
Cloudward Bound: Planning for Beneficial Migration of
Enterprise Applications to the Cloud

Mohammad Hajjat†, Xin Sun†, Yu-Wei Eric Sung†, David Maltz‡, Sanjay Rao†

Kunwadee Sripanidkulchai?, and Mohit Tawarmalani†
†Purdue University, ‡Microsoft Research, ?IBM T.J. Watson Research Center

ABSTRACT
In this paper, we tackle challenges in migrating enterprise services
into hybrid cloud-based deployments, where enterprise operations
are partly hosted on-premise and partly in the cloud. Such hy-
brid architectures enable enterprises to benefit from cloud-based ar-
chitectures, while honoring application performance requirements,
and privacy restrictions on what services may be migrated to the
cloud. We make several contributions. First, we highlight the com-
plexity inherent in enterprise applications today in terms of their
multi-tiered nature, large number of application components, and
interdependencies. Second, we have developed a model to explore
the benefits of a hybrid migration approach. Our model takes into
account enterprise-specific constraints, cost savings, and increased
transaction delays and wide-area communication costs that may re-
sult from the migration. Evaluations based on real enterprise appli-
cations and Azure-based cloud deployments show the benefits of a
hybrid migration approach, and the importance of planning which
components to migrate. Third, we shed insight on security policies
associated with enterprise applications in data centers. We articu-
late the importance of ensuring assurable reconfiguration of secu-
rity policies as enterprise applications are migrated to the cloud.
We present algorithms to achieve this goal, and demonstrate their
efficacy on realistic migration scenarios.

Categories and Subject Descriptors: C.4 [Performance of systems]:
Modeling techniques ; C.2.3 [Computer communication networks]: Net-
work operations– Network management
General Terms: Algorithms, Design, Experimentation, Management,
Performance, Security
Keywords: Cloud Computing, Enterprise Applications, Security Policies,
Performance Modeling, Network Configurations

1 Introduction
Cloud computing promises to reduce the cost of IT organizations
through lower capital and operational expense stemming from the
cloud’s economies of scale, and by allowing organizations to pur-
chase just as much compute and storage resources as needed, only
when needed. Many cloud early adopters have had great success

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

in leveraging the cloud to deliver new services as an alternative to
implementing their own server infrastructures [4, 17].

The advantages and initial success stories of cloud computing
are prompting many enterprise networks to explore how the cloud
could be leveraged to deliver their existing enterprise applications.
Consider a recent survey of 1,780 data center managers in 26 coun-
tries worldwide conducted by Symantec [25]. Over 36% of respon-
dents indicated that the large number of applications and complex-
ity of managing data centers were huge problems that they faced.
Over 82% of respondents indicated that reducing data center costs
was one of the most important objectives for coming years. Over
72% of respondents indicated they were considering or using pub-
lic cloud computing, although 94% of these respondents were still
in the discussion, planning, trial or implementation stages.

Despite the significant interest, migrating enterprise applications
to cloud computing is a major challenge (e.g., [11]). On the one
hand, enterprise applications are often faced with stringent require-
ments in terms of performance, delay, and service uptime. On the
other hand, little is known about the performance of applications
in the cloud, the response time variation induced by network la-
tency, and the scale of applications suited for deployment. Further,
industry-specific regulations (e.g., in health care industries), and
national privacy laws may restrict what data an enterprise may mi-
grate to the cloud [11].

In response to these concerns, there has been significant interest
in the industry in hybrid architectures where enterprise applications
are partly hosted on-premise, and partly in the cloud (e.g., [15,22]).
Enterprise applications are typically composed of multiple compo-
nents, and hybrid architectures allow for individual components to
be migrated, or kept local. Hybrid architectures offer enterprises
flexibility in decision making that can enable them to find the right
balance between privacy considerations, performance and cost sav-
ings. For instance, sensitive databases (e.g., related to credit card
processing) may be located local to the enterprise, while relatively
less sensitive components could be migrated to the cloud. Users ex-
ternal to the enterprise could be handled through servers deployed
in the cloud, while internal users could be handled through servers
located on premise.

In this paper, we take a first step towards articulating and ad-
dressing two challenges involved in enabling enterprises to move
to such a hybrid cloud model, as we discuss below:
Component placement: While hybrid architectures offer several
advantages, deciding which components must be kept local, and
which components must be migrated is non-trivial. The challenge
stems from the fact that enterprise applications consist of a large
number of components, with complex interactions, as our examina-
tion of applications deployed in a global Fortune 100 company, and
a large university indicate. To address this challenge, we present

a model that enables application architects to systematically plan
which components of their application must be migrated. Our model
takes into account enterprise policies, cost savings from migration,
and increased transaction delays and wide-area communication that
may result from the migration. Our model also considers the data
flows between application components, and the spread of users
(e.g., if they are located within or outside enterprise premises). We
evaluate our algorithms using (i) a real cloud-based application on
an Azure-based cloud test-bed; and (ii) a model of a real enterprise
application deployed in a large-scale campus network. Our results
show there are situations where hybrid migrations are optimal, and
reveal the importance of a planned approach to determining which
components to migrate.
ACL Migration: While executing an actual migration entails sev-
eral challenges [23,28], security related issues are perhaps the most
vexing. To highlight the importance, consider that over 83% of
data center managers in the survey mentioned above have indicated
security is the most important initiative for their data centers in
coming years [25]. Our examination of an operational data-center
of a large campus network indicates that access to servers corre-
sponding to enterprise applications is highly restricted, and the se-
curity (reachability) policies are often encoded in low-level device
configurations. A key barrier to realizing hybrid migrations is the
need to ensure that the reachability policies continue to be met. We
present automated approaches to reconfigure network devices in an
assurable fashion. Our approach involves extracting the end-to-end
policies from low-level device configurations, transforming them
(if necessary) to handle changes to address space assignments, and
placing the transformed policies in the migrated setting. We eval-
uate our algorithms using realistic migration scenarios, and router
configurations of a large campus network. Overall, our results show
the feasibility and importance of our approach.

While our results are promising, our work is but a first step to-
wards addressing challenges in migrating enterprise networks to
the cloud. We discuss other challenges not considered in the paper,
and open issues in § 7.

2 Motivation
In this section, we begin by exposing the complexity of real en-
terprise applications today. This leads us to formulate important
challenges in migrating enterprises to cloud-based models.

2.1 Characteristics of enterprise applications

Enterprises run a number of applications to support their day-to-
day business. For instance, a company may run applications to
support payroll, travel and expense reimbursement, customer rela-
tionship management, and supply chain management. Similarly, a
university may run applications corresponding to student registra-
tion, employee payroll, class management, and alumni relations.
Such applications are implemented using multi-tier architectures.
Typically, applications can be decomposed into three functional
tiers: (i) a front-end tier, containing web servers that handle user
requests and application presentation; (ii) a business-logic tier, con-
taining servers that perform specialized application logic such as
sales analysis; and (iii) a back-end tier that comprises of various
database servers. While a 3-tiered design is the conventional archi-
tecture used in most applications, in practice applications are much
more complex. Each of these tiers may have multiple functional
components; each component may have multiple servers perform-
ing the same role and executing the same code while load-balancers
are employed to spread the requests across each server.

Fig. 1 depicts the number of distinct functional components for

0

20

40

60

80

100

120

1 2 3 4 5

Applications

T
o
ta
l N
u
m
b
er
 o
f

C
o
m
p
o
n
en
ts

Front-End Business Logic Back-End

Figure 1: Distinct functional components for five enterprise applications.

five enterprise-wide applications sampled out of hundreds of such
applications used by a Fortune 100 company, broken down by tier.
Note that we only include distinct functional components – server
replicas that run the same code are not counted. The total number of
distinct components in each application varies from 11 to over 100
components depending on the nature of the application. In some
of these applications, there are up to 19 distinct front-end compo-
nents, 67 business-logic components, and 21 back-end datastores.
Furthermore, the flow of requests between these components is of-
ten complex. Depending on the specific type of user transaction, the
flows could touch upon different functional components across all
the tiers. To further appreciate the complexity, we refer the reader
to § 5.2 (Fig. 10) for a detailed model of an enterprise application
deployed in a large campus network.

An enterprise application could be accessed by two types of users:
(i) users internal to the enterprise; and (ii) users external to the en-
terprise. For instance, in a university campus setting, current em-
ployees and students correspond to internal users, but alumni, and
prospective students correspond to external users.

2.2 Security policies in enterprise data centers

Many enterprise applications (e.g., employee payroll) are extremely
sensitive, and access to servers corresponding to these applications
is highly restricted. For instance, following the tiered applica-
tion architecture, typical security policies may only allow front-end
servers to access business logic and back-end servers. The security
policies are carefully crafted reflecting the complex application in-
terdependencies so only application components that need to talk
to each other are permitted to do so. Servers corresponding to var-
ious enterprise applications are logically partitioned into Virtual
LANs (VLANs). Each VLAN is protected by a firewall context.
Each firewall context is associated with one or more access con-
trol lists (ACLs). An ACL is a sequential collection of permit and
deny conditions, called ACL rules, and flows to be permitted/de-
nied are identified in terms of their source/destination IP addresses
and ports, and protocol, i.e., a 5-tuple (sip,dip,sport,dport,proto).
The reader is referred to §5.3 which presents high-level character-
istics of the security policies of a data center in a large university
campus. The data center has over 40 firewall contexts, each context
associated with a pair of ACLs, and with each ACL having several
tens and sometimes hundreds of ACL rules.

2.3 Issues in migrating enterprise applications

In this paper, we focus on hybrid cloud architectures, where in-
dividual application components may be placed locally or in the
cloud. Further, we allow for placement strategies where only a sub-
set of servers in a component are placed remotely. Fig. 2 depicts
an example, where only the back-end, and a subset of front-end
servers have been moved to the cloud.

Multiple factors can motivate such hybrid deployments. From
a performance perspective, migrating the entire application to the
cloud is likely to result in higher response times to users inter-

R2

R1

ACL1

ACL2 R4

ACL4

R3

ACL3

Figure 2: An example hybrid cloud deployment. The figure also illustrates
the need to reconfigure security policies.

nal to the enterprise, as well as extensive wide-area communica-
tion. Replicating servers both locally and remotely could allow for
the two classes of users (internal and external) to be served from
different locations. From a data privacy perspective, enterprises
may wish to store sensitive databases (e.g., a database that stores
credit card information) locally. This may in turn make it desir-
able to place other components that extensively interact with such
databases local, from the perspective of reducing wide-area com-
munication costs and application response times. Finally, while we
do not explore in this paper (but briefly discuss in § 7), hybrid ar-
chitectures may enable enterprises to better handle peak workloads.
In particular, servers may be instantiated in the cloud when needed,
while requests are in general served from the local data-center.

In this paper, we address two key challenges associated with re-
alizing hybrid cloud architectures:
Planning which servers to migrate: Planning a hybrid cloud lay-
out is a complex problem, where an application architect must take
several factors into account. The key factors are (i) honoring pol-
icy constraints regarding which components must be migrated; (ii)
ensuring application response times continue to meet desired tar-
gets; and (iii) ensuring the cost savings from migration are as high
as possible. The cost savings in turn depend both on compute and
storage components migrated, as well as the wide-area communi-
cation costs involved. The transaction delays as well as wide-area
communication costs in turn depend on (i) the location of users, i.e.
whether they are local to the enterprise, or external to it; and (ii) the
nature of interaction between components, i.e., which components
interact, and how much traffic they exchange.
Ensuring correctness of security policies on migration: On mi-
grating application servers to the cloud, operators need to reconfig-
ure ACLs to ensure that the security policies are still met. Consider
the migration scenario in Fig. 2 with a security policy which only
permits front-end servers to reach back-end servers. Ensuring that
this policy continues to be upheld on migration requires operators
to change both the location of ACLs, as well as rules in the ACLs
themselves. In doing so, the primary consideration is to correctly
achieve security policy goals. A second consideration is to filter
unauthorized packets as early as possible. For instance, if traffic
is not permitted from certain enterprise users to a server located in
the cloud, it is desirable to ensure that the unauthorized traffic is
filtered at the enterprise edge itself rather than filter it after it has
traversed the wide-area link to the cloud. Finally, the problem is
further complicated due to reassignment of IP addresses after mi-
gration as is the practice of certain cloud providers today.

3 Planning a migration strategy
In this section, we present a model that enables application archi-
tects to systematically plan which components of their application

must be migrated to the cloud. We present a high-level problem
formulation in §3.1 and provide modeling details in the remaining
subsections.

3.1 Abstraction and problem formulation

Consider an enterprise running K applications, Ai, 1 ≤ i ≤ K,
and m components (across all applications), Ci, 1 ≤ i ≤ m.
Each application involves a subset of components. For instance,
A1 = {C1, C2, C5} indicates that application A1 has components
C1, C2, and C5. We abstract the application structure using a graph
G = (V, E). Let V = {Ci}m

i=1 ∪ {I, O}, where I and O repre-
sent internal and external users respectively. Nodes i and j are
connected by an edge (i, j) if they communicate. The number of
transactions per second and the average size of transactions along
(i, j) are denoted by Ti,j and Si,j respectively. Ti,j and Si,j are
the ijth elements of the transaction matrix, T, and the size matrix,
S, respectively. We assume that T and S are available.

In deciding how a component must be migrated to the cloud,
it is important to consider the specific nature of that component.
Web front-ends and business-logic tiers typically consist of multi-
ple servers performing the same role, and easily allow for solutions
where a subset of servers may be migrated to the cloud. Back-end
databases on the other hand involve storage, and an associated set
of servers. Partial migration of a subset of servers involves either
(i) replication of storage in the local and cloud data-centers, and the
need for techniques to maintain consistency across replicas; or (ii)
maintenance of the database in a distributed fashion, a hard prob-
lem. In this paper, we assume back-end databases are migrated in
an atomic fashion, i.e., all associated storage and servers are either
maintained local, or entirely migrated. In the future, it might be
interesting to consider partial migration of databases.

More generally, each component Ci is modeled as consisting of
Ni servers. The overall goal of the formulation is to determine the
number of servers ni (ni ≤ Ni) which must be migrated to the
cloud for each component Ci. A database component Cd is easily
captured in this model by setting Nd = 1, and imposing integrality
requirements on nd.

Let P denote a set of policy constraints that govern the migra-
tion process. For instance, the constraints may indicate that certain
application components (e.g., relating to sensitive data storage) are
not to be migrated to the cloud. Formally, the goal is to determine
a migration strategy M =

`
ni

´m

i=1
, such that:

(MP) max Benefits(M)− InternetCosts(M)
subject to Policy Constraints P

Constraints on DelayIncrease(M)
Flow Balance Equations

Here, Benefits(M) are the benefits of migration to the enterprise
(for instance, due to lowered operational and equipment costs),
InternetCosts(M) is the increased communication costs since traf-
fic between the data center and the cloud is now sent over the In-
ternet, and DelayIncrease(M) is the increase in transaction de-
lay. Since DelayIncrease(M) is a random variable, we impose
the constraints on its statistical summary measures such as mean,
variance, or percentiles. This will be discussed in more detail in
§3.4. The flow balance equations guarantee that all the transactions
are handled and that requests are not lost midway. We now present
more details on how each of these terms may be modeled.

3.2 Flow balance equations

We represent the graph structure after migration as G′ = (V ′, E′).
Each node in V that corresponds to a component, say Ci, is split
into two nodes, CiL and CiR, corresponding respectively to the
servers running this application component at the local data center

MigrateCj

Ti, jCi

C i L Cj L

Ci R Cj R

T'i R, j LT'i L, j R

T'i L, j L

T'i R, j R

Local data-center
Local data-center

Cloud

Figure 3: Partitioning requests after migration.

and at the cloud. If nodes i and j communicate in G, each replica
of i is connected to each replica of j in G′. The resulting trans-
action matrix, denoted as T′, must satisfy flow balance equations
mentioned in §3.1. The increase in Internet communication costs
and transaction delay depend on T′. For an illustration, see Fig. 3.
Depending on the policies implemented at the component servers,
there are two ways to model the flow balance equations:
• Flexible routing approach: In this approach, the component
server CiL is allowed to distribute traffic differently than CiR to
its successor nodes. For instance, CiL and CiR may direct more
traffic towards CjL and CjR respectively, so that the traffic on the
Internet and the resulting costs and delays are reduced. Assume for
any node i, fi = ni

Ni
(fi denotes the fraction of servers to migrate).

The following flow balances must be satisfied by the elements of T′

when partitioning the original traffic Ti,j between various replicas
of component nodes i and j.

Ti,j

`
1− fi

´
= T ′

iL,jL + T ′
iL,jR (1)

Ti,j

`
fi

´
= T ′

iR,jL + T ′
iR,jR (2)

Ti,j

`
1− fj

´
= T ′

iL,jL + T ′
iR,jL (3)

Ti,j

`
fj

´
= T ′

iL,jR + T ′
iR,jR (4)

T ′
iL,jL, T ′

iL,jR, T ′
iR,jL, T ′

iR,jR ≥ 0 (5)

Constraints (1) and (2) model respectively that transaction requests
originating at CiL and CiR are transferred to some servers imple-
menting Cj . Constraints (3) and (4) model that the number of re-
quests received at the local and remote implementations of compo-
nent Cj are proportional to the number of servers at each location.
Constraints involving user nodes I and O may be easily derived in
similar fashion, and we omit details. If extra servers are allowed to
be deployed, then we introduce variables niL and niR instead of
ni and replace the constraint Nifi = ni with (1 − fi)Ni ≤ niL

and fiNi ≤ niR.
• Independent routing approach: The flexible routing approach
requires making decisions based on the location of an application
component or user. Location-based routing does occur in prac-
tice - for e.g., users are typically routed to geographically close-by
front-ends in many applications. However, location-based routing
is harder to implement between application components in legacy
applications. To handle these application constraints, we also model
an approach where, the component server CiL distributes traffic in
the same proportions as the CiR server.

Let f(i, A) = ni
Ni

if A = R and Ni−ni
Ni

if A = L. Then, it is
easily shown that with an independent routing approach,

T ′iA,jB = Ti,jf(i, A)f(j, B) (6)

It is apparent from the definition, that the constraint (6) is more
restrictive that constraints (1)-(5) and therefore admits fewer solu-
tions. As a result the optimal solution for (MP) with (6) instead of
(1)-(5) may be inferior.

3.3 Modeling Internet communication costs
The increase in Internet communication costs is easily modeled as:

CostL,I(Tr′L,I −TrL,I) + CostR,I Tr′R,I

where CostL,I and CostR,I are respectively the per-unit Internet
communication cost of traffic from the local and cloud data centers,
Tr′L,I (TrL,I) and Tr′R,I respectively denote the traffic from the lo-
cal data center and the cloud to the Internet after (before) migration.
We believe a linear cost model for Internet transfers is a reasonable
starting point, and it matches the business model of multiple cloud
providers (e.g., Amazon, Azure).

Let C={Ci}m
i=1, C′L={CiL}m

i=1, C′R={CiR}m
i=1, L′=CL ∪ {I}

and R′=CR ∪ {O}. Let i′∈V ′ (j′∈V ′) be replicas of i∈V (j∈V).
Clearly, if i6=j, S′i′,j′=Si,j , otherwise S′i′,j′=0. TrL,I consists of
traffic from the external users to components and vice-versa and
can be expressed as:

TrL,I =
X
i∈C

`
TO,iSO,i + Ti,OSi,O

´
Tr′L,I includes the traffic from the (i) external users to the lo-

cal data center and vice-versa, and (ii) traffic between local nodes
(users or components) and remote components. Similarly, Tr′R,I

includes the traffic from the (i) external users to the cloud data cen-
ter and vice-versa, and (ii) traffic between local nodes (users or
components) and remote components. In other words,

Tr′L,I =
X

i∈L′,j∈R′

`
T ′i,jS′i,j + T ′j,iS

′
j,i

´
, Tr′R,I =

X
i∈L′∪{O},j∈C′R

`
T ′i,jS′i,j + T ′j,iS

′
j,i

´
.

3.4 Modeling increase in transaction delays
Our overall objective is to ensure the transaction delays after migra-
tion are not significantly higher than the delays prior to migration.
We now discuss how constraints involving changes to mean delay,
variance and percentiles may be expressed:
• Mean delay of transactions: Let Ω be the random variable cor-
responding to a user’s request and the corresponding application.
For each i ∈ V ∪ E, let χi be a random variable denoting the
number of times a node/directed edge is encountered per transac-
tion, Di be the delay experienced per encounter. Recall that, if t is
the number of user requests per unit time and Ti,j is the number of
transactions on an edge e = (i, j) ∈ E, then Ti,j

t
= E [χe]. We

assume that χi is independent of Di, i.e., the number of times i is
encountered in each transaction does not influence the delay expe-
rienced per encounter. Finally, let D be the delay experienced by a
user. Then, it is easily shown that:

E[D] =
X
i∈V

E [χiDi] +
X

e=(i,j)∈E

„
Ti,j

t
E [De]

«
Similarly, after migration, for i ∈ V ′ ∪ E′, we define χ′i as the
number of times i is encountered and D′

i as the delay per encounter
at i. Let D′ be the delay for each request after migration. As above,

E[D′] =
X

i∈V ′
E
ˆ
χ′iD

′
i

˜
+

X
e=(i,j)∈E′

T ′i,j

t
E
ˆ
D′

e

˜!

We assume that that the time needed to process requests at a node
i ∈ V is equal to the combined time required at nodes iL and iR,
i.e., χ′iLD′

iL + χ′iRD′
iR = χiDi. While partitioning servers after

migration could potentially lead to increased service times at nodes,
we assume for tractability that the service times remain unchanged.

Then, it follows that the increase in mean delay, i.e., E[D′] −
E[D], can be written as:

X
e=(i,j)∈E′

T ′ij

t
E
ˆ
D′

e

˜!
−

X
e=(i,j)∈E

„
Tij

t
E [De]

«
.

• Variance of transaction delays: We limit our discussion of
variance to transactions that may be modeled as a path of compo-
nents. We believe this is a reasonable starting point, and a majority
of transactions can be modeled in this fashion. In the future, this
assumption may be relaxed by modeling the flow of transactions in
the network as a Markov chain.

The variance of transaction delay may be computed by consider-
ing the conditional variance of D given a path i is taken:

VAR[D] = Ei [VAR[D | i]] + VARi [E [D | i]]

Let DPi be a RV corresponding to the delay of a transaction of type
i which involves path Pi, and let ti be the number of transactions
involving path Pi. Then, we can show that:

VAR[D] =
X

i

ti

t

`
VAR [DPi] + E [DPi]

2´
− E[D]2 (7)

VAR [DPi] may be computed as the sum of the variances of the
delays encountered at the nodes and links on the path (D′

is), as-
suming these random variables are independent. Applying queuing
models of enterprise applications (e.g., [26]) is challenging in our
context given the system after migration involves optimization vari-
ables (such as the new transaction matrix). While our evaluations
indicate that the migration decisions predicted by our model work
well (§5), and the applications we consider are typically overpro-
visioned, it would be interesting to incorporate queuing models in
our framework in the future.

At first glance, it may appear that computing the variance re-
quires detailed knowledge of the paths taken by individual trans-
actions. Such information may be difficult to obtain if the number
of possible transaction paths is large. However, we have been able
to simplify Equation 7 to show that it suffices to know the number
of transactions involving any pair of components or links. We be-
lieve such information can be obtained in many realistic settings,
and possibly even derived from Tij values for certain types of ap-
plication topologies.
Percentiles of transaction delays: A constraint of optimization
may be to minimize the change in percentile value of transaction
delay. Accurate estimates of delay percentiles is challenging and
requires detailed knowledge of delay distributions of individual
random variables. Instead, we estimate the delay percentile for a
particular scenario using Chebyshev’s inequality. The inequality
states that no more than 1/k2 of the values of any arbitrary dis-
tribution can be more than k standard deviations away from the
mean. By estimating the mean and variance as above, and by using
Chebyshev’s inequality, a bound may be obtained on any percentile
of transaction delay, which could then be fed into the optimization.

3.5 Modeling benefits of migration
There are several factors that can enable enterprises to reduce their
costs as they migrate to the cloud. First, large cloud data centers
can purchase hardware, network bandwidth, and power at much
lower prices than medium-sized data-centers, and pass on these
economies of scale to enterprises. Second, moving to the cloud
potentially helps lower operational expenses through workforce re-
ductions. Finally, the ability to dynamically request additional server
resources to provision for peak workloads frees enterprises from
the need to provision for worst-case scenarios.

In this paper, we consider a simple model for measuring bene-
fits, which serves as a useful starting point for evaluating migration
trade-offs. We assume that there are two primary classes of compo-
nents: (i) compute-intensive; and (ii) storage-intensive. We assume
that the benefits of migrating a single server in each class is Bc and
Bs respectively. Let Mc and Ms be the total number of compo-
nents in each class migrated. Then, we compute the total benefits

a3a3fe1

a1∩a2

a2

a2

fe1

a1∩a3a1∩a3a1∩a2INT

a3a2BE2

a3a2BE1

a3a3fe2

INTBE2BE1fe2

(b) Reachability Matrix (Rold)

BE2

BR

AR AR AR AR

BE1

a3 a3a2

ACL

a1

a2

(a) Local Data Center

Internet (INT)

BR = Border Router, AR = Access Router

fe2

FE
fe1

migrate

Figure 4: ACL placement in a data center and the corresponding reacha-
bility matrix if fe1 is migrated.

of migration as BcMc + BsMs. While we assume the benefits for
migrating all servers in a class is the same, the model could be eas-
ily extended to consider heterogeneity in benefits across servers in
each class, which may arise for instance due to the the age of the
hardware already in place in the enterprise.

Estimating the benefits per server, Bc and Bs, is in general non-
trivial, and is potentially dependent on the particular enterprise
and choice of cloud provider. An infrastructure-as-a-service of-
fering like EC2 [1], for instance, might not obviate the need for
database adminstrators unlike a platform-as-a-service offering such
as Azure [8]. While our evaluations rely on generic cost savings
estimates (e.g., [14]), we envision that in practice, more precise
factors may be provided by individual enterprise managers taking
site-specific considerations into account.

In this paper, we focus on the recurring costs of migration, such
as server and wide-area Internet communication costs. Executing
the migration process may involve one-time costs, such as the ef-
fort in acquiring model parameters, and reengineering applications
for cloud deployment. Comparing one-time costs with recurring
costs brings in issues such as discounting which are specific to en-
terprises. With appropriate discounting factors available, one-time
costs can be easily incorporated in the model.

3.6 Solving the optimization problems

If a flexible routing approach (§3.2) is used, and only constraints
involving changes to mean delay are considered, our optimization
problem corresponds to an integer programming problem. Though
integer programming problems are hard to solve, well-known tools
like CPLEX [6] are available to handle them. Constraints involving
variance (and percentiles) of transaction delay, or use of an inde-
pendent routing approach (§3.2) lead to non-linear problem formu-
lations. While analytically tractable solutions are difficult to obtain
with non-linear optimization problems, recent theoretical advances
have led to the development of tools such as BARON [20], which
we leverage. While such tools are effective, scaling to large prob-
lem formulations may require tighter relaxations that constrain the
search space. We do not explore these issues further in this paper,
and defer them to future work.

4 Migrating reachability policies
While §3 presented a framework to help decide which servers should
be migrated to the cloud, an important challenge that must be ad-
dressed is how security policies must be reconfigured. We discuss
our approach to tackling this challenge in this section.

4.1 Abstraction and problem formulation

The key requirement of reachability policy migration is to ensure
correctness – if a packet between two nodes is permitted (denied)
prior to migration, it must be permitted (denied) after migration.

To aid our discussion, consider Fig. 4, which shows a data cen-
ter. Consider an application with one front-end component FE,
and two back-end components, BE1, and BE2. Assume FE has
two servers fe1 and fe2. Assume the servers in each component

ACL configuration per
(interface,direction)

Deriving Rnew

Section 4.3.1

Router FIBs

Partition Rnew

Extract
Submatrix

Locate
Placement

Generate
ACLsRnew

Section 4.3.3 Install Rnew

Section 4.3.2

Hybrid Cloud
TopologyLDC

Router
Configs

Rnew1. Migration scenario
2. Address mapping m

Figure 5: Overview of ACL migration algorithm.

correspond to a separate VLAN (though we note that in general
severs in multiple components may be part of a VLAN). The fig-
ure also shows 3 ACLs (a1–a3). Consider a scenario where fe1 is
migrated to the cloud, and (possibly) assigned a new IP address.

We define an entity e to be an atomic unit during the migration
process, i.e., all constituent servers of an entity either migrate or do
not. While at the finest granularity, each application server could
be considered as an entity, we prefer to model an entire VLAN as
an entity when possible. As we will see, using a coarser represen-
tation when possible will ensure that our algorithm scales better.
In Fig. 4, we model servers fe1, and fe2 as separate entities, and
entire VLANs BE1, and BE2 as entities.

Consider a network with N entities {e1, e2, · · · , eN }. Let the
reachability matrix, denoted by R, be an N by N matrix, where
each cell R(i, j) captures the reachability set, or the subset of pack-
ets (from the universe of all IP packets) that the network may carry
from ei to ej [29]. Fig. 4(b) shows the reachability matrix for the
scenario in Fig. 4(a). Note that we treat the Internet as an entity.

Let Rold and Rnew respectively denote the reachability matri-
ces prior to, and after a migration. Let p denote a packet typically
identified by the 5-tuple (sip, dip, sp, dp, proto), i.e., source/des-
tination IPs and ports, and protocol. Let m define a mapping from
every IP address in the old setting to the new one, i.e., ipnew

i =
m(ipold

i), where ipold
i and ipnew

i are the old and new IP addresses
of ei respectively. We define the correctness criteria below:

1. ∀i, j, p∈Rold(i, j) iff pnew∈Rnew(i, j),
where p=(sip,dip,sp,dp,proto) and
pnew=(m(sip),m(dip),sp,dp,proto)

2. Rnew is invariant under failures in the new topology.

A desirable criterion when migrating reachability policies is to avoid
unwanted Internet traffic. That is, unauthorized traffic between the
local data center and the cloud must be filtered before it traverses
the wide-area Internet link when possible. For instance, in Fig. 4(a),
we would like traffic from fe1 to be filtered in the cloud itself,
rather than by a policy in the local data center. This criterion is im-
portant as it reduces unnecessary communication between the data
centers and hence the associated costs.

4.2 ACL migration algorithm

We now present our algorithm for reconfiguring reachability poli-
cies when entities in a local data center (LDC) are migrated to
a cloud data center (CDC). The migration algorithm proceeds in
three phases as shown in Fig. 5: (i) Rnew is derived by infer-
ring Rold from the original network, and revising ACLs to reflect
changes to address assignments; (ii) Rnew is partitioned – this
step helps prevent unwanted Internet traffic, as we will describe
in § 4.2.3; and (iii) ACLs in each partition of Rnew are installed
to localize unwanted traffic while ensuring correctness. While we
focus on migration from one LDC to a single CDC, the algorithm
can be easily generalized to consider multiple LDCs and CDCs.

4.2.1 Granularity of policies in R

The naive approach to representing policies in R involves operat-
ing at the granularity of cells, i.e., computing the effective ACL
corresponding to each pair of entities. In fact such an approach has
been used in [24]. However, this naive approach can lead to an
explosion of rules, and consequently does not scale well to large-
sized networks (see §5.3.3). Many reachability policies apply to
sets of entities. Representing each cell as ACL rules unrolls such a
structure and hence could significantly increase the number of rules
required to be installed, adding extra processing overhead which
could degrade network performance after migration.

We instead adopt an alternate approach which preserves infor-
mation regarding common entity pairs affected by each ACL. For
each ACL a, we define its filter domain Fa to be the set of origin-
destination (OD) entity communication pairs (i, j) (i.e., all packets
from ei to ej) that are filtered by a. For instance, the shaded cells
in Fig. 4(b) form the filter domain for ACL a3. By maintaining the
filter domain associated with each ACL, and exploiting this infor-
mation, our algorithms strive to prevent a significant increase in the
number of rules, as we describe in later subsections.

4.2.2 Deriving Rnew

The algorithm starts by inferring Rold from the LDC. The reach-
ability policies governing traffic from ei to ej (i.e., Rold(i, j))
contain the set of ACLs encountered along the default routing path
from ei to ej . If no ACLs lie on the path, the cell is empty, indicat-
ing that ei has full reachability to ej .

The IP addresses of entities may change when they are moved to
the cloud. Therefore, policies in Rold should be correctly trans-
lated based on the new address assignment. For example, consider
Fig. 4. If fe1 (IP address ipold

fe1
) was permitted to talk to port 8000

of all servers in entity BE1 then the same communication from
ipnew

fe1
to BE1 should still be allowed after fe1 is migrated. We de-

rive Rnew by applying a transformation function t on every ACL.
The function t revises ACL rules to avoid inconsistent filtering de-
cisions due to address reassignment. Fig. 6 shows Rnew for the
migration scenario in Fig. 4.

4.2.3 Partitioning Rnew

While traffic between a pair of entities can be filtered anywhere on
their communication path without violating the correctness criteria,
it is desirable to filter unwanted traffic before it enters the Internet.
In particular, traffic between the LDC and the CDC should be fil-
tered by the originating data center, rather than by the destination
data center.

To achieve this, we identify for each data center DC, all OD-
pairs that should be filtered at DC. We refer to this set of OD-pairs
as the filter zone ZDC of data center DC. ZDC consists of (i)
OD-pairs that originate from DC and (ii) OD-pairs that originate
from the Internet and are destined to DC. For example, Rnew

in Fig. 6 is partitioned into ZLDC (gray cells) and ZCDC (dotted
cells). Each partition corresponds respectively to the OD-pairs (or
cells) that should be filtered by the LDC and the CDC.

4.2.4 Installing Rnew

For each filter zone, the relevant ACLs must be placed and the cor-
responding new ACL configurations must be generated. We de-
scribe the key steps below:
Submatrix Extraction: Let Fa(DC) denote the filter domain of
ACL a within ZDC . The goal of this step is to ensure that ACL a
is placed between every OD-pair ∈ Fa(DC) in the migrated net-
work setting. Our overall approach is to break Fa(DC) into groups
of cells that involve disjoint sets of source and destination entities.

Figure 6: Rnew and the hybrid cloud topology based on the migration
scenario in Fig. 4.

As we will see, having two disjoint sets of entities enables us to
place ACL a on the edge-cut-set between them. We refer to such
a place-able group of cells as a submatrix. For scaling reasons, we
prefer to keep the number of submatrices extracted for Fa(DC)
small. Formally, let Fa(DC) denote the filter domain of ACL a
within ZDC . We extract a minimal set of submatrices covering all
OD-pairs ∈ Fa(DC) by repeatedly removing the largest submatrix
from Fa(DC) until no OD-pair remains. We denote the kth sub-
matrix as Fa(DC, k). For example, Fig. 6(a) highlights the two
submatrices (circled) extracted for Fa2(LDC).
Locating Placement: For each submatrix Fa(DC, k) extracted,
the corresponding ACL a needs to be placed inside DC, such that
packets going from the source entities to the destination entities will
encounter an instance of the ACL no matter which physical path
they take. To achieve this, we place the ACL along an edge-cut-
set between the associated sets of source and destination entities in
the new topology. An edge-cut-set consists of a set of placement
locations {l}, each specifying an interface and the direction of traf-
fic (inbound or outbound) to which an ACL placed on that interface
applies.

In general, each cloud provider has its own infrastructure, which
influences where ACLs can be placed in the CDC. For instance,
some cloud providers may grant cloud users the ability to perform
VM-level filtering [1], or offer proprietary techniques to specify
ACLs for groups of VMs [3,10]. For example, Fig. 6 shows the hy-
brid cloud topology based on the migration scenario in Fig. 4. Eli-
gible placement locations in the LDC and the CDC are marked by
circles and diamonds, respectively. Note that the virtual router (VR)
in the cloud is not eligible for placement.

To determine the placement locations, we compute the minimum
edge-cut-set, only allowing links incident to eligible placement lo-
cations to be part of the edge-cut-set. We achieve this using polyno-
mial algorithms for finding the minimum cut in a flow network [16].
If both ends of a link are eligible locations, we place ACL a on the
interface closer to the source entities.
Generating ACL Configuration: Finally, the appropriate ACL
configurations must be generated for each placement location. Di-
rectly installing each ACL may accidentally filter other traffic. For
example, after migration, assume ACL a2 is placed as shown in
Fig. 7(a), to block traffic from INT to fe2. Fig. 7(b) depicts the
rules of ACL a2 prior to migration. If a2 is installed unaltered as in
Fig. 7(a), traffic from fe1 to fe2 is inadvertently blocked, violat-
ing the correctness criteria. Note that this was not an issue prior to
migration (see Fig. 4), as traffic from fe1 to fe2 did not encounter
a2 in that scenario.

Consider the placement of submatrix Fa(DC, k) of ACL a. We
introduce two methods, scoping and isolation, for generating the
correct ACL configuration a(l) for each location l on which ACL
a is placed. We define traffic domain Dl at location l to be all
possible OD-pairs that can traverse through l. Scoping ensures that

LDC

VR

CDC

(a) Placing ACL a2 unchanged
violates correctness

BE2

BR

AR AR AR AR

BE1fe2

Internet (INT)

a2
permit BE1 FE
deny any any

(b) ACL a2

Scoped
deny INT fe2
permit any any
Isolated
permit fe1 fe2
permit BE1 FE
deny any any

(c) Corrected ACL a2
for installation

a2

FE

fe1

Figure 7: Applying ACL a2 without changing its configuration inadver-
tently blocks allowed traffic. One of the corrected configurations should be
used instead.

a(l) only filters traffic ∈ Dl∩Fa(DC, k). Isolation ensures that
Dl∩Fa(DC) is allowed by ACL a. For example, the scoped and
isolated versions of ACL a2 are shown in Fig. 7(c). We compute
both the scoped and isolated versions of ACL a based on location l,
pick a(l) as the smaller of the two, and merge it with any co-located
ACL to generate the final ACL configuration.

5 Evaluation
This section presents results evaluating the importance and effec-
tiveness of our model in planning hybrid cloud layouts. Our eval-
uations were conducted using (i) a real application made available
as part of the Windows Azure SDK (§5.1), and (ii) a real Enterprise
Resource Planning (ERP) application deployed in a large campus
network (§5.2). We present evaluations of the ACL migration algo-
rithm in §5.3 based on security policies from the campus network.

5.1 Planned migration of a simple enterprise application

Our evaluations were conducted by deploying an application pro-
vided as part of the Windows Azure SDK on the Windows Azure
cloud platform. We describe the application data flow, the setup of
our cloud test-bed, and discuss how we instrumented the applica-
tion to obtain parameters needed by our model. We then present
results evaluating the change in response time when the application
is deployed across multiple data centers in a configuration recom-
mended by our planned migration approach. These results help us
experimentally validate the effectiveness of our model in meeting
constraints on changes in application response time.
Application abstraction and data-flow: The application that we
refer to as Thumbnail involves a user uploading a picture to a server.
The server creates a thumbnail version of the picture and returns
it to the user. The application consists of three components - a
web front-end (FE), a Windows Azure service for temporary stor-
age known as a Blob (BE), and a worker role (BL). Fig. 8 illus-
trates the data-flow. A user initiates a transaction by uploading a
picture and sending a request to FE (t0). The FE pushes a notifica-
tion message into a queue while writing the image to the BE (t1-a
and t1-b). Note that since these operations occur in parallel and
the time taken for t1-b dominates, we exclude the queue from our
abstraction. The BL reads the message from the queue, gets the im-
age from the BE (t2), creates a thumbnail, and stores the thumbnail
in BE (t3). Once the thumbnail is generated, the FE retrieves the
thumbnail (t4) and sends a response page, along with the thumb-
nail, back to the user (t5).
Cloud test-bed setup: While the original application was imple-
mented to only run on one data center, we have revised it so each
component may span multiple data centers. We create a setup in-
volving two different Azure data centers located in geographically
different locations - one in north-central United States (DCN), and

Worker
Role

Web
RoleII

S

Web
RoleII

S Web
RoleIISLoad

Balance

Worker
RoleWorker

0.65 (0.06)

blob blob

t0

Internal

External

t1-a

t1-b t2
t3

BE

t4

t5

BL

FE

Queue

Figure 8: Data flow of thumbnail application.

the other in south-central United States (DCS). We view DCN and
DCS respectively as the local and cloud data centers. We picked
a host (I) located in geographical proximity to DCN as seeing per-
formance representative of an internal enterprise user. We picked
about 20 Planetlab hosts (O) scattered around the United States,
and assumed they corresponded to external users.
Deriving model parameters: We have instrumented the applica-
tion to measure transaction sizes, component service times and var-
ious communication delays. Using the setup above, we run the ap-
plication over 50 times by uploading pictures from a typical user al-
bum. The mean (stddev) time for I to upload a picture to DCN and
DCS were measured to be 2966 (742) and 4681 (818) msec, while
the similar values from O to DCN and DCS were 3422 (619), and
3494 (498) msec. The mean (stddev) time to download the thumb-
nail from both clouds was 505 (208) msec for I and 455 (244) msec
for O. Before migration, the entire application resides in the same
data center. The mean (stddev) delay is 718 (169) msec from FE to
BE, 251 (160) msec from BE to BL, and 66 (16) msec from BL to
BE. The mean (stddev) of the service time of BL is 655 (60) msec.
The service time of FE and BE is negligibly small. We also mea-
sured the transfer delays of the original images and the thumbnails
between the clouds over multiple runs. The mean (stddev) trans-
fer time of the original images and thumbnails between the two
data centers was 2044 (161) msec and 96 (17) msec respectively.
Finally, the transaction size between each component pair was the
average size of the image or the thumbnail. These values were 1500
KBytes and 4 Kbytes, respectively.
Modeling migration benefits and communication costs: We as-
sume that migrating servers to the cloud can reduce costs by a factor
of 7 for compute-class servers, and 5 for storage-class servers, as
suggested in [14]. We leverage the Amazon EC2 cloud pricing [1]
to calculate the cost of running a server in the cloud. We consider
a scenario where a total storage space of 1TB is required, and 1000
I/O transactions per second are involved. The resulting benefits of
migrating a compute-class server is $1577 per year, and the bene-
fits of migrating a storage-class server is $17280 per year. Finally,
based on [1], we assume that it costs $170 for exchanging 1TB of
data with the cloud.
Migration strategies recommended by our model: Table 1 sum-
marizes the results obtained using our model with the flexible rout-
ing approach for a scenario where (i) 80% of users are internal, and
the rest are external; and (ii) there are four servers in each compo-
nent. Each row (column) corresponds to a constraint on the mean
delay (variance). Each cell shows the migration strategy recom-
mended by our model, as well as the yearly savings in US dollars.
For example, a setting (V=150% and D=110%) means a variance
bound of 150% of the original variance, and a mean delay bound of
110% of the original mean delay. For the same setting, 1 FE server,
3 BL servers, and 2 BE servers should be migrated for a maximum
yearly savings of $36367. We have run our algorithm for other user
mixes, but omit the results for lack of space.

We make several observations. First, in most cases, more BL

H
H

H
HHD
V 125% 150% 175% no bound

105% 1/1/1, $20024 1/1/1, $20024 1/1/1, $20024 1/1/1, $20024
110% 1/1/1, $20024 1/3/2, $36367 1/2/2, $36836 2/2/2, $38413
150% 1/1/1, $20024 1/3/3, $53647 1/3/3, $53647 1/3/3, $53647
200% 1/1/1, $20024 1/3/3, $53647 2/3/3, $55224 3/3/3, $56801

Table 1: Recommendations of planned migration approach for the Thumb-
nail application. The dollar amounts shown are savings per year.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

C
D

F

response time (s)

before migration
after migration

Figure 9: Validating model recommendations: CDF of user response time
(in seconds) before and after migration.

and BE servers are migrated than FE servers. Further, the num-
ber of BL and BE servers migrated is often the same. This is be-
cause (i) moving a BE server achieves more benefits than moving
FE servers; and (ii) by moving the same number of BL servers as
BE servers, all pictures that were sent to the BE servers can be pro-
cessed by BL servers in the same location. Second, variance plays
an important role in the recommendations. For instance, for a delay
bound of 110% (row 2), the best migration strategy varies for differ-
ent constraints on the variance. Third, we checked how the traffic
was routed between components, and confirmed that our approach
routed traffic intelligently. For example, external user transactions
were always routed to the cloud to the extent possible.
Validating recommendations through cloud deployment: We
deployed the recommended migration strategy for the scenario cor-
responding to 80% internal users, with constraints of up to 10%
increase in mean delay and 50% in variance. The strategy recom-
mends migrating one FE, two BE, and three BL servers. Further, as
generated by the flexible routing approach, all requests from exter-
nal users followed the path 〈FER, BER, BLR〉. 6.25% of local
requests followed the path 〈FER, BER, BLR〉, whereas the re-
maining requests were split evenly among paths 〈FEL, BEL, BLL〉,
〈FEL, BEL, BLR〉, and 〈FEL, BER, BLR〉. Here FEL and
FER respectively denote the local and remote components of FE,
and similar notations are used for other components.

Fig. 9 presents a CDF of user response times obtained using the
cloud test-bed for the scenarios prior to and after migration. The
values were obtained over 100 user transactions, with internal and
external users simulated using a host in geographical proximity
to the data center, and using Planetlab hosts as described before.
While response times after migration increase, as is expected, the
increase is still within acceptable limits. For instance, the 90%ile of
response times increased from 6.5 to 7.7 seconds, while the 99%ile
increased from 7.4 to 8.4 seconds. We observed an increase of 17%
in mean delay, and 12% in variance. At 5% level of significance, a
t-test of difference in the expected response times did not provide
sufficient evidence to conclude that the mean response time had
increased more than 10% after migration.

5.2 Planning migration of a campus ERP application

We next present a model of a real Enterprise Resource Planning
(ERP) application used in a large university with tens of thousands
of students, and several thousand faculty and staff. We use the
application as a case study to illustrate the benefits of a hybrid ap-

users

FE1

(3)

BL1

(7)

BL3

(2)
BL2

(3)

FE2

(2)

BL4

(2)
BL5

(2)

BE3

(1)

78% Internal

22% external30%

30%

30%

10%

20%

20%

5%
5%

59%

1%

1%

9% 22% 5% 5%

BE1

(1)

BE2

(1)
BE5

(1)

BE4

(1)

500GB 300GB
700GB

50GB 50GB
BE

Figure 10: The ERP application in a large university.

proach, and to show that our model accounts for key factors that
may impact migration decisions.
Modeling a deployed ERP application: Fig. 10 presents a model
of the application, obtained after discussions with the campus net-
work operators. The top most node represents users (both inter-
nal and external). About 78% of the transactions are generated
by users internal to the enterprise, and the rest by external users.
External users include those in satellite campuses of the main uni-
versity campus. Every other node corresponds to an application
component, and is annotated with the number of servers in that
component. There are two front-end components (FE1, FE2), and
five business-logic components (BL1–BL5). The components in
the BL layer differ in the transactions they handle - for instance,
one component handles financial transactions, while another han-
dles supply relations related transactions. The application has five
databases, each of which could be modeled as a back-end compo-
nent (BE1–BE5, collectively referred to as BE). Each database has
a size as shown in the figure. Each edge indicates that the corre-
sponding pair of nodes can communicate, and is annotated with the
percentage of transactions in the system that use that edge.

The figure highlights interesting departures from conventional
text-book application design. First, while about half the transac-
tions from users are directed to the front-end components (these
users are called thin clients), the remaining transactions directly
reach the business logic components (generated by thick clients).
Second, we observe communication between components in the
BL layer. For instance, once a purchase order is finalized, a BL
component corresponding to supply relations invokes a BL compo-
nent corresponding to financial transactions to ensure the funds get
committed. In fact, all pairs of BL components interact in practice,
though many interacting links carry a negligible fraction of trans-
actions and are not shown in Fig. 10. Finally, while in general the
traffic between components mirrored the number of transactions
between them, the data warehouse component (BL3) accounted for
70% of traffic between the BL layer and the back-end.
Inferring model parameters: We derived parameters that our model
needs by conducting end-to-end measurements of typical user re-
quests (such as downloading salary statements), and estimating in-
dividual component and link communication times. Our measure-
ments indicated typical user requests involved uploads of about
two KBytes, downloads of about 13.4 KBytes, end-to-end response
times of 1400 msec, and file download times of 202 msec. From
these measurements, we inferred communication delays on other
links assuming they were proportionally scaled from the request
upload and file download times. The difference between the end-
to-end response times and the link communication delays was as-
sumed to be node service times, and we assumed 90% of the ser-
vice time was spent in servers in the BL layer, as these were most
compute-intensive. We also measured the upload and download
times of similar-sized files to the Windows Azure cloud, to esti-
mate communication delays with the cloud. The same values were
used to estimate communication delays between local and migrated

Delay Yearly Recommended Components to Migrate
Bound Savings FE BL BE
115%
w/ policy

$14,102 FE1(1) BL1(2), BL2, BL4, BL5 —

115% $37,769 FE1(1), FE2 BL1(1), BL2, BL3,
BL4, BL5

BE2, BE3, BE4, BE5

110% $27,789 FE2 BL2(1), BL3, BL5 BE2, BE3, BE5

120% $43,592 FE1(1), FE2 BL1(2), BL2, BL3, BL5 BE1, BE2, BE3, BE5

130% $57,763 migrate all components in full

Table 2: Recommendations of the planned approach for ERP application.

components, and delays related to external users. We assumed 10
transactions per second on average. Finally, we used the same val-
ues for migration benefits and communication costs as in §5.1.
Recommendations from model: Table 2 presents results produced
by our model with the flexible routing approach. Each row corre-
sponds to a particular bound on mean delay. For each delay bound,
we show the yearly savings, and the components in each tier that
should be migrated. If a component should only be migrated par-
tially, we also show in brackets the number of servers to migrate.
For example, for a delay bound of 110%, only one of the three
servers of BL2 are migrated, while BL3 and BL5 are migrated fully.
The first row is a special case where the operator specifies a policy
that no database (i.e., BE1–BE5) can be migrated. For all other
rows, all components can be migrated.

Table 2 illustrates at least three scenarios where the hybrid ap-
proach could be useful. First, when there are policy restrictions
on migration (first row), the hybrid approach can still identify less
sensitive components to migrate, leading to savings while meeting
the delay bound. Second, migrating the entire application is fea-
sible only when the delay bound is set at 130% or higher (row 5).
This is because all transactions from internal users must be sent
out to the cloud and then back to the enterprise. In contrast, a hy-
brid approach can achieve significant savings even at lower delay
bounds, by migrating a subset of components. Third, full migration
of components such as FE1 and BL1 can have a substantial impact
on delay, as these components are used by a large fraction of trans-
actions. A hybrid approach allows for partial migration of these
components (rows 2–4). Here, the subset of servers moved to the
cloud are mainly used by the external users, and hence the increase
in mean delay is small.

Table 2 also shows that the interaction between components plays
a critical role in planning decisions. For example, for all rows,
when FE2 is migrated, BL3 and BE3 are also migrated. Doing so
enables the transactions sent to FE2 to be processed entirely in the
cloud, and prevents them from being sent back and forth between
the local data center and the cloud.
Sensitivity to model parameters: We have studied how the opti-
mal migration strategy is impacted by varying model parameters,
in particular, the estimated benefits of migrating individual CPU
and storage servers. We summarize some of the key insights that
we have gained. First, for some delay bounds, the optimal migra-
tion strategy dominates all other feasible solutions in that it moves
more CPU and storage servers than any other approach. In such
cases, the optimal migration strategy does not depend on the ben-
efit estimates. For instance, for any delay bound above 130%,
the best approach is to migrate the entire application regardless of
benefit estimates. Second, the benefit estimates impact the strat-
egy if there are multiple feasible approaches to realize the delay
bound, none of which dominate the others. For example, a delay
bound of 120% could be met by either migrating component BE1 (a
large database), or components BL4 and BE4 (2 CPU servers and
a much smaller database). While Table 2 recommended that BE1
be moved, our results show that components BL4 and BE4 should
be moved instead if the CPU benefits were much higher. Third, the

Firewall Contexts No.

Admin. Network for misc. servers, e.g., storage/backup servers 4
Admin. Network for production/non-production academic systems 2

Admin. Network for production/non-production database 2
Admin. Network for production/non-production ERP 2

Admin. Network for production/non-production web services 2
Admin. Network for production/non-production Windows/UNIX systems 6

Internal/External DMZ 2
Misc. servers/applications 6

Oracle/SQL Database Servers 3
Production/Non-production academic systems 2
Production/Non-production Active Directory 2

Production/Non-production ERP 2
Production/Non-production Windows/UNIX systems 5

Total 40

Table 3: Types of firewall contexts in the campus data center.

relative size of transactions between different components may de-
termine the optimal strategy independent of benefit estimates. Note
that transaction sizes determine (i) the delay between the compo-
nents and consequently total application response time; and (ii) the
wide-area communication costs. For instance, if the size of trans-
actions between the BL and BE tier is larger than the size of trans-
actions between other tiers, migrating a BE component alone is not
as beneficial as migrating both the BE component and the most fre-
quently interacting BL component, regardless of benefit estimates.
Finally, we have explored the sensitivity of our results to the costs
of Internet communication. For most delay bound settings, the rec-
ommended strategy does not change even if costs go up by a factor
of 10, but with higher factors, fewer components should be mi-
grated. We omit further details for lack of space, and defer studies
on a wider range of applications to future work.

5.3 Migrating security policies

In this section, we demonstrate the benefit of systematic migration
of ACLs by applying our algorithms to a concrete migration sce-
nario and evaluating how well our approach performs and scales
on a large-scale campus network.

5.3.1 Security policies in operational data centers

We present a high-level characterization of ACL usage in two oper-
ational data centers, DC1 and DC2, owned by a large-scale campus
network. The data centers offer a variety of services such as student
self-services, finance tools, employee training, etc., to campus and
external users.

Overall, hundreds of servers are logically partitioned in 40 server
VLANs (35 in DC1 and 5 in DC2). Servers in the same VLAN
have similar functionalities and share similar patterns when com-
municating with nodes outside of the VLAN. Every VLAN has its
ingress and egress traffic protected by a firewall context, which con-
sists of a pair of ACLs (one per direction) placed at the interface
of the VLAN’s access router. By default, all ingress/egress traffic
to/from a VLAN is denied/allowed. Any incoming traffic destined
to servers in a VLAN needs to be explicitly allowed by adding ap-
propriate permit ingress rules.

Table 3 summarizes the types of firewall contexts and the num-
ber of contexts of each type. The contexts contain diverse reach-
ability policies for application servers, database and file servers,
portal servers and application servers for external access, and non-
production testing networks. Nearly half of the contexts are ad-
ministration contexts, which are accessible for authorized admin-
istrators to manage servers. Fig. 11 shows a CDF of the number
of ingress/egress ACL rules across all contexts. The size of each
ACL ranges from 0 to 208 rules. Migration of reachability policies
of such complexity and scale is daunting, further strengthening the
case for an automated approach like ours.

ACL Rules Default

a1 1. deny: all but external hosts with private addresses permit

a2
1. permit: monitoring component (BL5)→FE1 and FE2 deny2. permit: any→HTTP & HTTPS ports on FE1 and FE2

a3

1. permit: monitoring component (BL5)→BL1, BL2, and BL3

deny
2. permit: BL4→TCP port p1 on BL1, BL2, and BL3
3. permit: FE1→TCP port p2 on BL1
4. permit: FE2→TCP port p2 on BL3
5. permit: external/campus users→TCP port p3 on BL1 and BL2

a4

1. permit: monitoring component (BL5)→BL4
deny2. permit: BL1, BL2, and BL3→TCP port p1 on BL4

3. permit: external/campus users→TCP port p3 on BL4
a5 1. permit: external/campus administrators→SSH port on BL5 deny

a7
1. permit: monitoring component (BL5)→BE deny2. permit: all BL components to MySQL port on BE

Table 4: ACL configurations before migration.

5.3.2 Case study: migrating ERP application

We evaluate the effectiveness of our ACL migration algorithm in
the context of the ERP application introduced in §5.3.2. We ob-
tained the ACL rules relevant to the application from the campus
operators. We computed the new ACL configurations for the mi-
gration scenario corresponding to the first row of Table 2. In this
scenario, all servers in the components BL2, BL4, and BL5, one
server in FE1 and two servers in BL1 are migrated. All servers for
the ERP application are located in DC1 and are physically arranged
as shown in Fig. 12. FE1,1–FE1,3 denote the individual servers of
component FE1, and a similar notation is used for other servers.
All servers in the FE and the BE tier are placed in VLAN V1 and
VLAN V7 respectively. Servers in the BL tier are placed in VLANs
V2, V4 and V5.

Fig. 12 shows that six different ACLs are placed on nine router
interfaces to filter traffic as per operator goals. Table 4 shows
the rules associated with each ACL. A packet not matching any
of the rules takes the default action. The policies closely match
the communication pattern in Fig. 10. For example, a3 permits
access from the monitoring component BL5 to components BL1,
BL2 and BL3 (rule 1), and from BL4 to one port on the same des-
tinations (rule 2). a3 also permits traffic from FE1 to a port on
BL1 (rule 3), from FE2 to a port on BL3 (rule 4), and from exter-
nal/campus users to a port on BL1 and BL2 (rule 5).

Fig. 13 shows the new ACL placement after migration, assum-
ing techniques for applying ACLs to groups of VMs are available
in the cloud. After migration, there are a total of 13 ACLs since
placement is done separately for each data center. Each ACL be-
fore migration may be placed in multiple locations, contributing to
rules in one or more ACLs after migration. For example, ACL a3

contributes to rules in ACLs r1, r3, r5, r7, r10, and r11. Each new
ACL is generated by merging co-located ACLs, e.g., a2 and a3 are
merged to produce r5. Table 5 shows the configuration of a subset
of these new ACLs that inherit rules from a3.

We use a3 to illustrate two key properties: correctness and fil-
tering of unwanted Internet traffic. First, the new ACLs correctly
inherit policies from a3. For example, a3’s rules 3 and 4 are ac-
counted for by r3 (rules 1–3), r7 (rule 1), and r10 (rule 3). Second,
the new ACLs are placed at appropriate locations. a3 was originally
placed on the outbound router interface facing VLAN V2 to filter
all traffic to the 3 BL components. After migration, BL1,1−2 and
BL2 are moved to the cloud. To block unwanted traffic from DC1

to these migrated servers before it reaches the Internet, we move a3

to the inbound router interfaces facing VLANs V1 and V7, produc-
ing the new ACLs r3 and r5. Clearly, correct and beneficial ACL
migration is tedious if done manually without using our algorithm.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
D

F
(f

ire
w

al
l c

on
te

xt
)

of ACL Rules

Ingress
Egress

Figure 11: Ingress/Egress
ACL sizes per firewall context. Figure 12: ACL placement for the ERP application in DC1.

Figure 13: ACL placement after migrating the ERP applica-
tion from DC1 to the cloud.

ACL Rules Default

r3

1. permit: FE1,2−3→TCP port p2 on BL1
permit2. permit: FE2→TCP port p2 on BL3

3. deny: any→BL1, BL2, and BL3

r5

1. deny: any→BL1, BL2, and BL3
permit2. permit: any→HTTP & HTTPS ports on FE1 and FE2

3. deny: any→FE1 and FE2

r7
1. permit: FE1,1→TCP port p2 on BL1 permit2. deny: FE1,1→BL1, BL2, BL3, and BE

r10

1. permit: BL1,3−7, BL3, BL5→any

deny2. permit: BL4→TCP port p1 on any server
3. permit: FE1,1−3→TCP port p2 on BL1,1−2
4. permit: external users→TCP port p3 on any server

Table 5: Subset of ACLs inheriting rules from a3 after migration.

5.3.3 Performance and scalability

To evaluate the scalability of our ACL migration algorithm, we ran
it on the reachability policies of the entire campus network, which
is a distinct rule-set from that described in § 5.3.1 corresponding
to policies in the campus data-center. The network consists of 700
VLANs and 212 ACLs. The ACLs are enforced on 341 locations
across 63 routers, and range in size from 2 to 300 rules. 24% of
the routers have 200+ rules. We derived the reachability matrix and
reinstalled it under the same network setting. Our algorithm took
4 minutes to run on a dual-core Intel Xeon 2 2.6GHz system with
8GB RAM using a Java implementation of the algorithm.

The total number of ACL rules across all routers in the network
is 7889. If a naive approach of computing and placing each cell of
the reachability matrix was used (§4.2.1), the total number of rules
grows by two orders of magnitude (570521). In contrast, if our ap-
proach that works at a coarser granularity is employed, the number
of rules is 7952; only 63 more than the original network. The slight
growth in rules is due to an inconsistent policy in the original net-
work and we omit details for lack of space. Overall, these results
show that our approach can scale well to large networks.

6 Related work
Many challenges must be addressed before enterprises can embrace
the benefits of cloud computing. These include lock-in to specific
providers, lack of scalable storage, risks in fate-sharing with others
in shared infrastructure, service availability, and problem resolu-
tion in the cloud [14,23]. Enterprises are also concerned about how
they can stream-line the deployment of their complex services in
the cloud [23]. Our paper takes a step in this direction by devel-
oping a framework for deciding what to migrate to the cloud such
that enterprises can realize a benefit. Maintaining the security and
privacy of data once migrated to the cloud is a challenge [14, 28],
and has started receiving attention from the community [19]. Ex-

isting solutions [2, 28] propose extending the enterprises’ network
into the cloud using a VPN in order to isolate the enterprises’ in-
stances in the cloud. Using such a model, our security framework
can be directly leveraged to ensure that the security policies in the
data center extend to the services on the VPN in the cloud.

Previous work in the analysis of multi-tier applications focused
on developing queuing models of applications that can be used to
estimate mean response times [26]. A dynamic provisioning tech-
nique for such applications that employs a queuing model is pre-
sented in [27]. In contrast, we use an optimization framework to
identify application components to migrate to the cloud in order to
realize the maximum benefit, and consider variance in addition to
mean response times. We assume direct measurements of response
time distributions of the overall system, and individual components
prior to migration are available. These already account for queuing
considerations before migration. Our model implicitly assumes the
queuing structure does not change after migration. Incorporating
queuing models to account for such a change within our optimiza-
tion framework is an interesting direction for future research.

Algorithms for placing security policies when deploying new en-
terprise networks are presented in [24]. In contrast, we focus on
unique issues in migrating existing enterprise applications to the
cloud. In [24], it is assumed that the reachability matrix informa-
tion is defined at the granularity of individual cells. This approach
is impractical in practice as it involves an explosion in the number
of ACL rules (§4.2.1, §5.3.3). In contrast, our approach provides
an efficient intermediate representation and operates at a coarser
granularity, ensuring better scaling with large networks.

7 Discussion and Open Issues
We discuss key aspects of our work, and open issues:
Model enhancements: While our paper helps better understand
cloud migration trade-offs, it is only a start. An important future
direction is understanding the impact of migration on application
reliability, given the high costs of down-time for enterprise appli-
cations [18]. While on the one hand, components in the cloud run
at lower SLAs than components in the enterprise [23], migration
increases the number of fault domains in which the application op-
erates, and so has the potential to increase reliability. In this paper,
we have framed the problem as one of deciding how many servers
to migrate to the cloud, and focused on a two location model (lo-
cal and cloud data-center). In the future, it would be interesting
to generalize this to models that allow any number of servers to
be instantiated in the local and cloud data-centers, and allow for
multiple cloud locations. Finally, it may be interesting to extend
our cost and latency models to consider middle-boxes deployed in
enterprises. WAN optimizers [9] could potentially reduce Inter-

net communication costs, if deployed at both the local and cloud
data-centers. Encryption of data over the public Internet may incur
additional CPU costs, as well as higher latencies, though we note
the increase in latency is relatively small.
Handling dynamic variations in workload: An important bene-
fit of hybrid architectures that we have not explored in this paper
is their potential to help handle peaks in workload. In particular,
the local data-center could be provisioned with enough server ca-
pacity to handle typical workloads, while cloud resources could be
invoked as needed to deal with peaks. That said, our modeling ap-
proach could potentially help in planning layouts that can deal with
dynamic workload variations. One approach is to use the model to
determine the appropriate configurations for a variety of estimated
workloads, and base the final configuration on the expected proba-
bilities of each workload. Another approach is to use our model pe-
riodically as workloads change over time, to determine if a change
in placement is required. We defer more detailed investigation of
these issues to future work.
Executing migrations: This paper focuses on the questions of
whether migration is beneficial at all, and how to determine what
to migrate. Executing a migration itself poses several challenges
such as identifying dependencies and changing application server
configurations, minimizing application down time, and efficiently
copying large databases while synchronizing local and remote repli-
cas. While technologies such as live migration can be used to min-
imize service disruption, extending such technologies to wide-area
environments is an area that needs more research.
Obtaining model parameters: Prior to migration planning, we
need to perform application discovery to obtain essential input pa-
rameters such as application dependencies, component response
times, and traffic exchanged between components. Many research
tools and commercial products can be used to obtain application de-
pendencies either by inference from network communication pat-
terns [13], or by analyzing application-level configurations [7, 21].
Transaction counters and service response time measurements for
each component are widely available on enterprise servers today.
Most enterprise software packages provide embedded performance
monitoring capabilities that can be enabled on the servers them-
selves to track and report these performance numbers [5, 12]. Fi-
nally, inaccuracies in estimates of model parameters could be dealt
with by running the model with multiple sets of inputs and choosing
a conservative plan to ensure application response times are met.

8 Conclusion
In this paper, we have made two contributions. First, we have
shown (i) the potential benefits of hybrid cloud deployments of en-
terprise applications compared to “all or nothing” migrations; and
(ii) the importance and feasibility of a planned approach to making
migration decisions. Second, we have shown the feasibility of au-
tomatic and assurable reconfiguration of reachability policies as en-
terprise applications are migrated to hybrid cloud models. We have
validated our algorithms using a campus ERP application, Azure-
based cloud deployments, and router configurations of a large cam-
pus network. Our work is an important but first step. In the future,
we hope to gain experience with our approach using a wider range
of real enterprise applications, explore the predictive power of our
model under a wider range of settings, and adapt our approach to
dynamic variations in workload.

9 Acknowledgments
We thank Brad Devine, William Harshbarger, Michael Schulte, Kitch
Spicer and others in the Information Technology Department at
Purdue (ITaP) for providing access to the data, and for their time.

We thank our shepherd, Jeff Mogul, and the anonymous reviewers
for their feedback which helped substantially improve the quality
of the paper. This work was supported in part by NSF grants CNS-
0721488 and Career-0953622.

10 References
[1] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.
[2] Amazon Virtual Private Cloud. http://aws.amazon.com/vpc/.
[3] Amazon Web Services: Overview of Security Processes, White Paper.

http://aws.amazon.com/security.
[4] Animoto - Scaling Through Viral Growth. http:

//aws.typepad.com/aws/2008/04/animoto---scali.html.
[5] DB2 for z/OS Performance Monitoring and Tuning Guide.

http://publib.boulder.ibm.com/infocenter/dzichelp/
v2r2/topic/com.ibm.db29.doc.perf/dsnpfk17.pdf.

[6] IBM ILOG CPLEX. http://www-01.ibm.com/software/
integration/optimization/cplex/.

[7] IBM Service Management Tivoli Application Dependency Discovery Manager
Software. http:
//www-01.ibm.com/software/tivoli/products/taddm/.

[8] Microsoft Windows Azure.
http://www.microsoft.com/windowsazure/.

[9] Riverbed Technology. http://www.riverbed.com/.
[10] SQL Azure Firewall. http:

//msdn.microsoft.com/en-us/library/ee621782.aspx.
[11] The Case Against Cloud Computing.

http://www.cio.com/article/477473/.
[12] Websphere application server performance monitoring infrastructure (pmi).

http://publib.boulder.ibm.com/infocenter/wasinfo/
v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/
info/exp/ae/cprf_pmi_arch.html.

[13] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.
Performance Debugging for Distributed Systems of Black Boxes. In Proc.
SOSP, 2003.

[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds:
A Berkeley view of cloud computing. Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Feb 2009.

[15] Arthur Cole. The Future Belongs to Hybrid Clouds.
http://www.itbusinessedge.com/cm/blogs/cole/
the-future-belongs-to-hybrid-clouds/?cs=30482.

[16] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2001.

[17] D. Gottfrid. The New York Times Archives + Amazon Web Services =
TimesMachine. http://open.blogs.nytimes.com/2008/05/21/.

[18] J. Hamilton. The Cost of Latency. http://perspectives.mvdirona.
com/2009/10/31/TheCostOfLatency.aspx, Oct. 2009.

[19] L. E. Li, M. F. Nowlan, C. Tian, Y. R. Yang, and M. Zhang. Mosaic: Policy
Homomorphic Network Extension. Technical Report YALEU/DCS/TR-1427,
CS Department, Yale University, Feb 2010.

[20] M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer
nonlinear programs: A theoretical and computational study. Mathematical
Programming, 99(3):563–591, 2004.

[21] K. Magoutis, M. Devarakonda, and K. Muniswamy-Reddy. Galapagos:
Automatically Discovering Application-Data Relationships in Networked
Systems. In Proc. IM, 2007.

[22] M. O’Neill. Connecting to the cloud. http:
//www.ibm.com/developerworks/library/x-cloudpt1/.

[23] K. Sripanidkulchai, S. Sahu, Y. Ruan, A. Shaikh, and C. Dorai. Are Clouds
Ready for Large Distributed Applications? In Proc. SOSP LADIS Workshop,
2009.

[24] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz. Towards systematic
design of enterprise networks. In Proc. CoNEXT, 2008.

[25] Symantec. 2010 State of the Data Center Global Data.
http://www.symantec.com/content/en/us/about/media/
pdfs/Symantec_DataCenter10_Report_Global.pdf.

[26] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N. Tantawi. An
analytical model for multi-tier internet services and its applications. In Proc.
SIGMETRICS, 2005.

[27] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic Provisioning of
Multi-tier Internet Applications. In Proc. ICAC, 2005.

[28] T. Wood, P. Shenoy, A. Gerber, K. Ramakrishnan, and J. V. der Merwe. The
Case for Enterprise-Ready Virtual Private Clouds. In Proc. HotCloud
Workshop, 2009.

[29] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and
J. Rexford. On static reachability analysis of IP networks. In Proc. INFOCOM,
2005.

