive nature of
the RLS algorithm makes the time taken for this computa-
tion negligible (average of 10ms in our implementation), as
the model is updated recursively instead of being computed
from scratch every interval.

3.1.2 Optimizer

The main goal of the optimizer is to determine the resource
allocations required (̄ua) for the application to meet its per-

formance target. An additional goal is to accomplish this in
a stable manner, without causing large oscillations in the re-
source allocations. We achieve these goals by finding the
value of ūa that minimizes the following cost function:

Ja = (ŷa(k)−1)2 + q‖ ūa(k)−ua(k−1)‖2. (2)

To explain the intuition behind this function, we defineJp =
(ŷa(k)− 1)2, and Jc = ‖ ūa(k)− ua(k − 1)‖2. It is easy to
see thatJp is 0 when ˆya(k) = 1 (or ya(k) = ȳa), i.e., when
applicationa is meeting its performance target. Otherwise,
Jp serves as a penalty for the deviation of the application’s
measured performance from its target. Therefore, we refer to
Jp as theperformance cost.

The second functionJc, referred to as thecontrol cost,
is included to improve controller stability. The value ofJc

is higher when the controller makes a larger change in the
resource allocation in a single interval. BecauseJa = Jp +
q · Jc, our controller aims to minimize a linear combination
of both the performance cost and the control cost. Using
the approximate linear relationship between the normalized
performance and the resource allocations, as described by
Eq. (1), we can derive the optimal resource allocations that
minimize the cost functionJa, in terms of the recent resource
allocationsua(k−1) and the recent normalized performance
values ˆya:

ū∗a(k) = (b0b0
T + qI)−1((1−a1 ŷa(k−1)

−a2 ŷa(k−2)−b1
T ua(k−1))b0+ qua(k−1)), (3)

where I is an identity matrix. Note that the dependency
of the model parametersa1, a2, b0 and b1 on the control
intervalk has been dropped from the equation to improve its
readability.

To understand the intuition behind this control law and
the effect of the scaling factorq, we define∆ŷa(k) = 1−
a1 ŷa(k − 1)− a2 ŷa(k − 2)− b1

T ua(k − 1). This indicates
the discrepancy between the model-predicted value for ˆya(k)
and its target (which is 1) that needs to be compensated by
the next allocation (ua(k)). For a smallq value, ū∗a(k) is dom-
inated by the effect of this discrepancy, and the controller
reacts aggressively to reduce it. As the value ofq increases,
ū∗a(k) is increasingly dominated by the previous allocation
(ua(k−1)), and the controller responds more slowly to the
performance tracking error with less oscillation in the re-
sulting resource allocations. In the extreme of an infinitely
largeq value, we havēu∗a(k) = ua(k−1), which means the
allocations remain constant. As a result, the scaling factor q
provides us an intuitive way to control the trade-off between
the controller’s stability and its ability to respond to changes
in the workloads and performance, and hence is referred to
as thestability factor.

3.2 Design of NodeController

For each of the virtualized nodes, a NodeController deter-
mines the allocation of resources to the applications, based

on the resources requested by the AppControllers and the
resources available at the node. This is required because the
AppControllers act independently of one another and may,
in aggregate, request more resources than the node has avail-
able. The NodeController divides the resources between the
applications as follows. For each resource where the total
allocation requested is less than the available capacity, the
NodeController divides the resource in proportion to the re-
quests from the AppControllers. This implies that not only
will each requested allocation for this resource be satisfied,
but the excess capacity will also be allocated in proportion
to the requests. This allows the applications to achieve better
performance than their targets when additional resources are
available. For a resource that is contested, that is, where the
sum of the resource requests is greater than the available ca-
pacity, the NodeController picks an allocation that locally
minimizes the discrepancy (orerror) between the result-
ing normalized application performance and its target value.
More precisely, the cost function used is the weighted sum
of the squared errors for the normalized performance across
all applications sharing the node, where each application’s
weight represents its priority relative to other applications.

To illustrate this resource allocation method, let us take
node1 in Figures 1 and 3 as an example (denoted as “n1”).
This node is being used to host application 2 and the web tier
of application 1. Suppose CPU and disk are the two critical
resources being shared by the two applications. Then, the
resource request from application 1 consists of two elements,
ū1,cpu,web andū1,disk,web, one for each resource. Similarly, the
resource request from application 2 consists of ¯u2,cpu and
ū2,disk. Because resource allocation is defined as a fraction of
the total shared capacity of a resource, the resource requests
from both applications need to satisfy the following capacity
constraints:

ū1,cpu,web + ū2,cpu ≤ 1 (4)

ū1,disk,web + ū2,disk ≤ 1 (5)

When constraint (4) is violated, we say the virtualized node
suffersCPU contention. Similarly, disk contention refers to
the condition of the node when constraint (5) is violated.
Next, we describe the two possible resource contention sce-
narios for the virtualized node n1, and the NodeController
algorithm for dealing with each scenario.

3.2.1 Scenario I: Single resource contention

In this scenario, node n1 has enough capacity to meet the
requests for one resource from the AppControllers, but not
enough for the other resource; that is, one of constraints (4)
and (5) is violated while the other is satisfied. The NodeCon-
troller divides the resource that is enough in proportion tothe
requests. For the other resourcer ∈R = {cpu,disk}, both ap-
plications will receive less allocations than requested; let us
denote the deficiencies as∆u1,r,web = ū1,r,web − u1,r,web and
∆u2,r = ū2,r − u2,r. The resulting discrepancy between the

achieved and target normalized performance of application1
can then be estimated as∂ ŷ1

∂u1,r,web
∆u1,r,web. The penalty func-

tion for not meeting the performance targets is defined as:

Jn1 = w1(
∂ ŷ1

∂u1,r,web
∆u1,r,web)

2 + w2(
∂ ŷ2

∂u2,r
∆u2,r)

2

The actual allocations are found by solving the following
problem.

Minimize Jn1 subject to

∆u1,r,web + ∆u2,r ≥ ū1,r,web + ū2,r −1, (6)

∆u1,r,web ≥ 0, (7)

∆u2,r ≥ 0. (8)

Constraint (6) is simply the capacity constraint (4) or (5),
applied to actual allocations. Constraints (7) and (8) ensure
that no application is throttled to increase the performance of
another application beyond its target. In the objective func-
tion Jn1, the discrepancies for the applications are weighted
by their priority weights, so that higher priority applications
experience less performance degradation.

From Eq. (1), we know that ∂ ŷ1
∂u1,r,web

= b0,1,r,web, and
∂ ŷ2

∂u2,r
= b0,2,r. Both coefficients can be obtained from the

model estimators in the AppControllers for the two appli-
cations. This optimization problem is convex and a closed-
form solution exists for the case of two applications sharing
the node. For more than two applications, we use an off-the-
shelf quadratic programming solver to compute the solution.

3.2.2 Scenario II: CPU and disk contention

This is the scenario where both CPU and disk are under con-
tention. In this case, the actual allocations of CPU and disk
for both applications will be below the respective requested
amounts. The penalty function for not meeting the perfor-
mance targets becomes:

Jn1 = w1(∑r∈R
∂ ŷ1

∂u1,r,web
∆u1,r,web)

2

+w2(∑r∈R
∂ ŷ2

∂u2,r
∆u2,r)

2.

The NodeController determines the actual allocations by
minimizing Jn1, and by satisfying the constraints (6), (7),
and (8) for both resources. This requires solving a convex
optimization problem with the number of variables being the
number of resource types multiplied by the number of VMs
on the node. We have observed that the time taken for the
online optimization is negligible (on average 40ms in our
implementation).

4. Experimental Testbed
We built two testbeds using Xen to evaluateAutoControl.
Each virtualized node in our testbeds hosts multiple applica-
tions. We used separate nodes to run the clients for these ap-
plications. The first testbed consisted of HP C-class blades,

each equipped with two dual-core 2.2 GHz 64-bit processors
with 4GB memory, two Gigabit Ethernet cards, and two 146
GB disks. We used OpenSuSE 10.3 as the OS and the default
Xen (v3.1 built with 2.6.22.5-31 SMP kernel) in the Open-
SuSE distribution. We also used OpenSuSE 10.3 to build
VM images.

A second, larger testbed was built on Emulab [White
2002] to evaluate the scalability ofAutoControl. We used
thepc3000 nodes on Emulab for server nodes, which con-
tain a single Xeon 3GHz 64-bit processor (hyper-threading
enabled) with 2GB memory, six Gigabit Ethernet cards (only
two were used for our experiments) and two 146GB disks.
Thepc850 nodes were used for client nodes. More details
about the hardware can be found at the Emulab Web site.
We used Fedora core 8 as the OS and a compiled version
of latest Xen 3.3. We also used Fedora core 8 for the VM
images.

In both testbeds, all of the VMs on a node shared one net-
work interface and a disk; the remaining resources were used
by Dom0 running the controllers and a monitoring frame-
work. This setup allowed us to experiment easily with CPU
and disk bottlenecks in hosted applications. The monitor-
ing framework (which implements the sensors for the con-
trollers) periodically collects two types of statistics: resource
utilization and application performance. We used Xen’sxm

command to collect CPU utilization andiostat command
to collect disk usage statistics. We instrumented the applica-
tions so that we can directly collect performance statistics.
AutoControl uses two mechanisms to enforce the resource
allocations: Xen’s credit-based CPU scheduler and an in-
terposed proportional-share I/O scheduler [Gulati 2007] that
we implemented.AutoControl interacts with the schedulers
by assigning acap for each VM’s CPU usage and adisk
share for each VM’s disk usage in every control interval.

We used three different applications in our experiments:
RUBiS [Amza 2002], an online auction site benchmark; a
Java implementation of the TPC-W benchmark [Cain 2001];
and a custom-built secure media server. RUBiS and TPC-
W use a multi-tier setup consisting of web and database
tiers. They both provide workloads of different mixes. For
RUBiS, we used a workload mix called the browsing mix
that simulates users browsing through an auction site. For
TPC-W, we used the shopping mix, which simulates users
interacting with a shopping site. The browsing mix stresses
the web tier, while the shopping mix exerts more demand on
the database tier.

The secure media (smedia) server is a representation of
a media server that can serve encrypted media streams. The
smedia server runs a certain number of concurrent threads,
each serving a client that continuously requests media files
from the server. A media client can request an encrypted or
unencrypted stream. Upon receiving the request, the server
reads the particular media file from the disk (or from mem-
ory if it is cached), optionally encrypts it, and sends it to the

client. Reading a file from the disk consumes disk I/O re-
source, and encryption requires CPU resource. For a given
number of threads, by changing the fraction of the client re-
quests for encrypted media, we can vary the amount of CPU
or disk I/O resource used. This flexibility allowed us to study
our controller’s behavior for CPU and disk I/O bottlenecks.

All three applications use a closed-loop client model
where a new request is only issued after the previous re-
quest is complete. We have instrumented the client work-
load generators for these applications such that the number
of concurrent clients can be dynamically adjusted at runtime
to vary the level of stress imposed on the hosting nodes.

To test whetherAutoControl can handle the dynamic vari-
ations in resource demands seen by typical enterprise ap-
plications, we also used resource utilization traces from an
SAP application server running in a production environment.
We dynamically varied the number of concurrent threads for
RUBiS, TPC-W or smedia to recreate the resource consump-
tion of these workloads on our test nodes. For example, to
create 40% average CPU utilization over a 5 minute period,
we used 500 threads simulating 500 concurrent users. Note
that we only matched the CPU utilization of the production
trace. We did not attempt to recreate the disk utilization, be-
cause the traces did not contain the needed metadata.

We also used traces generated from a media workload
generator called MediSyn [Tang 2003]. MediSyn gener-
ates traces that are based on analytical models drawn from
real-world traces collected at an HP Labs production media
server. It captures important properties of streaming me-
dia workloads, including file duration, popularity, encoding
bit rate, and streaming session time. We re-created the ac-
cess pattern of the trace by closely following the start times,
end times, and bitrates of the sessions. We did not attempt
to re-create the disk access pattern, because of the lack of
metadata. A more detailed description of recreating the pro-
duction traces is included in [Padala 2008].

5. Evaluation Results
In this section, we present our experimental results forAu-
toControl. These experiments were designed to test the fol-
lowing capabilities of our system:

1. Automatically detect and mitigate dynamically-changing
resource bottlenecks across application tiers;

2. Enforce performance targets for metrics including through-
put and response time under dynamically-varying re-
source demands;

3. Prioritize among applications during resource contention;

4. Scale to a reasonably large testbed.

5.1 Detecting and mitigating resource bottlenecks

Our first experiment evaluatesAutoControl when resource
bottlenecks occur dynamically and shift from one resource
to another or from one tier to the next. For this experiment,

Figure 5. Experimental setup
Table 2. Percentage of encrypted streams in each smedia
application in different time intervals

Intervals smedia1 smedia2 smedia3 smedia4
1-29 50% 50% 2% 2%
30-59 2% 2% 2% 2%
60-89 2% 2% 50% 50%

we used the setup shown in Figure 5, where two physical
nodes host four smedia applications and a RUBiS applica-
tion spanning both nodes. This small setup allows us to gain
insight into the system behavior and to validate the internal
working of the model estimator and the MIMO controller.

In this experiment, we varied the percentage of encrypted
streams requested by the smedia clients over time to create
resource bottleneck shifts in each of the virtualized nodes
(Table 2). Throughout the experiment, smedia1 and smedia3
had throughput targets of 200 reqs/sec each. We alternated
the throughput targets of smedia2 and smedia4 between 500
reqs/sec and 100 reqs/sec. The targets were chosen such that
both nodes were running near their capacity limits for either
CPU or disk I/O. During the CPU-heavy phase, a 10KB file
was fetched, while during the disk-heavy phase, an 80KB
file was fetched.

5.1.1 Results underAutoControl

Figure 6 shows the throughput of RUBIS, smedia1, and sme-
dia4 in each control interval of 20 seconds. (Smedia2 and
smedia3 behaved similarly and are not shown for lack of
space.) The labels “CB” and “DB” indicate when CPU or
disk I/O was a bottleneck and when the bottleneck shifted
from one type of resource to another. To help understand
howAutoControl achieved the performance targets, Figure 7
shows the CPU and disk I/O allocations to all five applica-
tions (6 VMs) on both nodes.

For the first 29 intervals, the RUBiS web tier, smedia1 and
smedia2 contended for CPU on node 1. From Figures 7(a)
and 7(b), we see that the controller gave different portions
of both CPU and disk resources to the three VMs on node
1 such that all of their targets could be met. In the same
time period, on node 2, the RUBiS database tier, smedia3
and smedia4 were contending for the disk I/O. Figures 7(c)
and 7(d) show the CPU and disk I/O allocations for the three
VMs on this node. The controller not only allocated the right
proportion of disk I/O to smedia3 and smedia4 for them to
achieve their throughput targets, it also allocated the right
amount of CPU to the RUBiS database tier so that the two-
tier application could meet its target.

 0

 50

 100

 150

 200

 250

 0 15 30 45 60 75 90

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

c)

Time intervals (every 20 secs)

CB DB CB

AutoControl
work-conserving

static
target

(a) RUBiS throughput

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 15 30 45 60 75 90

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

c)

Time intervals (every 20 secs)

CB

DB

AutoControl
work-conserving

static
target

(b) Smedia1 throughput

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 15 30 45 60 75 90

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

c)

Time intervals (every 20 secs)

DB

CB

AutoControl
work-conserving

static
target

(c) Smedia4 throughput

Figure 6. Throughput of different applications with bottlenecks in CPU or disk I/O and across multiple nodes. The time
periods with a CPU bottleneck are labeled as “CB”, and those with a disk bottleneck are labeled as “DB.”

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

P
er

ce
nt

ag
e

of
 s

ha
re

d
C

P
U

Time intervals (every 20 secs)

rubis-web-cpu-alloc
smedia1-cpu-alloc
smedia2-cpu-alloc

(a) CPU allocations on node 1

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

P
er

ce
nt

ag
e

of
 s

ha
re

d
I/O

Time intervals (every 20 secs)

rubis-web-dsk-alloc
smedia1-dsk-alloc
smedia2-dsk-alloc

(b) Disk allocations on node 1

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90
P

er
ce

nt
ag

e
of

 s
ha

re
d

C
P

U

Time intervals (every 20 secs)

rubis-db-cpu-alloc
smedia3-cpu-alloc
smedia4-cpu-alloc

(c) CPU allocations on node 2

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

P
er

ce
nt

ag
e

of
 s

ha
re

d
I/O

Time intervals (every 20 secs)

rubis-db-dsk-alloc
smedia3-dsk-alloc
smedia4-dsk-alloc

(d) Disk allocations on node 2

Figure 7. Resource allocations to different applications or application tiers on different nodes

At interval 30, the workloads for the smedia applications
on node 1 were switched to be disk-heavy. As a result,
smedia1 and smedia2 were contending for disk I/O, since the
RUBiS web tier used minimal disk resource. The controller
recognized this change in resource bottleneck automatically
and ensured that both smedia1 and smedia2 could meet their
new throughput targets by allocating the right amount of disk
resources to both smedia applications (see Figure 7(b)).

At interval 60, the workloads for the smedia applications
on node 2 were switched to be CPU-heavy. Because the
RUBiS database tier also required a non-negligible amount
of CPU (around 20%), smedia3 and smedia4 started con-
tending for CPU with the RUBiS database tier on node 2.
Again, the controller was able to automatically translate the
application-level goals into appropriate resource allocations
to the three VMs on node 2 (see Figure 7(c)).

These results show thatAutoControl was able to achieve
the performance targets for all the applications even though
(i) the resource bottleneck occurred either in the CPU or in
the disk or shifted from one to the other; and (ii) both tiers
of the RUBiS application, distributed across two physical
nodes, experienced resource contention.

5.1.2 Comparison with the state-of-the-art

For comparison, we repeated the same experiment using two
resource allocation methods that are commonly used on con-
solidated infrastructures today: a work-conserving mode and
a static allocation mode. In the work-conserving mode, the

applications run in the default Xen settings, where a cap of
zero is specified for the shared CPU on a node, indicating
that the applications can use any amount of CPU resources.
In this mode, our proportional share disk scheduler was un-
loaded to allow unhindered disk access. In the static mode,
the three applications sharing a node were allocated CPU
and disk resources in the fixed ratio of 20:50:30. The result-
ing application performance from both approaches is shown
in Figure 6 along with the performance fromAutoControl.
As can be seen, neither approach was able to offer the de-
gree of performance assurance provided byAutoControl.

For the work-conserving mode, RUBiS was able to
achieve a throughput much higher than its target at the cost
of performance degradation in the other applications sharing
the same infrastructure. The remaining capacity on either
node was equally shared by smedia1 and smedia2 on node
1, and smedia3 and smedia4 on node 2. This mode did not
provide service differentiation between the applicationsac-
cording to their respective performance targets.

For the static mode, RUBiS was never able to reach its
performance target given the fixed allocation, and the smedia
applications exceeded their targets at some times and missed
the targets at other times. Given the changes in workload
behavior for the smedia applications, there is no fixed allo-
cation ratio for either CPU or disk I/O that will guarantee the
performance targets for all the applications.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

R
es

po
ns

e
tim

e
(in

 s
ec

s)

Time intervals (every 20 secs)

RUBiS
smedia1
smedia2

target

(a) AutoControl

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

R
es

po
ns

e
tim

e
(in

 s
ec

s)

Time intervals (every 20 secs)

RUBiS
smedia1
smedia2

target

(b) Work-conserving mode

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

R
es

po
ns

e
tim

e
(in

 s
ec

s)

Time intervals (every 20 secs)

RUBiS
smedia1
smedia2

target

(c) Static allocation mode

Figure 8. Performance comparison ofAutoControl, work-conserving mode and static allocation mode, while running RUBiS,
smedia1, and smedia2 with production-trace-driven workloads.

 0

 0.5

 1

 1.5

 2

 2.5

 0 15 30 45 60 75 90

M
od

el
 p

ar
am

et
er

s

Time intervals (every 20 secs)

smedia1 -b0-CPU
smedia1 -b0-DSK

smedia1 - a1

(a) Model parameter values for smedia1

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 15 30 45 60 75 90

M
od

el
 p

ar
am

et
er

s

Time intervals (every 20 secs)

Throughput
Pred throughput

(b) Measured and model-predicted through-
put for smedia2

Figure 9. Internal workings of theAppController - model
estimator performance

5.1.3 Evaluating the model estimator

To understand further the internal workings ofAutoCon-
trol, we now demonstrate a key element of our design - the
model estimator in theAppController that automatically de-
termines the dynamic relationship between an application’s
performance and its resource allocations. Our online estima-
tor continuously adapts the model parameters as dynamic
changes occur in the system. Figure 9(a) shows the model
parameters (b0,cpu, b0,disk, anda1) for smedia1 as functions
of the control interval. For lack of space, we omit the second-
order parameters and the parameter values for the other ap-
plications. As we can see, the values ofb0,cpu, representing
the correlation between application performance and CPU
allocation, dominated theb0,disk, anda1 parameters for the
first 29 intervals. The disk allocation also mattered, but was
not as critical. This is consistent with our observation that

Table 3. Two prediction accuracy measures of linear models
(in percentage)

rubis smedia1 smedia2 smedia3 smedia4
R2 79.8 91.6 92.2 93.3 97.0
MAPE 4.2 5.0 6.9 4.5 8.5

node 1 had a CPU bottleneck during that period. After the
30th interval, when disk became a bottleneck on node 1,
while CPU became less loaded, the model coefficientb0,disk

exceededb0,cpu and became dominant after a period of adap-
tation.

To assess the overall prediction accuracy of the lin-
ear models, we computed two measures, the coefficient
of determination (R2) and the mean absolute percentage
error (MAPE), for each application.R2 and MAPE can

be calculated asR2 = 1− ∑k=1(ŷ
p
a (k)−ŷa(k))2

∑k(ŷ
p
a (k)−ŷa,avg)2 , andMAPE =

1
K ∑K

k=1 |
ŷp

a (k)−ŷa(k)
ŷa(k) |, whereK is the total number of samples,

ŷp
a(k) andŷa(k) are the model-predicted value and the mea-

sured value for the normalized performance of applicationa,
andŷa,avg is the sample mean of ˆya. Table 3 shows the values
of these two measures for all the five applications. As an
example, we also show in Figure 9(b) the measured and the
model-predicted throughput for smedia2. From both the ta-
ble and the figure, we can see that our model is able to predict
the normalized application performance accurately, withR2

above 80% and MAPE below 10%. This validates our belief
that low-order linear models, when adapted online, can be
good enough local approximations of the system dynamics
even though the latter is nonlinear and time-varying.

5.2 Handling dynamic demands and nonlinearity

In this section, we evaluate whetherAutoControl can meet
application performance targets under dynamic variationsin
resource demands. For this experiment, we continued to use
the setup in Figure 5(a), while driving each of the RUBiS,
smedia1 and smedia2 applications using CPU utilization
traces from a production site, using the method described in
Section 4. Furthermore, we chose response time as the per-
formance metric. Response times behave nonlinearly with

 0

 25

 50

 75

 0 15 30 45 60T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

c)

Time intervals (every 20 secs)

AutoControl
work-conserving

target

(a) TPC-W throughput

 0

 100

 200

 300

 400

 500

 0 15 30 45 60T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

c)

Time intervals (every 20 secs)

AutoControl
work-conserving

target

(b) Smedia3 throughput

Figure 10. Performance comparison betweenAutoControl
and work-conserving mode, with different priority weights
for TPC-W (w = 2) and smedia3 (w = 1).

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

Time intervals (every 20 secs)

q = 1
q = 2

q = 10
target

(a) TPC-W throughput

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

Time intervals (every 20 secs)

q = 1
q = 2

q = 10
target

(b) Smedia3 throughput

Figure 11. Performance results for TPC-W and smedia3
with stability factorq = 1,2,10

respect to resource allocations and can be used to evaluate
howAutoControl copes with nonlinearity in the system.

For smedia3 and smedia4 on node 2, we ran a workload
with 40 threads with a 2% chance of requesting an encrypted
stream (making it disk-bound). For brevity, we only show the
results for the three applications running on node 1. Figures
8(a), 8(b) and 8(c) show the measured average response
times of RUBiS, smedia1 and smedia2 as functions of the
control interval, usingAutoControl, work-conserving mode,
and static allocation mode, respectively. We used a response
time target of 1.5 second for all the three applications, and
set the CPU allocation at a fixed 33% for each application
in the static mode. The dark-shaded regions show the time
intervals when a CPU bottleneck occurred.

In the first region, for the work-conserving mode, both
smedia1 and smedia2 had high CPU demands, causing not
only response time target violations for themselves, but also
a large spike of 6 second in the response time for RUBiS
at the 15th interval. In comparison,AutoControl allocated
higher shares of the CPU to both smedia1 and smedia2
without overly penalizing RUBiS. As a result, all the three
applications were able to meet the response time target most
of the time, except for the small spike in RUBiS.

In the second shaded region, the RUBiS application be-
came more CPU-intensive. Because there is no performance
assurance in the work-conservingmode, the response time of
RUBiS surged and resulted in a period of target violations,
while both smedia1 and smedia2 had response times well
below the target. In contrast,AutoControl allocated more
CPU capacity to RUBiS when needed by carefully reducing
the resource allocation to smedia2. The result was that there
were almost no target violations for the three applications.

The result from the static allocation mode was similar to
that from the work-conserving mode, except that the RUBiS
response time was even worse in the second region.

Despite the fact that response time is a nonlinear function
of resource allocations, and that the resource demands taken
from the real traces were much more dynamic,AutoControl
was still able to balance the resources and minimize the
response time violations for all three applications.

5.3 Enforcing application priorities

In this section, we evaluateAutoControl during periods of
resource contention where there are not enough resources to
meet all of the application targets. We used the experimental
setup shown in Figure 5(b) with two multi-tier applications,
RUBiS and TPC-W, and four smedia applications spanning
three nodes. We drove TPC-W with the shopping mix work-
load with 200 concurrent threads; and used the workloads
in the first experiment for RUBIS and smedia instances. We
assume that the TPC-W application is of higher priority than
the two smedia applications sharing the same node. There-
fore, TPC-W was assigned a priority weight ofw = 2 while
the other applications hadw = 1 in order to provide service
differentiation.

Unlike the setup used in previous experiments, there was
no resource contention on node 2. For the first 29 intervals,
all six applications were able to meet their goals. Figure 10
shows the throughput targets and the achieved throughput for
TPC-W and smedia3. (The other four applications are not
shown to save space.) At interval 30, 800 more threads were
added to the TPC-W client, emulating increased user activ-
ity. The throughput target for TPC-W was adjusted from 20
to 50 requests/sec to reflect this change. This increased the
CPU load on the database tier creating a CPU bottleneck
on node 3.AutoControl responded to this change automat-
ically and correctly re-distributed the resources. Note that
not all three applications (TPC-W, smedia3, and smedia4) on
node 3 could reach their targets. However the higher prior-
ity weight for TPC-W allowed it to still meet its throughput
target while degrading performance for the other two appli-
cations.

The result from using the work-conserving mode for the
same scenario is also shown in Figure 10. In this mode,
smedia3 and smedia4 took up more CPU resource, causing
the high-priority TPC-W application to fall below its target.

We also use this example to illustrate how a tradeoff be-
tween controller stability and responsiveness can be han-
dled by adjusting the stability factorq. Figure 11 shows
the achieved throughput for TPC-W and smedia3 under the
same workload condition, forq values of 1, 2, and 10. The
result forq = 2 is the same as in Figure 10. Forq = 1, the
controller reacts to the workload change more quickly and
aggressively, resulting in large oscillations in performance.
For q = 10, the controller becomes much more sluggish and
does not adjust resource allocations fast enough to track the
performance targets.

5.4 Scalability experiments

In this section, we evaluate the scalability ofAutoControl
using a larger testbed built on Emulab [White 2002], using
16 server nodes, each running 4 smedia applications in 4
individual virtual machines. An additional 16 client nodes
running 64 clients were used to generate the workloads for
the 64 smedia servers. Initially, each application used a light
workload keeping all the nodes underloaded. After 240 sec-
onds, we increased the load for half of the applications (in
32 VMs) and updated their performance targets accordingly.
These applications were chosen randomly and hence were
not spread uniformly across all the nodes. The numbers of
nodes that had 0, 1, 2, and 3 applications with increased load
were 1, 4, 5, and 6, respectively.

Figure 12(a) and 12(b) show the SLO violations of the
64 applications over time, using the work-conserving mode
and AutoControl, respectively. The x-axis shows the time
in seconds and the y-axis shows the application index. The
gray shades in the legend represent different levels of SLO
violations (the darker the worse), whereas the white color
indicates no SLO violations.

Time(sec)

Ap
pl

ic
at

io
n

#

50 100 150 200 250 300 350

10

20

30

40

50

60

Time(sec)

Ap
pl

ic
at

io
n

#

50 100 150 200 250 300 350

10

20

30

40

50

60

(a) Work-conserving mode

Time(sec)

Ap
pl

ic
at

io
n

#

50 100 150 200 250 300 350

10

20

30

40

50

60

Time(sec)

Ap
pl

ic
at

io
n

#

50 100 150 200 250 300 350

10

20

30

40

50

60

(b) AutoControl

20% below

Above target

40% below

60% below

80% below

Figure 12. SLO violations in 64 applications using work-
conserving mode andAutoControl

 0

 10

 20

 30

 40

 50

 90 120 170 220

C
P

U
 U

til
iz

at
io

n
(%

)

Time (sec)

Figure 13. Measurement of CPU utilization on a loaded
VM during migration

The nodes that had no or only one application with a
heavy load remained underloaded and there were almost no
SLO violations. When there were two applications with in-
creased load on a single node, the node was slightly over-
loaded and the work-conserving mode resulted in SLO vi-
olations in the applications sharing the node, whereasAu-
toControl was able to re-distribute the resources and sig-
nificantly reduce the SLO violations. However, if a node
had three applications with increased load, evenAutoControl
was not able to avoid SLO violations for certain applications
because no re-distribution policy could satisfy the resource
demands of all the applications.

6. Discussion and Future Work
This section describes some of the design issues inAutoCon-
trol, alternative methods and future research work.

6.1 Migration for dealing with bottlenecks

AutoControl enables dynamic re-distribution of resources
between competing applications to meet their targets, so
long as sufficient resources are available. If a node is persis-
tently overloaded, VM migration [Clark 2005, Wood 2007]
may be needed, but the overhead of migration can cause
additional SLO violations. We performed experiments to
quantify these violations. Migrating a lightly-loaded smedia
server hosted in a 512MB VM takes an average of 6.3 sec-
onds. However, during the migration, we observed as much
as 79% degradation of smedia throughput and CPU utiliza-
tion as high as 94% on the source node. Since migration usu-
ally takes place when a node is heavily loaded, we also mea-
sured the overhead of migration under various overload con-
ditions. We have used two or more smedia VMs with varying
degrees of overload, and found the migration times vary be-
tween 13 to 50 seconds. Figure 13 shows the CPU utilization
of one such migrating VM. There were four heavily-loaded
smedia VMs on the source node and one lightly-loaded VM
on the destination node in this setup. During the migration
period (t=120-170), the VM showed CPU starvation, and we
observed a significant decrease in smedia performance. We
plan to extendAutoControl to include VM migration as an
additional mechanism, and expect that a combination of VM
migration andAutoControl will provide better overall per-
formance than using one or the other.

6.2 Actuator & sensor behavior

The behavior of sensors and actuators affects our control.
In existing systems, most sensors return accurate informa-
tion, but many actuators are poorly designed. We observed
various inaccuracies with Xen’s earlier SEDF scheduler
and credit scheduler that are identified by other researchers
[Gupta 2006] as well. These inaccuracies cause VMs to gain
more or less CPU than set by the controller. Empirical ev-
idence shows that our controller is resistant to CPU sched-
uler’s inaccuracies.

6.3 Network and memory control

We are also working on extendingAutoControl for network
and memory resources. Our initial experiments to incorpo-
rate network control using Linux’s traffic controller (tc)
found its overhead to be prohibitive. We are currently in-
vestigating other mechanisms for network control.

VMware ESX Server allows memory overbooking and
dynamically re-allocates memory from one virtual machine
to another through the use of balloon drivers [Waldspurger
2002]. Using Xen’s balloon driver, we have developed poli-
cies for automated memory control [Heo 2009] and will soon
integrate them withAutoControl.

7. Related Work
In recent years, control theory has been applied to com-
puter systems for resource management and performance

control [Hellerstein 2004, Karamanolis 2005]. Examples
of its application include web server performance guaran-
tees [Abdelzaher 2002], dynamic adjustment of the cache
size for multiple request classes [Lu 2004], CPU and mem-
ory utilization control in web servers [Diao 2002], adjust-
ment of resource demands of virtual machines based on
resource availability [Zhang 2005], and dynamic CPU allo-
cations for multi-tier applications [Liu 2007, Padala 2007].
These concerned themselves with controlling only a single
resource (usually CPU), used mostly single-input single-
output (SISO) controllers (except in [Diao 2002]), and re-
quired changes in the applications. In contrast, our MIMO
controller operates on multiple resources (CPU and storage)
and uses the sensors and actuators at the virtualization layer
and external QoS sensors without requiring any modifica-
tions to applications.

In [Diao 2002], the authors apply MIMO control to ad-
just two configuration parameters within Apache to regulate
CPU and memory utilization of the Web server. They used
static linear models, which are obtained by system identifi-
cation for modeling the system. Our earlier attempts at static
models for controlling CPU and disk resources have failed,
and therefore, we used a dynamic adaptive model in this
paper. Our work also extends MIMO control to controlling
multiple resources and virtualization, which has more com-
plex interactions than controlling a single web server.

Prior work on controlling storage resources independent
of CPU includes systems that provide performance guaran-
tees in storage systems [Chambliss 2003, Jin 2004, Lumb
2003]. However, one has to tune these tools to achieve
application-level guarantees. Our work builds on top of our
earlier work, where we developed an adaptive controller
[Karlsson 2004] to achieve performance differentiation, and
an efficient adaptive proportional share scheduler [Gulati
2007] for storage systems.

Traditional admission control to prevent computing sys-
tems from being overloaded has focused mostly on web
servers. Control theory was applied in [Kamra 2004] for the
design of a self-tuning admission controller for 3-tier web
sites. In [Karlsson 2004], a self-tuning adaptive controller
was developed for admission control in storage systems
based on online estimation of the relationship between the
admitted load and the achieved performance. These admis-
sion control schemes are complementary to our approach,
because the former shapes the resource demand into a server
system, whereas the latter adjusts the supply of resources for
handling the demand.

Resource management has been widely studied and large
body of the work falls into providing mechanisms for re-
source management. In [Banga 1999], resource containers
are proposed to achieve fine-grained resource management.
The container approach has been extended to full scale vir-
tualization by VMware [Rosenblum 1999], Xen [Barham
2003] and others. These technologies provide mechanisms

to allocate fine-grained resources and our work uses these
mechanisms to set the policies to achieve application goals.

Proportional share schedulers allow reserving CPU ca-
pacity for applications [Jones 1997, Nieh 1997, Waldspurger
1994]. While these can enforce the desired CPU shares,
our controller also dynamically adjusts these share values
based on application-level QoS metrics. It is similar to the
feedback controller in [Steere 1999] that allocates CPU to
threads based on an estimate of thread’s progress, but our
controller operates at a much higher layer based on end-to-
end application performance that spans multiple tiers in a
given application.

Dynamic resource allocation in distributed systems has
been studied extensively, but the emphasis has been on al-
locating resources across multiple nodes rather than in time,
because of lack of good isolation mechanisms like virtual-
ization. It was formulated as an online optimization problem
in [Aron 2000] using periodic utilization measurements, and
resource allocation was implemented via request distribu-
tion. Resource provisioning for large clusters hosting mul-
tiple services was modeled as a “bidding” process in order
to save energy in [Chase 2001]. The active server set of each
service was dynamically resized adapting to the offered load.
In [Shen 2002], an integrated framework was proposed com-
bining a cluster-level load balancer and a node-level class-
aware scheduler to achieve both overall system efficiency
and individual response time goals. However, these existing
techniques are not directly applicable to allocating resources
to applications running in VMs. They also fall short of pro-
viding a way of allocating resources to meet the end-to-end
SLOs.

Profiling and predicting resource usage in consolidated
environments has been studied in [Urgaonkar 2002, Wood
2008, Choi 2008]. These studies are complementary to our
work, and can help create a better model for resource usage
of applications that can be used to drive our controller.

8. Conclusions
In this paper, we presentedAutoControl, a feedback con-
trol system to dynamically allocate resources to applica-
tions running on shared virtualized infrastructure. It con-
sists of an online model estimator that captures the dy-
namic relationship between application-level performance
and resource allocations and a MIMO resource controller
that determines appropriate allocations of multiple resources
to achieve application-level SLOs.

We evaluatedAutoControl using two testbeds consist-
ing of varying numbers of Xen virtual machines and var-
ious single- and multi- tier applications and benchmarks.
Our experimental results confirmed thatAutoControl can de-
tect dynamically-changing CPU and disk bottlenecks across
multiple nodes and can adjust resource allocations accord-
ingly to achieve end-to-end application-level SLOs. In ad-
dition, AutoControl can cope with dynamically-shifting re-
source bottlenecks and provide a level of service differ-

entiation according to the priorities of individual applica-
tions. Finally, we showed thatAutoControl can enforce per-
formance targets for different application-level metrics, in-
cluding throughput and response time, under dynamically-
varying resource demands.

9. Acknowledgments
The authors would like to thank the anonymous reviewers
and our shepherd, Galen Hunt. This project was supported
in part by NSF grant CCF-0444417.

References
[Abdelzaher 2002] T.F. Abdelzaher, K.G. Shin, and N. Bhatti. Per-

formance guarantees for Web server end-systems: A control-
theoretical approach.IEEE Transactions on Parallel and Dis-
tributed Systems, 13(1), 2002.

[Amza 2002] C. Amza, A. Chanda, A.L. Cox, S. Elnikety, R. Gil,
K. Rajamani, E. Cecchet, and J. Marguerite. Specification and
implementation of dynamic Web site benchmarks. InProceed-
ings of the 5th IEEE Annual Workshop on Workload Character-
ization, October 2002.

[Aron 2000] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster
reserves: A mechanism for resource management in cluster-
based network servers. InProceedings of ACM SIGMETRICS,
pages 90–101, 2000.

[Astrom 1995] K.J. Astrom and B. Wittenmark.Adaptive Control.
Addition-Wesley, 1995.

[Banga 1999] G. Banga, P. Druschel, and J.C. Mogul. Resource
containers: A new facility for resource management in server
systems. InProceedings of the 3rd Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages 45–58,
1999.

[Barham 2003] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. InProceedings of the 19th Symposium on
Operating Systems Principles (SOSP), October 2003.

[Cain 2001] H.W. Cain, R. Rajwar, M. Marden, and Mikko H. Li-
pasti. An architectural evaluation of Java TPC-W. InProceed-
ings of the 7th International Symposium on High Performance
Computer Architecture (HPCA), 2001.

[Chambliss 2003] D.D. Chambliss, G.A. Alvarez, P. Pandey, D. Ja-
dav, J. Xu, R. Menon, and T.P. Lee. Performance virtualization
for large-scale storage systems. InProceedings of the 22nd Sym-
posium on Reliable Distributed Systems (SRDS), October 2003.

[Chase 2001] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in hosting
centers. InProceedings of the 18th Symposium on Operating
Systems Principles (SOSP), October 2001.

[Choi 2008] J. Choi, S. Govindan, B. Urgaonkar, and A. Sivasub-
ramaniam. Profiling, prediction, and capping of power con-
sumption in consolidated environments. In Ethan L. Miller
and Carey L. Williamson, editors,MASCOTS, pages 3–12. IEEE
Computer Society, 2008.

[Clark 2005] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of virtual

machines. InProceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI). USENIX, 2005.

[Diao 2002] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh,and
D.M. Tilbury. MIMO control of an Apache Web server: Model-
ing and controller design. InProceedings of American Control
Conference (ACC), 2002.

[Gulati 2007] A. Gulati, A. Merchant, M. Uysal, and P.J. Varman.
Efficient and adaptive proportional share I/O scheduling. Tech-
nical Report HPL-2007-186, HP Labs, November 2007.

[Gupta 2006] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing performance isolation across virtual machines in Xen,
2006.

[Hellerstein 2004] J. L. Hellerstein. Designing in controlengineer-
ing of computing systems. InProceedings of American Control
Conference (ACC), 2004.

[Heo 2009] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory over-
booking and dynamic control of Xen virtual machines in consol-
idated environments. InProceedings of IFIP/IEEE Symposium
on Integrated Management (IM’09) mini-conference, June 2009.

[Jin 2004] W. Jin, J.S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. InProceedings of ACM
SIGMETRICS, 2004.

[Jones 1997] M. B. Jones, D. Rosu, and M-C. Rosu. CPU reser-
vations and time constraints: Efficient, predictable scheduling of
independent activities. InProceedings of the 16th Symposium
on Operating System Principles (SOSP), October 1997.

[Kamra 2004] A. Kamra, V. Misra, and E. Nahum. Yaksha: A self-
tuning controller for managing the performance of 3-tieredWeb
sites. InProceedings of International Workshop on Quality of
Service (IWQoS), June 2004.

[Karamanolis 2005] C. Karamanolis, M. Karlsson, and X. Zhu.
Designing controllable computer systems. InProceedings of
HotOS, June 2005.

[Karlsson 2004] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance isolation and differentiation for storage systems.
In Proceedings of the 12th IEEE International Workshop on
Quality of Service (IWQoS), 2004.

[Liu 2007] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal. Op-
timal multivariate control for differentiated services ona shared
hosting platform. InProceedings of IEEE Conference on Deci-
sion and Control (CDC), 2007.

[Lu 2004] Y. Lu, T.F. Abdelzaher, and A. Saxena. Design, im-
plementation, and evaluation of differentiated caching serives.
IEEE Transactions on Parallel and Distributed Systems, 15(5),
May 2004.

[Lumb 2003] C.R. Lumb, A. Merchant, and G.A. Alvarez. Façade:
Virtual storage devices with performance guarantees. InPro-
ceedings of File and Storage Technologies (FAST). USENIX,
2003.

[Nieh 1997] J. Nieh and M.S. Lam. The design, implementation,
and evaluation of smart: A scheduler for multimedia applica-
tions. InProceedings of the 16th Symposium on Operating Sys-
tem Principles (SOSP), October 1997.

[Padala 2008] P. Padala, K. Hou, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. G. Shin. Automated control

of multiple virtualized resources. Technical Report HPL-2008-
123, HP Labs, Oct 2008.

[Padala 2007] P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, K. Salem, and K. G. Shin. Adaptive control
of virutalized resources in utility computing environments. In
Proceedings of EuroSys, 2007.

[Rolia 2005] J. Rolia, L. Cherkasova, M. Arlit, and A. Andrzejak. A
capacity management service for resource pools. InProceedings
of International Workshop on Software and Performance, July
2005.

[Rosenblum 1999] M. Rosenblum. VMware’s Virtual Platform:A
virtual machine monitor for commodity PCs. InHot Chips 11,
1999.

[Shen 2002] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated
resource management for cluster-based internet services.ACM
SIGOPS Operating Systems Review, 36(SI):225 – 238, 2002.

[Steere 1999] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee,
C. Pu, and J. Walpole. A feedback-driven proportion allocator
for real-rate scheduling. InProceedings of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI), Febru-
ary 1999.

[Tang 2003] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat. Long-
term streaming media server workload analysis and modeling.
Technical Report HPL-2003-23, HP Labs, February 07 2003.

[Urgaonkar 2002] B. Urgaonkar, P. Shenoy, and T. Roscoe. Re-
source overbooking and application profiling in shared hosting
platforms. InProceedings of the 5th Symposium on operating
systems design and implementation (OSDI), pages 239 – 254,
December 2002.

[Waldspurger 1994] C. A. Waldspurger and W.E. Weihl. Lottery
scheduling: Flexible proprotional-share aresource management.
In Proceedings of the 1st Symposium on Operating Systems
Design and Implementation (OSDI), November 1994.

[Waldspurger 2002] C.A. Waldspurger. Memory resource manage-
ment in VMware ESX server. InProceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI),
December 2002.

[White 2002] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems and
networks. InProceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, Decem-
ber 2002.

[Wood 2008] T. Wood, L. Cherkasova, K. M. Ozonat, and P. J.
Shenoy. Profiling and modeling resource usage of virtualized
applications. In Valérie Issarny and Richard E. Schantz, edi-
tors, Middleware, volume 5346 ofLecture Notes in Computer
Science, pages 366–387. Springer, 2008.

[Wood 2007] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and gray-box strategies for virtual machine
migration. InProceedings of the 4th Symposium on Networked
Systems Design and Implementation (NSDI). USENIX, 2007.

[Zhang 2005] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and
R. West. Friendly virtual machines: Leveraging a feedback-
control model for application adaptation. InProceedings of the
Virtual Execution Environments (VEE), 2005.

