
Optimizing Cost and Performance for Content Multihoming
Hongqiang Harry Liu� Ye Wang� Yang Richard Yang�× Hao Wang† Chen Tian�

�Yale University †Google ×SplendorStream
{hongqiang.liu, ye.wang, yang.r.yang, tian.chen}@yale.edu wanghao@google.com

ABSTRACT
Many large content publishers use multiple content distribution net-
works to deliver their content, and many commercial systems have
become available to help a broader set of content publishers to ben-
efit from using multiple distribution networks, which we refer to
as content multihoming. In this paper, we conduct the first sys-
tematic study on optimizing content multihoming, by introducing
novel algorithms to optimize both performance and cost for content
multihoming. In particular, we design a novel, efficient algorithm
to compute assignments of content objects to content distribution
networks for content publishers, considering both cost and perfor-
mance. We also design a novel, lightweight client adaptation algo-
rithm executing at individual content viewers to achieve scalable,
fine-grained, fast online adaptation to optimize the quality of expe-
rience (QoE) for individual viewers. We prove the optimality of our
optimization algorithms and conduct systematic, extensive evalua-
tions, using real charging data, content viewer demands, and per-
formance data, to demonstrate the effectiveness of our algorithms.
We show that our content multihoming algorithms reduce publish-
ing cost by up to 40%. Our client algorithm executing in browsers
reduces viewer QoE degradation by 51%.

Categories and Subject Descriptors: C.2.3 [Computer Commu-
nication Networks]: Network Operations.

Keywords: Content Delivery, Multiple CDNs, Optimization.

1. INTRODUCTION
Many content publishers on the Internet use multiple content dis-

tribution networks (CDNs) to distribute and cache their digital con-
tent. We refer to content publishing using multiple content distri-
bution networks as content multihoming. In our recent survey, we
found that all major content publishers such as Netflix, Hulu, Mi-
crosoft, Apple, Facebook, and MSNBC use content multihoming.

Content publishers adopt content multihoming to aggregate the
diversity of individual CDN providers on features, performance and
commitment [7]. For example, one CDN may provide good cov-
erage for locations 1 and 2, whereas another CDN provides good
coverage for locations 2 and 3. To deliver content to viewers from
all three locations, a content publisher may need to use both CDNs.

Given the wide usage and potential benefits of content multi-
homing, many commercial systems supporting content multihom-
ing have recently been deployed (e.g., [9, 11, 16, 17, 21, 27]), so
that more content publishers can benefit from content multihoming.
However, these commercial products either use ad hoc approaches
or do not provide details on their designs. No previous studies on
how to effectively utilize content multihoming are known.

In this paper, we attempt to provide a framework and a set of
novel algorithms to optimize the benefits of content multihoming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$15.00.

We ask a simple question: Given that content multihoming allows a
content object to be delivered from multiple CDNs, which CDN(s)
should a content publisher use to deliver each object to each con-
tent viewer requesting this object, so that the publisher optimizes
its benefits from content multihoming? This question is the key
to efficiently utilizing content multihoming, since its solutions can
be implemented directly with the flexible request routing mecha-
nisms (e.g., DNS CNAME, HTTP Redirect from servers, and client
scripts in end hosts) in modern content delivery infrastructures.

An answer to this simple question, however, is not immediately
obvious. Consider the current common approach of choosing, for
each content viewer, the best performing CDN among all candidate
CDNs. This approach, despite its simplicity, has multiple issues.
First, although the chosen CDN may provide the highest level of
performance, for example, satisfying that 99% viewers do not see
quality of experience (QoE) degradation, the cost of the chosen
CDN can be much higher than another CDN with a slightly lower,
but still high enough level of 95%. Second, there are often multi-
ple CDNs with comparable and sufficient levels of performance at
a given region, e.g., in US. One common approach to break ties in
such cases is to pick the CDN with the lowest cost. However, the
costs of CDNs, in particular, pay-as-you-go CDNs such as Ama-
zon CloudFront, are volume based and non-linear. The cost of one
object assignment depends on the other assignments. Third, there
are locations where even the best performing CDN falls short. For
example, a content publisher may have a QoE target of 95%, but
the best performing CDN at some location achieves only 90%.

In this paper, we answer the preceding question by designing
two algorithms: (1) an efficient optimization algorithm executing
at content publisher to compute content distribution guidance, and
(2) a simple algorithm executing at individual content viewers to
follow the guidance with local adaptation. Either algorithm can be
deployed alone, but together they benefit the most.

Specifically, the publisher optimization algorithm, named CMO,
computes CDN assignments considering many real factors: non-
linear, multi-region CDN traffic charging, per-request charging, con-
tent licensing restrictions, CDN feature availability, and CDN per-
formance variations. The CMO algorithm is novel and highly ef-
ficient. For example, when considering traffic cost only, the com-
plexity of CMO is polynomial and independent of the number of
content objects, whereas the complexity of simple enumeration is
exponential in the number of content objects.

The local viewer algorithm provides a capability for a content
viewer to make efficient usage of multiple servers from multiple
CDNs, with a preference ordering on the usage of CDN edge servers
provided by the content publisher. Inspired by TCP AIMD and
using a simple prioritized assignment mechanism, the algorithm
adapts the usage of multiple CDNs, achieving a performance level
that no single CDN/server can achieve alone.

We implement both of the algorithms and conduct systematic,
extensive evaluations using real charging data, content viewer de-
mands, and CDN performance to demonstrate the effectiveness of
our algorithms. We show that our content multihoming algorithms
reduce publishing cost by up to 40%. Our implementation of the
client algorithm running in Adobe Flash enabled browsers reduces
viewer QoE degradation by 51%.

371

2. RELATED WORK
The importance of content multihoming has led to substantial

industrial related work. We divide the industrial efforts into three
categories [7]. The first category is software systems which we
name CDN switchers (e.g., [1, 21]) and integrators (e.g., [19, 27].
For example, the One Pica Image CDN extension [21] of the Ma-
gento Commerce platform provides an API to support the inte-
gration with multiple CDNs, including Amazon S3, Coral CDN,
Mosso/Rackspace Cloud Files, and any CDN server or service that
supports FTP, FTPS, or SFTP. Their objective, however, is not on
the algorithms to effectively use multiple CDNs, but rather on us-
ability issues such as seamless switching from one CDN provider
to another. Commercial systems such as [19, 27] provide CDN ser-
vices based on aggregation of multiple CDNs. They can benefit
from using our algorithms.

Going beyond the CDN switchers and integrators is a category
of systems named CDN Load balancers. There are many CDN
load balancers commercially available, including Cotendo CDN
balancer, LimeLight traffic load balancer, Level 3 intelligent traffic
management, and Dyn CDN manager. Some of these systems of-
fer quite flexible rules to split CDN traffic among multiple CDNs.
For example, Cotendo CDN balancer supports rules with weighted
allocation, geographic location, geographic distance, time of day,
and any combination. In particular, the weighted allocation rule
allows a publisher to specify: x percent to CDN one, y percent to
CDN two, and so on. A key missing component of these existing
systems, however, is the key algorithms to compute the allocation
(e.g., the percentages). Hence, the output of our optimizer can be
used to configure these systems.

There are also client based CDN load balancers. One interest-
ing example is Conviva [9], whose video player plug-in performs
continuous video quality monitoring, and could perform automatic
CDN and/or source server switching during video playback. The
exact details of their algorithm, however, are unknown.

A third category of related industrial efforts is CDN intercon-
nect. In [20], a CDN interconnect (CDNi) architecture has been
proposed so that a content publisher contracts with a few upstream
CDNs, who may delegate some requests to downstream CDNs. The
delegation relationship can be recursive to form a directional dele-
gation graph, and all of the involved CDNs are said to form a CDN
federation [5]. Our algorithms can be extended to the CDNi setting
by considering a set of connected CDNs as a single logical CDN.

So far content multihoming has not been a focus of academic
research. A related recent academic work is a measurement study
of Netflix [2]. The paper shows that similar to many content pub-
lishers, Netflix uses content multihoming. The paper conducts a
measurement study and shows that there are indeed potential per-
formance benefits of using content multihoming.

There has been some recent studies on intra-CDN optimizations
which can be used in conjunction with content multihoming. The
authors of [3, 22, 23, 24] study how CDNs can utilize information
on load of edge servers, network conditions, and locations/bandwidth
of clients to improve CDN request routing. Our work complements
these studies by optimizing the assignment of contents into CDNs.

We refer to our system as content multihoming to draw an anal-
ogy with traditional Internet multihoming (e.g., [13]). However,
content multihoming is quite different from traditional ISP multi-
homing. For example, while ISPs typically have a uniform price
based on traffic, CDNs charge customers by regions.

3. BACKGROUND AND NOTATIONS
We start by introducing the background and notations. Table 1

provides a reference for the major notations used in this paper.
There are three key types of entities being managed in content

multihoming: (1) content objects; (2) viewers of contents; (3) dis-
tribution networks that cache contents from origin networks to serve
content viewers.
Content object: A content publisher can have a large number of
content objects such as videos and images. Let N denote the total
number of content objects. An object has many properties. In the
context of content distribution, the performance requirement, the
size, and the popularity of an object are its key properties [4]. Let
si be the size of object i. We introduce object popularity when we
next introduce content viewers.

N Number of content objects.
K Number of CDNs.
A Set of fine-grained location areas.
si Size of object i.
nai Number of requests for object i from area a.
ia Location object: object i requested from location area a.
αrk Set of location areas served by charging region r of CDN k.
trk Charging volume of CDN k at its charging region r.
Crk() Charging function of CDN k for its charging region r.
Fk Set of location objects that CDN k can serve.

pai,k
CDN k’s performance for object i at location area a:
fraction of times CDN k can deliver ia with sufficient QoE.

xai,k CDN guidance: fraction of nai requests directed to CDN k.
ψk CDN assignment: set of location objects assigned to CDN k.

Table 1: Summary of key notations.

Content viewer (client): There can be a large number of content
viewers requesting content objects. These content viewers can be
distributed across multiple geographical areas. The specific geo-
graphical areas depend on the particular requirements of a content
publisher. For generality and conceptual clarity, let A be the set of
all geographical areas, say all cities or countries. Note that in this
challenging general case the size of A can be large, on the order of
thousands. Let a ∈ A denote a location area.

The popularity of an object among content viewers is location
dependent [12]. Let nai denote the number of times that object iwill
be requested, during a time interval (say a month), from content
viewers located at location area a.

We also use nai to encode licensing restrictions that a content
publisher often needs to enforce in practice. Specifically, if content
viewers from a location area a should not receive a content object
i, nai should be 0.

Content distribution network (CDN): A key reason of content
multihoming is to aggregate the capability-geography expertise of
different CDNs, as different CDNs can have quite different perfor-
mance and cost characteristics, at different geographic regions. On
the other hand, as we will see, such differences are a major source
of intrinsic complexity when optimizing content multihoming. In
this paper, we assume that the set of CDNs is given. Let K be the
number of CDNs, and we use k and j to index individual CDNs.

First consider performance. Figure 1 shows the edge server foot-
prints of three real CDNs: Amazon CloudFront, MaxCDN and Chi-
naCache. When a content viewer from a location area a requests a
content object through CDN k, a well designed CDN will choose
an edge server (or several servers) that is close to a to serve the
request, since a short latency from edge servers to end users is typ-
ically needed to achieve good content delivery performance [15].
Comparing the geographical footprints of the three CDNs shown
in Figure 1, one can anticipate that CloudFront and MaxCDN are
more likely to provide better performance in US and Europe, while
ChinaCache may perform well in China. None of the three covers
regions such as Russia and Africa.

To quantify the performance, we conduct performance measure-
ments using 600 PlanetLab nodes at different locations to request
content objects from three CDNs (CloudFront, MaxCDN, and Liq-
uid Web). Since performance metrics are dependent on the content

372

Figure 1: Edge server distributions of three CDNs.

type, and streaming media is a major content type [8], we evalu-
ate the delivery of streaming media. Table 2 shows the measured
success rates (fraction of clients with no video freeze) of the CDNs
to deliver streaming objects encoded at three different streaming
rates (1 Mbps, 2 Mbps, and 3 Mbps) to some representative loca-
tions. For example, the entry for Liquid Web/Spain shows the suc-
cess rates when PlanetLab viewers from Spain request from Liquid
Web: if the object is encoded at 1 Mbps, 99.4% of the viewers can
receive at the encoding rate; for a 2 Mbps object, only 47.3% of
the viewers can receive at the encoding rate; for a 3 Mbps object,
almost no viewers can receive at the encoding rate. The measure-
ment results show clearly that the usability of a CDN depends on
both the object (e.g., a video encoded at 1 Mbps or higher) and
the location of the viewer. We refer to object i being requested by
viewers at a specific location area a as a location object, denoted as
location object ia.

CloudFront MaxCDN Liquid Web
US 99.9 99.9 99.9 99.2 98.4 97.8 99.3 96.1 92.1

Brazil 100 100 99.9 98.6 70.5 24.4 99.6 0 0
Austria 99.9 99.9 99.8 97.6 96.7 95.3 97.0 42.2 0
Spain 99.9 99.9 99.9 98.7 96.6 95.1 99.4 47.3 0.2
Japan 99.9 99.9 99.9 97.5 95.8 77.1 99.7 0 0
China 99.9 99.9 99.8 91.1 24.7 0 1.6 0 0

Australia 100 100 99.9 94.7 89.5 0 99.7 0 0

Table 2: Measured CDN performance pai,k (3 content objects at
streaming rates 1/2/3 Mbps).

To precisely characterize the performance of CDN k, in this pa-
per, we define pai,k as the fraction of times (e.g., 90%) that CDN
k can deliver ia at the encoding rate of the object i. One may de-
fine pai,k for other contexts (e.g., for images) and use other metrics
(e.g., 95-percentile latency). Practically pai,k can be obtained from
measurements or service level agreements (SLA) of CDNs.

Next consider costs. Different regions may have different re-
source (e.g., bandwidth, electricity) costs. Different CDNs may
operate at different scales at different regions to negotiate different
volume discounts. Hence, different CDNs’ prices might be various,
and one CDN may charge differently at each region.

Figure 2 shows the real charging structures of two CDNs: Ama-
zon CloudFront and MaxCDN. We show these two structures be-
cause they are public and represent typical CDN charging struc-
tures. We make three observations. First, each CDN groups the
locations of its edge servers into multiple regions and each region
may have a different pricing model. We refer to each such re-
gion as a charging region. For example, CloudFront divides into
5 charging regions: US, EU, South America (SA), Japan (JP), and
Singapore/Hong Kong (SHK). MaxCDN divides into 2 charging
regions: US/EU/SA, and Asia Pacific (AP). The total charge of a
CDN to a content publisher is the sum of the charges at all of the
charging regions. Second, denote the total traffic originated from
the edge servers of a CDN located at a charging region during a
billing period as the charging volume of the charging region; then
the charging function of each charging region is a nonlinear con-

cave function of the charging volume. Third, there can be large
price diversity within a CDN as well as across CDNs. For exam-
ple, CloudFront’s charge for South America for "next 100 TB" is
$0.18/GB, which is 3 times that for US at the same traffic volume.

To precisely express the charging of CDNs, we let αrk be the set
of location areas served by charging region r of CDN k. For view-
ers from a location area a, each CDN has its own strategy to select
servers in some r to serve them. This strategy is controlled by CDN
k but can be observed by content publishers [25]. For instance, in
our measurements, requests from Beijing are redirected to Cloud-
Front’s JP region but to MaxCDN’s US/EU/SA region. Let trk de-
note the charging volume of CDN k at its charging region r, during
a billing period. Specifically, the value of trk is computed as the
total traffic delivered during the billing period to content viewers at
location areas who are assigned to αrk by CDN k. Then the total
charge of CDN k to the content publisher is a sum of the charges at
individual charging regions. Let Crk() denote the charging function
of CDN k for its charging region r.

4. CONTROL FRAMEWORK
We adopt a general, practical content publishing control frame-

work shown in Figure 3. A central Optimizer computes configu-
rations to direct viewer requests to CDNs. The configurations are
sent to a DNS system, HTTP redirector, or a manifest-file server
system to implement direction for specific viewer requests.

In particular, we distinguish two types of clients according to
their capabilities. This distinction affects our problem formulation.
The first type is passive clients. A key characteristic of passive
clients is that they use one CDN edge server at a time. Although
multiple CDNs and/or multiple servers from one CDN are available
in content multihoming, such traditional clients at content viewers
use only a single CDN server to serve a particular content object
request [2]. For such clients, we assume that the results of con-
tent multihoming optimization are implemented only by server side
mechanisms such as DNS redirection.

Specifically, suppose that content publisher cp.com uses DNS-
based CDN redirection. For simplicity, say the publisher assigns
content object i URL http://obj-i.cp.com. When a client
requests this link, a DNS query from the client or the local DNS
server of the client to resolve obj-i.cp.com can be sent to the
DNS server of the content publisher, labeled CPDNS in Figure 3.
By looking up the IP address of the client or the local DNS resolver
of the client, CPDNS obtains the location area a. Using the output
from the Optimizer, CPDNS returns to the client the CNAME of a
chosen CDN k. As an example shown in Figure 3, CloudFront is
chosen. Note in real implementations, as we will see in Section 6,
URL assignment is not necessarily per-object. Alternative imple-
mentations (e.g., using HTTP-based CDN redirection) are similar.

The second type is active clients. Such clients include an adap-
tation algorithm (e.g., in Adobe Flash ActionScript) to utilize mul-
tiple CDN servers when retrieving a single content object. In par-
ticular, when the service rate of one CDN server is insufficient,
an active client can use additional servers (from the same CDN or
backup CDNs) to make up the deficit. The additional CDNs/servers
are provided to the adaptation algorithm through a manifest file
from the content publisher. Such manifest files are already used by
some clients such as the Netflix clients. As shown in Figure 3, the
CNAMEs of two CDNs are returned to an active client.

5. PROBLEM STATEMENTS
With the preceding background and control framework, our prob-

lems are easy to state. Note that there is much flexibility in the de-
ployment of our control framework. There can be settings with only
passive clients, or only active clients, or a hybrid. We first state the

373

Figure 2: Charging structures of CloudFront and MaxCDN.

Figure 3: Content multihoming control framework (shaded components include our contributions).

problem in the passive client only setting. An extension to active
client only setting is straightforward and follows. Combining them
together is also straightforward and hence omitted.

5.1 Passive Client
Since a generic problem formulation has benefits, we define our

problem using generic constrained programming. Specifically, we
formulate the content multihoming optimization problem as con-
sisting of two objectives:

QoE guarantee: First and foremost, for every object i and loca-
tion area a, if nai > 0, content multihoming should assign one or
more CDNs for viewers from location area a requesting object i
to achieve a QoE target. Each assigned CDN k should satisfy two
requirements: (1) CDN k is providing the required features (e.g.,
streaming vs download) to deliver object i; (2) pai,k exceeds the
performance target (p̄). Define Fk={ia: CDN k can provide the
features to deliver object i and pai,k ≥ p̄.}. In other words, Fk is
the set of location objects that CDN k can serve. Note that it is
Fk that allows us to distinguish between streaming vs download-
ing content, as it depends on object QoE metrics and features (e.g.,
HTTP-streaming).

Cost optimization: Under the QoE guarantee constraint, content
multihoming may balance the load to multiple CDNs, in particular
to minimize the total cost. Let xai,k denote the fraction of the nai
requests that is directed to CDN k. Hence, each xai,k is an optimiza-
tion variable with a valid value range between 0 and 1. We state the
problem Q as:

minimize
{xa

i,k
}

C({xai,k}) =
∑

k

∑

αr
k

Crk(
∑

a∈αr
k

∑

i

xai,kn
a
i si)

subject to ∀i, a, nai > 0 :
∑

k

xai,k = 1, xai,k ≥ 0;

∀k, i, a, ia /∈ Fk : xai,k = 0.

The first constraint states that each demand for an object i at a lo-
cation a should be served. The second constraint states the QoE
constraint. In other words, if CDN k cannot provide sufficient per-
formance or feature for a location object ia, no content viewers
from location area a for object i should be directed to CDN k. Note
that the QoE constraint may lead to infeasibility. Since feasibility
can be checked efficiently, we assume feasibility.

One can add additional constraints (e.g., CDN capacity constraints)
and consider additional cost factors (e.g., storage, per request). We

will first focus on the basic constraints and cost factors. In Sec-
tion 6.2, we will discuss some extensions. Note that we start with a
basic formulation based on longer-term statistics/prediction to se-
lect CDNs. In Section 7, we will add active clients for online adap-
tation to form a more complete 2-level optimization framework.
Better traffic predictions (or publisher-knowledge) on nai can be
input plugins to the problem formulation.

After computing a solution (i.e., {xai,k}), the Optimizer sends
the solution to CPDNS in the control framework of Section 4 to
implement it. Typically, the computation should be performed each
billing cycle (e.g., a month) but can be more frequently.

5.2 Active Client
An active client allows the usage of multiple CDNs to serve the

same request. One might think that this will add substantial com-
plexity to the preceding formulation. But as we will see, it is a
simple extension of the preceding problem definition.

Without loss of generality, consider that each active client uses
two CDNs: one primary and one backup. Consider the following
set of CDNs: each CDN is a "virtual CDN" that consists of a pair
of CDNs, say k

′
= (k, j) where k is the primary CDN and j is the

backup. Then we will have a similar problem formulation as the
preceding formulation in problem Q.

First consider the QoE Guarantee. Define Fk′={ia: both CDN k
and CDN j can provide the features to deliver object i and pai,k ∪
pai,j ≥ p̄.}, where ∪ denotes the joint reliability of the two CDNs.

Next consider the objective function. Assume that each primary
CDN k still delivers the same amount of traffic. The backup CDN
j incurs an additional traffic 1− pai,k fraction of the time. One may
verify that C({xa

i,k
′ }) and C({xai,k}) have similar structure and

can be solved with the same method.
After computing a solution(i.e., {xa

i,k
′ }), where each k

′
is a pair

of CDNs, the Optimizer sends the solution to manifest file servers
to return two CDNs for each active client request.

6. COMPUTING OPTIMIZATION
We now develop techniques to solve the problem defined in the

preceding section. Since the problems for the passive clients and
active clients have the same format, we use the passive client for-
mulation: Problem Q. One might consider solving Q using stan-
dard LP, but this can be intractable: 500K objects, 200 locations,
and 3 CDNs will imply 300M variables, 100M constraints, and to

374

minimize a concave function. No generic solver we know can han-
dle this case, so we develop our specific algorithm.

Our strategy is to first transform the problem to a combinato-
rial assignment problem in Section 6.1. Then, in Section 6.2 we
develop a novel, efficient algorithm that computes an optimal as-
signment without enumerating all of the exponentially many possi-
bilities. We discuss extensions in Section 6.3.

6.1 Location Object Assignment
At a first glance of the problem Q, one might think about us-

ing convex programming (e.g., [6]) to solve the problem. Unfortu-
nately, the objective function C({xai,k}), which we target to min-
imize, is a concave function. Hence, traditional, efficient convex
programming does not apply.

On the other hand, the concavity of the objective does lead to
one observation: there is a minimizer of problem Q such that each
location object is put into only one CDN. Precisely, we have:

LEMMA 1. There exists a minimizer of C({xai,k}) for problem
Q, in which for each location object ia, there exists a CDN k∗ such
that ia ∈ Fk∗ , and xai,k∗ = 1.

Consider one such solution, and let ψ denote the assignment (or
mapping), according to the solution, from each location object ia

to its assigned single CDN k: ψ(ia) = k. Let ψk denote the set of
location objects that are assigned to CDN k. If ∀k, ∀ia ∈ ψk we
have ia ∈ Fk, we call ψ a feasible assignment.

The above interpretation of the solution allows us to change prob-
lem Q into an assignment-based formulation, as shown in Figure 4.
For each location object, the figure shows the candidate CDNs that
the location object can be assigned to. CDN k is a candidate for
location object ia only if ia ∈ Fk. The problem then is to assign
each location object to a single CDN to minimize the cost.

Figure 4: Q can be formulated as an assignment problem.

An advantage of the discrete assignment formulation is that it
allows enumeration. A straightforward approach to finding an opti-
mal assignment is to enumerate all possibilities, and select the best
one among the feasible assignments. We know that each location
object ia can be assigned to one of the K CDNs. Hence, the total
number of assignments isK|A|N . ForK = 2 or 3, |A| on the order
of thousands and N hundreds of thousands, direct enumeration is
practically infeasible. In other words, the assignment formulation
allows enumeration, but naive enumeration does not work.

6.2 Efficient and Optimal Assignment
Our key insight to substantially reduce the complexity is that the

naive enumeration of all of the exponential number of assignments
is unnecessary. Instead, we need to consider only a polynomial
number of assignments.

Basic idea: Specifically, consider the space of all possible assign-
ments illustrated by the space on the left of Figure 5(a), where each
assignment is shown as a point. A feasible assignment is shown
as an white box while an infeasible one is shown as a black box.
Naive enumeration evaluates every assignment, ignores infeasible
assignments, and picks a feasible one that gives the best outcome.

Now instead of looking at the space of assignments, we look
at the space of the outcomes of the assignments, illustrated by the
right space in Figure 5(a). Each assignment point in the left space
has a corresponding outcome point in the right outcome space.
Specifically, the outcome of an assignment ψ is a vector, with each

element of the vector representing the charging volume at charging
region of CDN. Let Vψ denote the multi-dimensional charging vol-
ume vector representing the outcome of an assignment ψ. We will
develop the exact representation shortly.

Since the objective function of our problem Q is a concave func-
tion of the charging-volume vector, we know from concave op-
timization theory that we need to evaluate the objective function
only over the extremal points of the convex hull of the charging
volume vectors produced by feasible assignments. In other words,
if the charging volume vector Vψ resulted from a feasible assign-
ment ψ is not an extremal point, the vector can be expressed as a
convex combination of those resulted from some other feasible as-
signments, and hence there is no need to evaluate ψ. Figure 5(a)
illustrates that we need to consider those Vψ marked with an "x".
As we will see, the number of extremal points is polynomial and
below we develop our efficient algorithm to identify them.

Representing each location object as a vector: The foundation of
our basic idea is based on considering the resulting charging vol-
umes of an assignment ψ as a vector Vψ . We now introduce a rep-
resentation of each location object v = ia as a vector to allow easy
aggregation on the outcome of an assignment. This representation
is quite simple but involves some notation complexity at the begin-
ning. The benefit of the representation is that it provides essential
insight and simplification during our development.

We first introduce charging region intersections. Recall that each
CDN k defines a mapping from a location area a to one of its serv-
ing charging regions α1

k, · · · , αRk
k , where Rk is the number of

charging regions of CDN k. Note that α1
k, · · · , αRk

k provides a par-
tition of all location regions A. An intrinsic complexity of multiple
CDNs is the heterogeneity of their charging regions. Define the “in-
tersections” of the charging regions of theK CDNs. Let αr1r2···rK
denote the intersection of the charging regions r1 of CDN 1, r2 of
CDN 2, and rK of CDN K. Then a total of R = R1 ∗ R2 · · ·RK
intersections are defined. Figure 6(a) illustrates a setting of two
CDNs with 3 and 2 charging regions respectively. At most R = 6
non-empty intersections may be defined.

With charging region intersections, we can represent each loca-
tion object as a vector. Specifically, given the set of charging region
intersections, one can observe that each location area a belongs to
one and only one of the charging region intersections. Fix one or-
dering of the intersections. Then we can convert the traffic of each
location object v = ia to an R-dimension vector with all elements
except one being 0. The position of the non-zero element is the
intersection that the location area a belongs to, and the value at the
position is nai si. When it is clear from the context, we use v to
either represent the name of a location object ia or the vector. Fig-
ure 6(b) shows the vector representations of two location objects.

By representing each location object v = ia as a R dimensional
vector, we introduce a simple, linear outer-production operator to
reflect the effect of assigning v to CDN k. Let ek be a unit K-
dimensional vector whose only non-zero element is at the k-th po-
sition and the value at the k-th position is 1. Define v ⊗ ek, which
reflects the effect of assigning v to CDN k, as producing a R ×K
matrix such that v is at the k-th column and the other columns are
zero. Figure 6(c) shows four examples, when we assign two loca-
tion objects to two CDNs. For example, the first example shows
v1 ⊗ e1; that is, assigning v1 to CDN 1.

Given this definition of the outer-product and an assignment ψ,
we can calculate the outcome of ψ. Recalling that ψk is the set of
location objects assigned to CDN k, we have:

Vψ = [
∑

v∈ψ1

v, . . . ,
∑

v∈ψK

v] =
∑

v

v ⊗ eψ(v) ∈ R
R×K . (1)

We now go back to identifying extremal assignments.

375

Figure 5: An example illustrating the basic idea to solve problem Q.

Figure 6: An example illustrating the charging-intersections.

Extremal assignments v.s. separation vector: The basis of our
technique to identify the extremal points of a set of points is through
the fundamental Separation Lemma [14]. Specifically, define VΨ =
{Vψ}, where ψ is a feasible assignment. Then a sufficient and
necessary condition for a specific Vψ∗ ∈ VΨ to be an extremal point
of VΨ is that there exists a vector P in the same dimension space
whose inner product 〈P, Vψ − Vψ∗〉 > 0 for any other Vψ ∈ VΨ.
In other words, the inner product of P and Vψ∗ is smaller than
the inner product between P and any other point Vψ ∈ VΨ. For
instance, in Figure 5(b) , 〈P, Vψ − Vψ∗〉 > 0, ∀ψ
= ψ∗.

Hence, a strategy to identify the set of all extremal points is to
compute a set of P s and from each P we compute an extremal fea-
sible assignment. Denote the computation from P to an assignment
as f(P). Figure 5(d) illustrates a set of P s and a mapping function
f(). We want the following conditions on the set of P s and f() :
(1) computationally efficient: both the set of P s and f(P) are easy
to compute; (2) valid: each f(P) is an extremal feasible assign-
ment; (3) exhaustive: for each extremal feasible assignment ψ∗,
there exists one P in the set of P s, such that f(P) = ψ∗. Below,
we show a set of P s and a function f(P) satisfying the preceding
conditions.
Function f(P): We start by developing f(P). We have the fol-
lowing CDN Identification Lemma.

LEMMA 2 (CDN IDENTIFICATION LEMMA). A feasible as-
signment ψ∗ is extremal among the set of all feasible assignments
if and only if ∃P ∈ R

R×K such that ∀v, k, k
= ψ∗(v) ∧ v ∈ Fk:
〈P, v ⊗ eψ∗(v)〉 < 〈P, v ⊗ ek〉.

PROOF. The right to the left is straightforward, as the right con-
dition is stronger than the Separation Lemma condition, when one
applies Expression (1). We prove the left to right. Given the Sep-
aration Lemma, we know that ∃P ∈ R

R×K such that 〈P, Vψ∗〉 <
〈P, Vψ〉, for any feasible ψ
= ψ∗. Consider any v and k such that
v ∈ Fk and k
= ψ∗(v), let ψ′ be the assignment obtained from ψ∗

by moving v to CDN k; that is, ψ′(v) = k and ψ′(u) = ψ∗(u),
∀u
= v. Since ψ′ is also a feasible assignment, it follows that
〈P, Vψ∗〉 < 〈P, Vψ′〉, hence 〈P, v ⊗ eψ∗(v)〉 − 〈P, v ⊗ ek〉 =
〈P, Vψ∗〉 − 〈P, Vψ′〉 < 0.

We name the lemma CDN Identification Lemma because it is
the foundation to develop f(P). Given a P in the lemma, we can
compute a corresponding extremal assignment ψ efficiently: for
each location object v = ia, iterate among all feasible CDNs k for
the object (i.e., ia ∈ Fk), we compute 〈P, v ⊗ ek〉. We assign v to
the (unique) CDN k attaining the minimal value: ψ(v) = k.

Set of P s: We consider the following set of P s: a P satisfies that
all of the elements in {〈P, v ⊗ ek〉|∀k : v ∈ Fk} are distinct:
{P : ∀k, j, v, k �= j ∧ v ∈ Fk ∩ Fj : 〈P, v ⊗ (ek − ej)〉 �= 0}. (2)

Since the conditions are stronger than those from the CDN Iden-
tification Lemma, we know that each such P can compute an ex-
tremal assignment.

Geometrically, the condition that P satisfies 〈P, v⊗(ek−ej)〉
=
0 is equivalent to that P is not on the hyperplane that is orthogonal
to v ⊗ (ek − ej). Denote this hyperplane as [v ⊗ (ek − ej)]

⊥ and
let H be the set of all these hyperplanes. Hence, a P satisfying all
conditions in (2) is not on any of the hyperplanes in H. In other
words, P should be an interior point in a cell created with hyper-
planes in H as boundaries. Efficient algorithms (e.g., [26]) exist to
enumerate one interior point from each cell.

Exhaustiveness: From the preceding development, it should be
clear that we have developed a set of P s and the function f which
is computationally efficient, and f(P) is valid. The only remaining
issue is whether we satisfy the exhaustive requirement by enumer-
ating an arbitrary interior P from each cell. First, we have

PROPOSITION 1. If ψ∗ is an extremal feasible assignment, ∃P
making f(P) = ψ∗ and P is an interior point of a cell in H.

PROOF. Suppose we find an extremal assignment ψ∗ from a
point Q that is not an interior point of any cell in H. Our method
is to construct another point Q′, from Q, that is indeed an interior
point of some cell in H and that f(Q′) = ψ∗.

Since Q is not interior, ∃v0, k0
= j0 such that 〈Q, v0 ⊗ (ek0 −
ej0)〉 = 0. Consider P (ε) = Q+ε·v0⊗(ek0−ej0) where ε ∈ R

1.
Therefore ∀v, k
= j, 〈P (ε), v⊗(ek−ej)〉 = 〈Q, v⊗(ek−ej)〉+
ε · 〈v0 ⊗ (ek0 − ej0), v ⊗ (ek − ej)〉 is a continuous function of
ε. When |ε′| > 0 is small enough: (1) For ∀v
= v0, k
= k0 or
j
= j0, 〈P (ε′), v ⊗ (ek − ej)〉
= 0 and has the same sign (’+’
or ’-’) with 〈Q, v ⊗ (ek − ej)〉; (2)〈P (ε′), v0 ⊗ (ek0 − ej0)〉 =
ε′ · ‖v0 ⊗ (ek0 − ej0)‖2
= 0.

This means that P (ε′) is on one less hyperplanes in H than Q.
Moreover, sinceψ∗ is extremal, we have 〈Q, v⊗(eψ∗(v)−ek)〉 < 0
∀v, k, k
= ψ∗(v)∧ v ∈ Fk, so it follows from (1) that 〈P (ε′), v⊗
(eψ∗(v) − ek)〉 < 0 as well, hence f(P (ε′)) = ψ∗ by Lemma 2.
This process can be repeated to yield a Q′ that is not on any hyper-
planes in H and that f(Q′) = ψ∗.

A potential issue is that the interior P from the preceding lemma
may not be the one that our algorithm uses. However, we have the
following result, and establish the exhaustiveness of our approach.

LEMMA 3. Interior points from the same cell find the same ex-
tremal feasible assignment.

376

PROOF. Let P1 and P2 are two interior points from the same
cell. Suppose their corresponding extremal assignments ψ∗

1
= ψ∗
2 ,

then ∃v0 which has ψ∗
1(v0)
= ψ∗

2(v0). According to Lemma 2:

〈P1, v0 ⊗ (eψ∗
1 (v0) − eψ∗

2 (v0))〉 < 0

〈P2, v0 ⊗ (eψ∗
1 (v0) − eψ∗

2 (v0))〉 > 0

which contradicts with that P1 and P2 are from the same cell.

Redundancy elimination: On the surface, we need to enumerate
all cells created by a total of |A|NK(K − 1) hyperplanes, where
|A|N is due to the number of possibilities for v, which is the num-
ber of location objects, and K(K − 1) is due to the number of
possibilities for (ek − ej). However, some of the |A|NK(K − 1)
hyperplanes are redundant. Specifically, if one vector is just the
scaling of another vector, they define the same hyperplane. For
example, v ⊗ (ek − ej) and v ⊗ (ej − ek) give the same hyper-
plane. Hence, we need to consider only distinct pairs of k and j.
Also, consider two location objects v1 = ia11 and v2 = ia22 . If
their vector representations satisfy v1 = λv2, where λ is a scalar,
then they define the same hyperplane, for each pair of k and j.
In other words, all location objects mapped to the same charging
region intersection define the same hyperplane for each pair of k
and j. Hence, the number of unique hyperplanes is at most R

(
K
2

)
,

which is independent of the number of content objects.

Algorithm 1: CMO(V, {Fk})
Input: V: location objects to be assigned.
Input: {Fk}: K CDNs and their feasibility sets.
Output: optAs: optimal assignment
/* Step 1: Identify hyperplanes */1
HPs← ∅ ;2
foreach v ∈ V do3

vVec = vAsVector(v) ;4
foreach distinct (k, j) pairs do5

if (v ∈ Fk ∧ v ∈ Fj) then6
hpCandidate = normalize([vV ec⊗ (ek − ej)]⊥) ;7
if (hpCandidate /∈ HPs) then8

HPs += hpCandidate9

/* Step 2: Compute interior points from hyperplanes */10
Ps← computePs(HPs);11
/* Step 3: Evaluate extremal assignments identified by Ps */12
optAs← null;13
foreach P ∈ Ps do14

/* compute extremal assignments ψ identified by P */15
ψ← null ;16
foreach v ∈ V do17

optOuter← +∞;18
foreach CDN k do19

if v ∈ Fk ∧ 〈P, v ⊗ ek〉 < optOuter then20
ψ(v)← k ;21
optOuter← 〈P, v ⊗ ek〉22

/* compare new extremal ψ with current optAs */23
if (ψ > optAs) then24

optAs← ψ25

return optAs;26

Algorithm: For completeness, we specify the content multihoming
optimization (CMO) algorithm in Algorithm 1. There are many
ways implementing computePs(), and we choose [26] as it can
be easily parallelized for multiple CPU cores and computers.

Example: To help readers understand the CMO algorithm, we ap-
ply it to the simplest setting of two CDNs and both use one global
charging region. This is a setting where one can solve problem Q
using intuition. Specifically, in this setting, we can divide the lo-
cation objects into 3 categories: V1: the location objects that can
be assigned to only CDN 1; V2: the location objects that can be

assigned to only CDN 2; and V3: the location objects that can be
assigned to either CDN 1 and CDN 2. Then the only remaining is-
sue is to determine the assignments of objects in V3. One can verify
that the correct strategy is that we compare the objective function
values of two alternatives: (1) assigning all objects in V3 to CDN
1, with objects in V1 and V2 preassigned to their respective CDNs;
and (2) assigning all objects in V3 to CDN 2, with objects in V1 and
V2 preassigned to their respective CDNs.

Now, we see how CMO works. In Step 1 (Lines 2 to 9), the al-
gorithm computes that there is only one hyperplane defined by [1,
-1]⊥. In Step 2, ComputePs computes two interior Ps P1 and P2,
where P1 is a vector in the lower right half-space (x-coordinate is
larger than the y-coordinate) of Figure 5(c), and P2 is one in the up-
per left half-space (x-coordinate is smaller than the y-coordinate).
In Step 3, the algorithm first evaluates P=P1 to compute an ex-
tremal assignment. For each location object v=ia, if it is in V1 or
V2, the algorithm assigns it to the only feasible CDN. If v ∈ V3, the
value of 〈P1, v⊗ e1〉 is the x-coordinate of P1 times the traffic vol-
ume of object v, and the value of 〈P1, v⊗e2〉 is the y-coordinate of
P1 times the traffic volume of v. Since P1 is chosen in Step 2 such
that the x-coordinate is larger than the y-coordinate, P1 produces
the extremal assignment of assigning all objects in V3 to CDN 2.
The algorithm next evaluates P=P2 and produces the extremal as-
signment of assigning all objects in V3 to CDN 1. At Line 24, the
algorithm compares the two cases and picks the better one. Hence,
it produces the intuitive result. For general settings that we can
no longer appeal to intuition, the algorithm computes the optimal
assignment efficiently.

6.3 Extensions
The CMO algorithm developed in the preceding section applies

to concave charging functions or charging functions that can be
converted to or approximated by concave charging functions. In
this section, we discuss extensions to handle practical issues on
CDN subscription levels, per-request costs and dynamic streaming.

CDN subscription levels: For some CDNs, a content publisher
must subscribe to a usage level (e.g., maximum traffic volume) and
pay a fix fee to the subscription level. To handle such a charging
model, we treat each subscription level as an individual CDN with
a capacity constraint. Note that the basic CMO algorithm needs to
be slightly extended to handle capacity constraints [18].

Per-request cost: Besides charging for traffic, some CDNs also in-
clude charges for the number of requests. For instance, CloudFront
charges $0.0075 per 10,000 HTTP requests in US. Consider that
CloudFront charges $0.12/GB for the first 10 TB traffic as shown
in Figure 2. One can calculate that if the object sizes are less than
6.25 KB, then the per-request charge can be higher than the traffic
charge. Hence, the per-request charge can be the major cost for
content publishers providing small objects (e.g., small images).

Extending Algorithm 1 to consider both traffic and per-request
charge is relatively straightforward. Specifically, in the preceding
section, each location object is represented as aR-dimension vector
with one non-zero element at the charging region of the object. An
extension to include per-request charge is to represent each location
object as a R+ 1 dimension vector, with the one added dimension
representing the number of requests for the object.

CDN Traffic Charge Per-request Charge
CDN 1 $1.0 per GB $0.0 per request
CDN 2 $0.1 per GB $0.1 per request

Object Size #Request Traffic Vector Representation
v1 0.01 GB 30 0.3 GB [0.30 GB, 30]
v2 0.01 GB 49 0.49 GB [0.49 GB, 49]
v3 0.025 GB 20 0.5 GB [0.50 GB, 20]
v4 1.0 GB 1 1.0 GB [1.00 GB, 1]

Table 3: Example of CMO with per-request cost extension.

377

We demonstrate the extension using an example setting (Table 3):
4 objects, 2 CDNs with one charging region (i.e., R = 1):

• First the 4 objects are represented as 4 2D vectors (see Table 3).

• Lines 3 to 9 construct four corresponding hyperplanes: h1 = [0.3,-
0.3,30,-30]⊥, h2 = [0.49,-0.49,49,-49]⊥, h3 = [0.5,-0.5,20,-20]⊥, h4 =
[1,-1,1,-1]⊥. After normalization and de-duplication (Lines 7, 8),
only three are left: [1,-1,100,-100]⊥, [1,-1,40,-40]⊥, [1,-1,1,-1]⊥;
i.e., first two are redundant and only 1 is needed.

• Line 11 finds 6 interior points: P1 = [1,0,1,0], P2 = [-1,0,-1,0], P3

= [70,0,-1,0], P4 = [-70,0,1,0] , P5 = [20,0,-1,0], P6 = [-20,0,1,0].

• Lines 14 to 22 find 6 extremal object assignments (ψ :={CDN1
objects}{CDN2 objects}): ψ1 = {}{v1, v2, v3, v4}, ψ2 = {v1, v2, v3,
v4}{}, ψ3 = {v1, v2} {v3, v4}, ψ4 = {v3, v4} {v1, v2}, ψ5 = {v1, v2,
v3} {v4}, ψ6 = {v4} {v1, v2, v3}.

• Lines 23 to 25 enumerate the costs of the 6 extremal object as-
signments, and identify optimal assignment ψ5. As a compari-
son, simple enumerations need to consider 16 assignment possi-
bilities (4 objects each with 2 possible assignments).

Multiple streaming rates: A content publisher can encode the
same video object at multiple rates, and a client can switch among
the encoding rates dynamically online. To extend CMO for this set-
ting, one can consider each video at each encoding rate as an inde-
pendent object and then derive the number of requests to each such
object. Specifically, suppose a total of nai requests for video i from
location area a when there is no multi-rate. Consider two encoding
rates, say 1x and 2x. Then according to client access bandwidth
distribution at location area a and the publisher dynamic streaming
algorithm, one can derive nai1 and nai2 for the two encoding rates
from nai [18].

7. ACTIVE CLIENTS
An active client is provided with a list of CDNs to use when

requesting a single content object. The list may come from the
result of our optimization algorithm in the preceding section or an-
other source of guidance. Even though our optimization algorithm
considers performance constraints, the filtering is based on long-
term statistics. Hence, the objective of the active client is to adapt
to specific real-time CDN performance dynamics, in particular, to
improve QoE during CDN server failures.

7.1 Adaptation Problem Statement
An active client receives guidance in the format of a list of CDNs

where each CDN has a priority value. Without loss of general-
ity, we consider two CDNs: the first primary CDN, and the sec-
ond backup CDN. For example, the example in Figure 3 gives
an active client two CDNs with priority 0 (primary) and priority
1 (backup) respectively. We assume that each individual CDN
on the list provides a small number (say, 1 or 2) preferred edge
servers through its request routing mechanism (e.g., DNS resolu-
tion or HTTP redirect). Let H denote the set of all candidate edge
servers. As an example, if the primary CDN provides two servers
(h11 and h12) and the backup CDN provides one server (h21), then
H = {h11, h12, h21}. Each server inH has a priority value, which
is the priority value of its CDN. At time t, an active client maintains
a subset Hactive of H under the following guidelines:

• QoE protection (feasibility): the combined available bandwidth
of the servers in Hactive can provide the target QoE;

• Prioritized guidance: the available bandwidth of a higher prior-
ity server should be used before that of a lower priority server;

• Low session overhead: the overhead of redistributing load among
same-priority servers is unnecessary unless it reduces the num-
ber of servers used concurrently to reduce the number of con-
nections overhead.

Figure 7: An active-client control diagram.
Based on the preceding guidelines, we derive a simple control

state transition diagram as the control objective of an active client.
Figure 7 shows an example control diagram where each node rep-
resents the current subset of edge servers that the active client uses.
The client starts in the state {h11}, indicating that the client starts
from downloading from h11.

Note that one can introduce other transitions using our control
state diagram based approach.

7.2 Adaptation Algorithm
We implement the control diagram using the classic window-

based AIMD (Additive Increase Multiplicative Decrease) scheme,
based on a key observation that there is an analogy between the
traditional congestion control and active client adaptation. In par-
ticular, if we consider the flow from each server to the client as
a link, then we are solving a rate allocation problem among the
links, where two essential mechanisms are needed: (1) the rate on
a link should be reduced if the link is overloaded; and (2) a probing
scheme is needed to utilize newly available capacity.

Specifically, for each sever h, the client maintains a request win-
dow size wh (KB), which is the current upper bound on the out-
standing request load from the client to h per T seconds, where T
is a configuration parameter. For simplicity, we refer to each KByte
in the request window as a piece. We use the classic AIMD algo-
rithm as a base to adjust the window sizes: if h and the network
from h to the client has enough capacity to finish the requested
pieces, wh is linearly increased; otherwise, wh is multiplicatively
decreased. Our client uses HTTP range request to query a set of
pieces in one HTTP request message. After the range request is
finished or a time out happens after T seconds, an onResponse
event handler is triggered. We implement the AIMD algorithm in
onResponse listed as Algorithm 2.

Algorithm 2: onResponse(h, reqPieceSeth, rcvdPieceSeth)

if rcvdPieceSeth = reqPieceSeth and wh = reqPieceSeth.size() then1
wh ← wh + 1;2

if rcvdPieceSeth ⊂ reqPieceSeth then3
wh ← max(1, wh/2);4

/* Update piece status */5
foreach piece i ∈ reqPieceSeth do6

if piece i ∈ rcvdPieceSeth then7
// extract piece i’s data, add to video buffer;8
pieceStatusMap[i]← DOWNLOADED;9

else10
pieceStatusMap[i]← NOT_ASSIGNED;11

availh← true; /* mark h avaiable for new assignment */12
updateAssignment();13

However, our problem is also different from the traditional con-
gestion control problem, and hence we need to introduce two novel
and interesting techniques.

Total workload control: Naive usage of traditional AIMD will
imply that all servers can be fully utilized to achieve a download
rate that is as high as possible. However, this can be unnecessary
for the content viewer. Specifically, to achieve QoE of streaming
content, the client only needs to sustain a sufficient downloading
rate (e.g., the video encoding rate ω KB/s).

378

Based on this observation, we apply total workload control to
appropriately limit the usage of the CDN servers. In our design,
every T seconds, a client calls releaseLoad(), shown in Algo-
rithm 3, to release ω · T new pieces to be downloaded. Note the
client may download more than ω · T pieces in T seconds if there
are incomplete pieces in previous downloading periods.

Algorithm 3: releaseLoad()

/* reqLimit: the “newest” piece to be assigned for downloading */1
reqLimit← reqLimit + ω · T ;2
// set pieceStatusMap of new pieces NOT_ASSIGNED3
updateAssignment();4

Prioritized assignment: Total workload control does not yet achieve
our adaptation goal. In particular, the load may still spread unnec-
essarily to too many servers. For example, a single primary server
h11 has enough capacity to serve the client, but a backup server
h21 may be also used unnecessarily for downloading, if h21 has an
equal opportunity to fetch assigned pieces.

Our solution to this issue is prioritized assignment. Specifically,
when assigning pieces to be downloaded, a client starts with servers
with higher ranks. Algorithm 4 gives more details on how pieces
to be downloaded are assigned to servers.

Algorithm 4: updateAssignment()

// sort serverList by rankh (retrieved from manifest xml)1
// and then wh if same rank;2
for h← serverList[0] ... serverList[serverList.size() - 1] do3

/* availh is h’s availability for assignment, see Algorithm 2 */4
if availh then5

/* request from h for up to wh pieces */6
reqPieceSeth← ∅;7
/* playPoint: the “oldest” piece being consumed by player */8
i← playPoint + 1;9
while i < reqLimit and reqPieceSeth.size() < wh do10

if pieceStatusMap[i] = NOT_ASSIGNED then11
reqPieceSeth← reqPieceSeth ∪ {piece i};12
pieceStatusMap[i] = ASSIGNED;13

i++;14

if reqPieceSeth != ∅ then15
availh← false;16
asyncHTTPRequest(h, reqPieceSeth, timeout(T));17

Comparison with TCP: Our window-based downloading adapta-
tion algorithm is different from traditional TCP congestion control.
(1) To maintain client QoE, it requires (at application-level, dur-
ing T seconds) that the total downloading rate across all servers to
be at least video encoding rate. In particular, the sum of window
sizes should satisfy

∑
h wh ≥ ω · T . The adaptation algorithm en-

forces this by setting initial window size for a primary server (e.g.,
wh11) to be ω · T , and for each backup server to be 1. (2) Differ-
ent from TCP’s per-segment window update, we apply AI on the
window size after all requests of the entire window are completed.
In steady state (client streaming smoothly), this allows the client to
slowly probe higher-ranked servers. Upon primary server failure or
congestion, the AI strategy increases the backup server’s window
size; due to self clocking and before reaching the streaming rate,
the increase behavior is similar to TCP slow start, which is fast to
allow request queue cleanup. (3) Although the algorithm maintains
a window size for each server, it does not open a (TCP) connection
to a lower-ranked server until necessary. Also, when the higher-
ranked servers have sufficient capacity, the adaptation algorithm
disconnects the lower-ranked servers.

Active multi-rate streaming: Just as CMO can be extended to
handle multi-rate streaming, the preceding active clients can also
be extended to take advantage of multi-rate. Specifically, consider

a video encoded in a set of rates, say 1x, 2x, and 4x. As we de-
rive Algorithm 3 and 4 from Figure 7, after a publisher defines its
preference on video rates and the extended control diagram, we can
similarly derive a control algorithm. As a simple example, a con-
tent publisher with a control goal of providing the highest video
rate whenever possible will lead to a transition diagram that more
servers are used until combined capacity is above 4x, if possible.

8. EVALUATIONS
In this section, we evaluate the cost and performance of our sys-

tem design for content multihoming. In specific, we implement and
test our optimization algorithm (CMO), the client adaptation algo-
rithm, and the interactions between the two system components.
We use real data to drive the run of our optimizer, and instrument
clients on PlanetLab to conduct experiments.

8.1 Evaluation Methodology
Content publishers: We evaluate our algorithms using real traces
of content requests to two production Video-on-Demand (VoD) pub-
lishers. We name the content publishers CP1 and CP2 respectively.
We consider each video as a content object, and collect the follow-
ing information about each video: its size, and the number of times
that it is requested from each city per month for a 6-month dura-
tion. Table 4 shows the summary statistics of the content objects.
Figure 8 plots detailed statistical distributions of object sizes (si),
number of requests (ni) to each object, and traffic volume (sini) of
each object. These distributions are long-tail distributions.

We use the MaxMind GeoIP database to map a client IP address
in the trace to a location area. Our evaluations define location areas
as following: we start with each country as a location area; for a
country with a large geographical span, we refine it to a next level;
for example, we define each state in USA as a location area.

Objects Sum of Obj Size Total Traffic #Request
CP1 667,856 71 TB 27,307 TB 390,235,440
CP2 529,411 40 TB 12,114 TB 153,129,348

Table 4: Summary statistics of content objects.

Content distribution networks: Our evaluation is based on three
commercial CDNs: Amazon CloudFront, MaxCDN, and an anony-
mous private CDN which we refer to as CDN3. The geographic
footprints of CloudFront and MaxCDN are shown in Figure 1, and
the real charging structures and parameters of CloudFront and Max-
CDN are shown in Figure 2. The server distribution and detailed
price information for CDN3 are not shown due to privacy. More-
over, in our evaluations, we require that pai,k ≥ 90% for each CDN
k and each location object ia.

To obtain how each CDN maps a location area to its charging re-
gion, we deploy a measurement client on each one of 536 available
PlanetLab machines to request objects from each CDN. We use
traceroute to determine the locations of the CDN servers, as
the GeoIP database can be inaccurate, e.g., all CloudFront servers
are always classified as in Seattle, WA, US. After computing the
charging region intersections of the three CDNs, we pick the top 5
intersections that contain the most traffic. Table 5 shows the per-
centages of traffic to major geographical regions.

US EU SA Asia & Pacific Japan
CP1 19 % 7 % 1 % 71 % 2 %
CP2 77 % 11 % 6 % 5 % 1 %

Table 5: Traffic distribution across major geo regions.

Optimizer: Our publishing optimizer is simple to implement (∼2000
lines of C++ code) and runs on a commodity PC with 2 quad-core
Intel Xeon 2.33 GHz CPUs and 3 GB of memory. It takes about
12 minutes for CMO to compute the optimal assignments for each
charging period (one month) for our data set.

379

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

GB

CP1
CP2

(a) object size

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

#Requests

CP1
CP2

(b) number of requests

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

GB

CP1
CP2

(c) traffic volume

Figure 8: Statistics of object size, number of requests to each object, and traffic volume for each object.
Active clients and controller: We integrate our client adaptation
algorithm into an Adobe Flash video player. Our player is deployed
on CDN3 and can be accessed by any web browser on the Internet,
including PlanetLab nodes. We leverage HTTP range request
and Adobe Flash’s NetStream.appendBytes (supported by
version 10.1 and above) to integrate multiple CDN servers for one
video streaming session. Our player periodically reports back through
HTTP to a publisher controller. The reporting process allows the
controller to obtain player IP, player local DNS server address, and
the IP addresses of each CDN serving the player’s content request.
An implementation issue of the player is that the Flash browser
sandbox does not allow UDP DNS queries. Hence, although a
CDN typically resolves a DNS name to multiple server IPs, the
player can have access to only one. We use two approaches to ob-
tain backup server IPs for a CDN. The first is that the controller re-
turns, in the manifiest file, additional server IPs reported recently by
other closeby (same location area) players. The second is that the
player makes a TCP connection to its LDNS or CDN DNS server
(if allowed by Flash Socket Policy) to query DNS directly.

We install Mozilla Firefox with Adobe Flash Player (using Xvnc
as XServer) on 412 PlanetLab nodes and some personal laptops
with ADSL and WiFi, and instrument these clients to conduct video
streaming experiments. Note that although most of our clients are
PlanetLab nodes which typically have good network connectivity
rather than real clients, we control the settings to reflect two key
factors that contribute to real client QoE degradation: server over-
load and network bottlenecks. Both factors are included in our
stress tests to impose challenging, oscillating limits on bandwidth.

Specifically, based on our traces, we deploy active clients on
PlanetLab according to their availability and geographical loca-
tions. We select random videos from CP1 and generate active client
request load according to video request patterns of CP1.

Content deployment: We deploy video objects testing active clients
on both CloudFront and CDN3. CloudFront has the best perfor-
mance according to our PlanetLab measurement (see Table 2). We
are able to run Adobe Flash Socket Policy service on CDN3, and
hence active clients can use customized and optimized TCP sockets
for requests to this private CDN. We also run multiple pre-tests (be-
fore the evaluation) to warm up both CDNs, i.e., the edge servers
prefetched the video content before the experiments start.

CDN server capacity failure models: We evaluate the effective-
ness of our client adaptation algorithm under both controlled stress
tests and real server congestions. In the real experiments using two
CDNs and PlanetLab clients, we do not inject any failures, but the
CDN servers can get temporarily congested due to the bursty nature
of client request load.

Performance metrics: We evaluate both the CDN cost and client
QoE of our content multihoming optimization. CDN cost is simply
the total charge (in USD) by all CDNs given a CDN assignment,
i.e., the value of function C({xai,k}) defined in problem Q in Sec-
tion 5.1. For client QoE, we use three performance metrics: (1)
freezes, the frequency (number of times per view) a viewer encoun-
ters rebuffering during a video view, excluding cases due to initial

start or user drag (seek). As observed in [10], freezes are a major
factor reducing viewer’s QoE. (2) smoothness ratio, the percentage
of the clients that never encounter freeze. This is a statistical per-
formance metric. (3) buffering time, viewer visible buffering time
(in seconds) per video view, including startup delay and seek delay.

CDN assignment algorithms: We evaluate 5 CDN assignment al-
gorithms: (1) CMO: This is the CMO algorithm defined in Sec-
tion 6.2 considering both traffic and per-request cost defined in
Section 6.3; (2) greedy: This algorithm assigns location objects
sequentially in a uniformly random order. When assigning the next
object, the algorithm computes the cost to be reached when the ob-
ject is put in each feasible CDN. The object is assigned to the CDN
resulting the lowest cost among the alternatives; (3) round-robin:
This algorithm also assigns location objects sequentially in a uni-
formly random order. A CDN index is maintained. When assign-
ing the next object, the algorithm uses round-robin, starting from
the current CDN index, to assign the object to a feasible CDN; (4)
cost-only: This algorithm minimizes cost without any performance
considerations. (5) perf-only: This algorithm selects the best per-
forming CDN(s) at each location area regardless the cost.

8.2 Publishing Cost Optimization
We start by evaluating the CDN cost savings of our CMO algo-

rithm. At the beginning of a month, for each location area a, we
use the content traffic to a in last month as the traffic prediction
in this month; we leverage the algorithms listed in Section 8.1 to
decide how to redirect requests from various locations to the three
CDNs; we then use the real traffic in the month to calculate the total
monthly cost of CP1 and CP2.

We first compare the monthly costs to the two content publish-
ers using CMO vs those using the other 4 algorithms. Figures 9(a)
and 9(d) show the results. We observe that CMO saves around 30%
∼ 40% each month for both CP1 and CP2, compared with all algo-
rithms that should satisfy real performance constraints (perf-only,
round-robin, and greedy). For CP2, CMO’s cost is close to cost-
only because (1) the traffic of CP2 is mostly in US/EU, and (2)
all 3 CDNs have good performance in US/EU and hence each can
be used. Note that CMO achieves savings despite traffic fluctua-
tions across billing periods. Figures 9(b) and 9(e) show the traf-
fic demands from different regions in different months. From Fig-
ure 9(b), we see that the demand from US changes from 4000 TB to
3000 TB in the first 2 months. Despite such fluctuations and hence
prediction variations, CMO achieves substantial cost savings.

Next we look at some details on how CMO assigns traffic among
CDNs. Figure 9(c) shows the traffic assignments for CP1, during
the 2nd month. As comparisons, we also show results for two sim-
ple extreme strategies: perf-only and cost-only. We observe that
cost-only assigns all traffic to MaxCDN, but as we have seen in Ta-
ble 2, this can lead to performance violations at locations such as
China and Brazil. The perf-only strategy assigns a large fraction of
traffic to CDN3, whose performance is the best in AP and JP. How-
ever, the cost of perf-only can be much higher. Specifically, we
can see from Figure 9(f) that the cost of perf-only for CP1 during
month 2 is 1.84 times that of CMO. CMO assigns most traffic to

380

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6

T
ot

al
 C

D
N

 C
os

t (
K

ilo
 U

SD
) perf-only

round robin
greedy
CMO

cost-only

(a) monthly cost: CP1

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6

T
ra

ff
ic

 V
ol

um
e

(T
B

)

US
EU
SA
AP
JP

(b) CMO monthly traffic distribution: CP1

 0

 1000

 2000

 3000

 4000

 5000

 6000

Cost-Only Perf-Only CMO

T
ra

ff
ic

 (
T

B
)

CDN3
MaxCDN

CloudFront

(c) traffic distribution: CP1; Month 2

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6

T
ot

al
 C

D
N

 C
os

t (
K

ilo
 U

SD
) perf-only

round robin
greedy
CMO

cost-only

(d) monthly cost: CP2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5 6

T
ra

ff
ic

 V
ol

um
e

(T
B

)

US
EU
SA
AP
JP

(e) CMO monthly traffic distribution: CP2

 0

 100

 200

 300

 400

 500

 600

Cost-Only Perf-Only CMO

C
os

t (
K

ilo
 U

SD
)

CDN3
MaxCDN

CloudFront

(f) monthly cost: CP1; Month 2

Figure 9: Cost and traffic distributions in the 6 months with different CDN assignment algorithms.

CloudFront and MaxCDN, as they satisfy performance constraints
at lower costs.

8.3 Active Clients
Passive clients cannot handle the failures or congestions of the

primary CDN, and hence may encounter QoE degradation at times.
We demonstrate that active clients can protect per-view QoE de-
spite CDN server failures/congestions.

Stress tests: We start with stress tests when delivering a 1080p
HD video object encoded at 480 KB/s. We run two sets of experi-
ments: (1) only one CDN (primary), which has two servers named
primary1 and primary2; (2) two CDNs (one primary+one bac-
kup), each with one server, named primary1 and backup1 re-
spectively. In each set, we vary the capacity of primary1 in
the following three cases: (1) step-down, in which the capacity of
primary1 is reduced down to only 10% of video encoding rate
and then recovers after 2 min; (2) ramp-down: in which the ca-
pacity of primary1 is linearly decreased (to 10% of the video
encoding rate) in one minute and then linearly increased back; (3)
oscillation, in which the capacity of primary1 periodically falls
down (to 10% of the encoding rate) and then recovers after 20 sec-
onds. We plot detailed downloading rates to observe more behav-
iors. Figure 10 plots the results.

We make multiple observations on client behaviors. First, in all
6 cases, the client downloads at full speed at the beginning to build
the required 4-second video buffer before playback can start. After
playback starts, the active client continues to maintain a 16-second
video buffer (total workload control).

Second, despite of primary1’s fluctuations, our active client
achieves QoE protection by downloading from alternative servers.
In (b) and (e), despite gradual primary1 capacity changes, the
aggregated downloading rate (labeled total) never falls below
the streaming rate at any instance of time. In the other 4 cases,
there are instantaneous dips when the total rate drops below the
streaming rate. However, instantaneous dips may not lead to viewer
visible freezes if the streaming buffer has enough data. In all 6
cases, the rebuffering wheel never appears during the entire video
playback.

Third, the active client prefers primary1 over backup1, fol-
lowing prioritized guidance. For example, in (d), primary1 re-
covers at 250s and its utilization starts to increase, and at time 280s
all requests have shifted from backup1 back to primary1. One
can also observe this “shifting-back” in (e) at time 160s-210s.

Fourth, the active client achieves “stickiness” for low session
overhead. For example, comparing (a)(b) with (d)(e), we observe
that in (a) and (b), there is no shifting-back to primary1, as
primary2 can handle the load alone and belongs to the same
CDN as primary1.

Fifth, the active client performs relatively the worst in (f), when
there is a single primary CDN server and the capacity of the server
fluctuates widely. We observe multiple downloading spikes, as the
client recovers from low rates resulted from HTTP request time-
outs. The fluctuations of the client downloading rate reflects the
primary server’s capacity fluctuations. In practical deployment, it is
recommended that a content publisher uses a primary CDN which
offers multiple edge servers.

PlanetLab experiments: We next evaluate the statistical perfor-
mance for both passive and active clients with real PlanetLab ex-
periments. First, we measure smoothness. Figure 11(a) shows that
with passive clients, 8% clients experience video freeze. Thus, the
smoothness ratio is 92%, which is considered as high performance
in industry. Active clients improve viewer QoE and reduce the per-
centage of clients observing video freeze to only 3.8%. Thus, ac-
tive clients reduce QoE degradation by 51%. We also calculate that
active clients reduce the average number of video freezes from 4.78
(for passive clients) to 2.19. Second, Figure 11(b) shows the buffer-
ing time performance. Active clients reduce the average buffering
time from 9.6 seconds to less than half at 4.5 seconds.

Cost impact of active clients: Active clients might increase pub-
lisher cost for two reasons. First, the optimization algorithm con-
siders the impact of active clients by predicting the amount of traf-
fic shifted to backup. Reality may be different from the prediction.
Second, for simplicity, during evaluations, our optimization algo-
rithm does not consider the additional number of requests due to
backup protection.

We evaluate the cost impact of client adaptation by comparing
the computed optimal cost, the real cost during our PlanetLab ex-
periments (after scaling up the traffic), and the cost of using round-
robin CDN assignment. To better understand this impact, we fur-
ther break down the cost into “traffic cost” and “per-request cost”.
Figure 11(c) shows the result. We observe that the cost impact in
total is less than 5.6% (∼8, 000 USD added to ∼142, 000). Traffic
deviation is less than 2.1% from prediction and contributes to 1.4%
of the total 5.6% difference. The additional number of requests ac-
counts for 4.2% of the total cost.

381

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300 350

D
ow

nl
oa

di
ng

 R
at

e
(K

B
/s

)

Time (second)

primary1
primary2

total

(a) step-down (both primary CDN servers)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300 350

D
ow

nl
oa

di
ng

 R
at

e
(K

B
/s

)

Time (second)

primary1
primary2

total

(b) ramp-down (both primary CDN servers)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300 350

D
ow

nl
oa

di
ng

 R
at

e
(K

B
/s

)

Time (second)

primary1
primary2

total

(c) oscillation (both primary CDN servers)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300 350

D
ow

nl
oa

di
ng

 R
at

e
(K

B
/s

)

Time (second)

primary1
backup1

total

(d) step-down (primary and backup CDN)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300 350
D

ow
nl

oa
di

ng
 R

at
e

(K
B

/s
)

Time (second)

primary1
backup1

total

(e) ramp-down (primary and backup CDN)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300 350

D
ow

nl
oa

di
ng

 R
at

e
(K

B
/s

)

Time (second)

primary1
backup1

total

(f) oscillation (primary and backup CDN)

Figure 10: Stress tests of client adaptation in CDN server failure cases.

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0 2 4 6 8 10 12

C
D

F[
x<

pc
t]

Freezes Per View

Active Clients
Passive Clients

(a) freeze per view statistics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F[
x<

pc
t]

Buffering Time (seconds)

Active Clients
Passive Clients

(b) buffering time per view statistics

 0

 50

 100

 150

 200

 250

 300

Ideal-CMO Real-CMO greedy

C
os

t (
K

ilo
 U

SD
)

Per-request
Traffic

(c) cost impact of client adaptation

Figure 11: Per-view QoE in PlanetLab experiments.

9. CONCLUSIONS
In this paper, we have conducted the first systematic study on

content multihoming, by introducing the CMO algorithm and the
client adaptation algorithm to optimize both the cost and the per-
formance for content multihoming. Our realistic evaluations show
that our content multihoming algorithms reduce publishing cost by
up to 40%, and reduce viewer QoE degradation by 51%.

Acknowledgments: The research of Y. Richard Yang
is supported in part by grants from NSF, and by a gift from Huawei.
We are grateful to Aditya Akella (paper shepherd), Nicole Shibley,
Peng Zhang, Haiwei Xue, Andreas Voellmy, Yin Zhang and SIG-
COMM anonymous reviewers for valuable suggestions.

10. REFERENCES
[1] 01box. http://cdn.01box.net.
[2] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and

Z.-L. Zhang. Unreeling netflix: Understanding and improving
multi-CDN movie delivery. In IEEE INFOCOM’12.

[3] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. Van
Der Merwe. A practical architecture for an anycast CDN. ACM
Trans. Web, 5(4):17:1–17:29, Oct. 2011.

[4] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a
needle in haystack: Facebook’s photo storage. In USENIX OSDI’10.

[5] G. Bertrand, E. Stephan, G. Watson, T. Burbridge, P. Eardley, and
K. Ma. Use cases for CDNi. IETF Draft, Jan. 2012.

[6] D. Bertsekas. Convex Analysis and Optimization. 2003.
[7] CDN expert. http://cdnexpertonline.com/node/45.
[8] Cisco Systems. Cisco Visual Networking Index: Forecast and

Methodology, 2011-2016.
[9] Conviva. http://www.conviva.com.

[10] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam,
J. Zhan, and H. Zhang. Understanding the impact of video quality on
user engagement. In ACM SIGCOMM’11.

[11] Dyn CDN manager. http://dyn.com/.
[12] Geo best-of YouTube.

http://geobestofyoutube.gmapify.fr/.
[13] D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang. Optimizing

cost and performance for multihoming. In ACM SIGCOMM’04.
[14] A. Ioffe and V. Tihomirov. Theory of Extremal Problems. Elsevier

Science Ltd, 1979.
[15] R. Krishnan, H. V. Madhyastha, and etc.. Moving beyond end-to-end

path information to optimize CDN performance. In ACM IMC’09.
[16] Level 3 Intelligent Traffic Management. http:

//www.level3.com/~/media/Assets/brochures/
brochure_intelligent_traffic_management.pdf.

[17] Limelight Traffic Load Balancer. http:
//www.limelight.com/traffic-load-balancer/.

[18] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian. Optimizing
cost and performance for content multihoming. Technical Report
YaleCS-TR1456, May 2012.

[19] MetaCDN. http://www.metacdn.com/.
[20] B. Niven-Jenkins, F. L. Faucheur, and N. Bitar. Content distribution

network interconnection problem statement. IETF Draft, Jan. 2012.
[21] OnePica. http://www.magentocommerce.com.
[22] R. S. Peterson and E. G. Sirer. Antfarm: efficient content distribution

with managed swarms. In NSDI’09.
[23] R. S. Peterson, B. Wong, and E. G. Sirer. A content propagation

metric for efficient content distribution. In ACM SIGCOMM’11.
[24] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann.

Improving content delivery using provider-aided distance
information. In IMC’10.

[25] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party
compute clouds. In ACM CCS’09.

[26] N. H. Sleumer. Output-sensitive cell enumeration in hyperplane
arrangements. Nordic J. of Computing, 6:137–147, June 1999.

[27] XDN. http://www.xdn.com.

382

