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Abstract ration. The promise of virtual machine technology for
server consolidation is to run multiple services on a sin-

Virtual machine monitors (VMMs) are a popular platform for gle physical machine while still allowing independent
Internet hosting centers and cloud-based compute Semceﬁonfiguration and failure isolation

By multiplexing hardware resources among virtual machines

(VMSs) running commodity operating systems, VMMs decrease,. \lNh."e physllcal CPUs ".He frteq,\l/JIentIy amgnable to mul-
both the capital outlay and management overhead of hostin plexing, main memory IS not. Many Services run com-

centers. Appropriate placement and migration policiesata  10rtably on a machine with 1 GB of RAM; multiplexing
advantage of statistical multiplexing to effectively izl avail-  t€n VMs on that same host, however, would allocate each
able processors. However, main memory is not amenable t#iSt 100 MB of RAM. Increasing a machine’s physical
such multiplexing and is often the primary bottleneck inieeh ~ memory is often both difficult and expensive. Incremen-
ing higher degrees of consolidation. tal upgrades in memory capacity are subject to both the

Previous efforts have shown that content-based page shaavailability of extra slots on the motherboard and the abil-
ing provides modest decreases in the memory footprint of VMsijty to support higher-capacity modules: such upgrades
running similar operating systems and applications. Qui-st  often involve replacing—as opposed to just adding—
ies show that significant addlthnal gains can be had b)”evermemory chips. Moreover, not only is high-density mem-
aging both sub-page level sharing (through page patchimd) a ., oy hensive, it also consumes significant power. Fur-
in-core memory compression. We buiifference Enging

thermore, as many-core processors become the norm, the

an extension to the Xen virtual machine monitor, to supportb | K for VM ltiolexi il inalv be th
each of these—in addition to standard copy-on-write fujga ottleneck for muftiplexing will increasingly be the

sharing—and demonstrate substantial savings not onlyeggtw Memory, not the CPU. Finally, both applications and op-
VMs running similar applications and operating systemst@up €rating systems are becoming more and more resource
90%), but even across VMs running disparate workloads (up tdntensive over time. As a result, commodity operating
65%). In head-to-head memory-savings comparisons, Biffer systems require significant physical memory to avoid fre-
ence Engine outperforms VMware ESX server by a factor ofquent paging.
1.5 for homogeneous workloads and by a factor of 1.6-2.5 for Not Surprising|y' researchers and commercial VM
heterogeneous workloads. In all cases, the performanae ovegoftware vendors have developed techniques to decrease
head of Difference Engine is less than 7%. the memory requirements for virtual machines. Notably,
1 Introduction the VMware ESX server implements content-based page
sharing, which has been shown to reduce the memory

Virtualization technology has improved dramatically footprint of muItipIe_, homogeneous virtual machines by
over the past decade to become pervasive within thd0—40% [24]. We find that these values depend greatly
service-delivery industry. Virtual machines are particu-On the operating system and configuration of the guest
larly attractive for server consolidation. Their strong re VMs. We are not aware of any previously published shar-
source and fault isolation guarantees allow multiplexingind figures for mixed-OS ESX deployments. Our evalu-
of hardware among individual services, each with (po-&tion |nd|c_ates, however, that the benefits _of ESX-style
tentially) distinct software configurations. Anecdotally Page sharing decrease as the heterogeneity of the guest
individual server machines often run at 5-10% CPU uti-YMs increases, due in large part to the fact that page
lization. Operators’ reasons are manifold: because ofharing requires the candidate pages tadeatical

the need to over-provision for peak levels of demand, The premise of this work is that there are significant
because fault isolation mandates that individual servicegdditional benefits from sharing at a sub-page granular-
run on individual machines, and because many servicey: i-€., there are many pages that aarly identical.

often run best on a particu|ar Operating System Conﬁguwe show thatitis pOSSible to eﬂ:iCiently find such similar
pages and to coalesce them into a much smaller memory

*Currently at UT Austinsangni n@s. ut exas. edu footprint. Among the set of similar pages, we are able to




store most apatchegelative to a single baseline page. each page and uses hash collisions to identify poten-
Finally, we also compress those pages that are unlikelfial duplicates. To guard against false collisions, both
to be accessed in the near future. Traditional streamESX server and Difference Engine perform a byte-by-
based compression algorithms typically do not have sufbyte comparison before actually sharing the page.
ficient “look-ahead” to find commonality across a large  Once shared, our system can manage page updates in
number of pages or across large chunks of content, but copy-on-write fashion, as in Disco and ESX server. We
they can exploit commonality within a local region, such build upon earlier work orflash cloning[23] of VMs,
as a single memory page. We show that an efficient imwhich allows new VMs to be cloned from an existing
plementation of compression nicely complements pag&/M in milliseconds; as the newly created VM writes to
sharing and patching. its memory, it is given private copies of the shared pages.
In this paper, we present Difference Engine, an extenAn extension by Klosteet al. studied page sharing in
sion to the Xen VMM [6] that not only shares identical Xen [13] and we build upon this experience, adding sup-
pages, but also supports sub-page sharing and in-memopprt for fully virtualized (HVM) guests, integrating the
compression of infrequently accessed pages. Our reglobal clock, and improving the overall reliability and
sults show that Difference Engine can reduce the memperformance.
ory footprint of homogeneous workloads by up to 90%, .
a significant improvement over previously published sys—2'2 Delta Encoding
tems [24]. For a heterogeneous setup (different operaur initial investigations into page similarity were in-
ing systems hosting different applications), we can respired by research in leveraging similarity across files in
duce memory usage by nearly 65%. In head-to-heaghrge file systems. In GLIMPSE [18], Manber proposed
comparisons against VMware’s ESX server running thecomputing Rabin fingerprints over fixed-size blocks at
same workloads, Difference Engine delivers a factor ofmultiple offsets in a file. Similar files will then share
1.5 more memory savings for a homogeneous workloagome fingerprints. Thus the maximum number of com-
and a factor of 1.6-2.5 more memory savings for heteromon fingerprints is a strong indicator of similarity. How-
geneous workloads. ever, in a dynamically evolving virtual memory system,
Critically, we demonstrate that these benefits can behis approach does not scale well since every time a page
obtained without negatively impacting application per- changes its fingerprints must be recomputed as well. Fur-
formance: in our experiments across a variety of work-ther, it is inefficient to find the maximal intersecting set
loads, Difference Engine imposes less than 7% overheadkom among a large number of candidate pages.
We further show that Difference Engine can leverage im-  Broder adapted Manber's approach to the problem of
proved memory efficiency to increase aggregate systenyentifying documents (in this case, Web pages) that are
performance by utilizing the free memory to create addi-nearly identical using a combination of Rabin finger-
tional virtual machines in support of a target workload.prints and sampling based on minimum values under a
For instance, one can improve the aggregate throughset of random permutations [8]. His paper also contains a
put available from multiplexing virtual machines running general discussion of how thresholds should be set for in-
Web services onto a single physical machine. ferring document similarity based on the number of com-
mon fingerprints or sets of fingerprints.
2 Related Work While these techniques can be used to identify simi-
Difference Engine builds upon substantial previous worklar files, they do not address how to efficiently encode
in page sharing, delta encoding and memory compreghe differences. Douglis and lyengar explored using Ra-
sion. In each instance, we attempt to leverage existin®in fingerprints and delta encoding to compress similar

approaches where appropriate. files in the DERD system [12], but only considered whole
. files. Kulkarniet al.[14] extended the DERD scheme to
2.1 Page Sharing exploit similarity at the block level. Difference Engine

Two common approaches in the literature for finding re-also tries to exploit memory redundancy at several differ-

dundant pages are content-based page sharing, exemggiat granularities.

fied by VMWare’s ESX server [24], and explicitly track- .

ing page changes to build knowledge of identical page ,2'3 Memory Compression

exemplified by “transparent page sharing” in Disco [9]. In-memory compression is not a new idea. Douglis

Transparent page sharing can be more efficient, but reet al. [11] implemented memory compression in the

quires several modifications to the guest OS, in contrasBprite operating system with mixed results. In their expe-

to ESX server and Difference Engine which require norience, memory compression was sometimes beneficial,

modifications. but at other times the performance overhead outweighed
To find sharing candidates, ESX hashes contents athe memory savings. Subsequently, Wilsidral. argued
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Figure 1: The three different memory conservation techesgemployed by Difference Engine: page sharing, page patchnd compression. In
this example, five physical pages are stored in less thaa thehine memory pages for a savings of roughly 50%.

Douglis’ mixed results were primarily due to slow hard- memory in the background, identifying pages that have

ware [25]. They also developed new compression algonot been recently used. In addition, reference pages for

rithms (leveraged by Difference Engine) that exploitedsharing or patching must be found quickly without intro-

the inherent structure present in virtual memory, whereaslucing performance overhead. Difference Engine uses

earlier systems used general-purpose compression alghil-page hashes and hash-based fingerprints to identify

rithms. good candidates. Finally, we implement a demand pag-
Despite its mixed history, several operating systemdng mechanism that supplements main memory by writ-

have dabbled with in-memory compression. In the earlying VM pages to disk to support overcommitment, allow-

90s, a Macintosh application, Ram Doubler, promised tang the total memory required for all VMs to temporarily

“double a machine’s RAM” [15]. Tuducet al. [22]  exceed the physical memory capacity.

implemented a compressed cache_ for Linux that adapgg'l Page Sharing

tively manages the amount of physical memory devote

to compressed pages using a simple algorithm shown tpifference Engine’'s implementation of content-based

be effective across a wide variety of workloads. page sharing is similar to those in earlier systems. We
walk through memory looking for identical pages. As
3 Architecture we scan memory, we hash each page and index it based

on its hash value. Identical pages hash to the same value

Difference Engine uses three distinct mechanisms thaind a collision indicates that a potential matching page
work together to realize the benefits of memory sharinghas been found. We perform a byte-by-byte comparison
as shown in Figure 1. In this example, two VMs have al-to ensure that the pages are indeed identical before shar-
located five pages total, each initially backed by distincting them.
pages in machine memory (Figure 1(a)). For brevity, we Upon identifying target pages for sharing, we reclaim
only show how the mapping from guest physical memoryone of the pages and update the virtual memory to point
to machine memory changes; the guest virtual to guesit the shared copy. Both mappings are marked read-only,
physical mapping remains unaffected. First, for identicalso that writes to a shared page cause a page fault that
pages across the VMs, we store a single copy and creaigill be trapped by the VMM. The VMM returns a private
references that point to the original. In Figure 1(b), onecopy of the shared page to the faulting VM and updates
page in VM-2 is identical to one in VM-1. For pages that the virtual memory mappings appropriately. If no VM
are similar, but not identical, we store a patch against aefers to a shared page, the VMM reclaims it and returns
reference page and discard the redundant copy. In Figt to the free memory pool.
ure 1(c), the second page of VM-2 is stored as a patch .
to the second page of VM-1. Finally, for pages that are3-2  Patching
unique and infrequently accessed, we compress them mraditionally, the goal of page sharing has been to elimi-
memory to save space. In Figure 1(d), the remaining prinate redundant copies ifenticalpages. Difference En-
vate page in VM-1 is compressed. The actual machingjine considers further reducing the memory required to
memory footprint is now less than three pages, dowrstoresimilar pages by constructing patches that represent
from five pages originally. a page as the difference relative to a reference page. To

In all three cases, efficiency concerns require us to semotivate this design decision, we provide an initial study
lect candidate pages that are unlikely to be accessed iimto the potential savings due to sub-page sharing, both
the near future. We employ a global clock that scanswithin and across virtual machines. First, we define the



following two heterogeneous workloads, each involving Pages Initial | After After
three 512-MB virtual machines: Sharing | Patching
Unique 191,646 | 191,646
e MIXED-1: Windows XP SP1 hosting RUBIS [10]; Sharable (non-zero) 52,436 3,577
Debian 3.1 compiling the Linux kernel; Slackware __ Zero 149,038 1
10.2 compiling Vim 7.0 followed by a run of the _Total 393,120 195,224 88,422
| mbench benchmark [19]. Reference 50,727 | 50,727
Patchable 144,497 | 37,695

e MIXED-2: Windows XP SP1 running Apache 2.2.8 _ _
hosing approximately 32000 talc Web. pages[ i Ectnes o e iy s s 1z
crawled from Wikipedia, withht t per f running
on a separate machine requesting these pages; D893 120 originally—an impressive 77% savings, or al-
bian 3.1 running the SysBench database benchmgst another 50% over full-page sharing. We note that
mark [1] using 10 threads to issue 100,000 requestsghis was the least savings in our experiments; the savings
Slackware 10.2 running dbench [2] with 10 clients from patching are even higher in most cases. Further, a
for six minutes followed by a run of the I0Zone sjgnificant amount of page sharing actually comes from
benchmark [3]. zero pages and, therefore, depends on their availability.
i For instance, the same workload when executed on 256-
We designed these workloads to stress the memoryyg v/ yields far fewer zero pages. Alternative mech-

savirjg mechanisms since opport.unities for i(;len'FicaI Pag@nisms to page sharing become even more important in
sharing are reduced. Our choice of applications Wag ,ch cases

guided by the VMmark benchmark [17] and the vmbench o o ]
suite [20]. In this first experiment, for a variety of config- ©n€ of the principal complications with sub-page
urations, we suspend the VMs after completing a benchsharing is identifying candidate reference pages. Dif-

mark, and consider a static snapshot of their memory t¢€rénce Engine uses a parameterized scheme to iden-

determine the number of pages required to store the imi1Y Similar pages based upon the hashes of sev-

ages using various techniques. Table 1 shows the resulfif@l 64-byte portions of each page. In particular,
of our analysis for the NkeD-1 workload. HashSimilarityDetector(k, s) hashes the contents of

The first column breaks down these 393,120 pages int§* - ) 64-byte blocks at randomly chosen locations on
three categories: 149,038 zero pages (i.e., the page coff!® Page, and then groups these hashes togethek into
tains all zeros), 52,436 sharable pages (the page is not &fOUPS Ofs hashes each. We use each group as an in-
zeros, and there exists at least one other identical pagej€X Into @ hash table. In other words, higher values
and 191,646 unique pages (no other page in memory igf s capturelocal_ sqnﬂgnty while h|gher]f yalges in-
exactly the same). The second column shows the numb&PrPorateglobal similarity. Hence HashSimilarityDe-
of pages required to store these three categories of pagtector(1,1) will choose one block on a page and index
using traditional page sharing. Each unique page mudpat block; pages are c_ons_ldered similar if that b_Iock of
be preserved; however, we only need to store one copgjlta matches HashSimilarityDetector(1,2) combines
of a set of identical pages. Hence, the 52,436 non-uniqui'® hashes from two different locations in the page into
pages contain only 3577 distinct pages—implying there®ne mdt_ax of length twoHashs_lm|Iar|tyDetector(2,1)
are roughly fourteen copies of every non-unique pagellnstead mdgxes each page twu;e: once based on the con-
Furthermore, only one copy of the zero page is needed€nts of a first block, and again based on the contents

In total, the 393,120 original pages can be represented byf @ Second block. Pages that match at least one of the
195,224 distinct pages—a 50% savings. wo blocks are chosen as candidates. For each scheme,

The third column depicts the additional savings avail-the number of candidates, specifies how many differ- -
able if we consider sub-page sharing. Using a cut-off ofent pages the hash table tracks for.each signature. Wlth
2 KB for the patch size (i.e., we do not create a patch if it®n€ candidate, we only store the first page found with
will take up more than half a page), we identify 144,497 €ach signature; for larger values, we keep multiple pages
distinct pages eligible for patching. We store the 50,7271 the hash table for each index. When trying to build a
remaining pages as is and use them as reference pagelch. Difference Engine computes a patch between all
for the patched pages. For each of the similar pages, wiatching pages and chooses the best one.
compute a patch using Xdelta [16]. The average patch Figure 2 shows the effectiveness of this scheme for
size is 1,070 bytes, allowing them to be stored in 37,69%arious parameter settings on the two workloads de-
4-KB pages, saving 106,802 pages. In sum, sub-pagscribed above. On the X-axis, we have parameters in
sharing requires only 88,422 pages to store the memorthe format(k, s), ¢, and on the Y-axis we plot the total
for all VMs instead of 195,224 for full-page sharing or savings from patchingfter all identical pages have been



o— otherwise the overhead of compression/decompression

IR &3 Mixep-1 will outweigh the benefits. We identify candidate pages
35} E MIXED-2 { . . . .
for compression using a global clock algorithm (Section
30} ] 4.2), assuming that pages that have not been recently ac-
o5l cessed are unlikely to be accessed in the near future.
‘%’Tzoi i I | Difference Engine supports multiple compression al-
£ gorithms, currently LZO and WKdm as described in
3 15} ] [25]; We invalidate compressed pages in the VM and save
10} them in a dynamically allocated storage area in machine
memory. When a VM accesses a compressed page, Dif-
° ference Engine decompresses the page and returns it to
oi R AR A R S R R the VM uncompressed. It remains there until it is again
093\,9@93,93,9393939&9@@3@3@3@3?3;‘)?) considered for compression.

Figure 2: Effectiveness of the similarity detector forvagnumber of ~ 3.4 Paging Machine Memory
indices, index length and number of candidates. All entrisa 18-bit ) . . ) ] ]
hash. While Difference Engine will deliver some (typically

high) level of memory savings, in the worst case all
shared. Throughout the paper, we use the following defy/Ms might actually require all of their allocated memory.
inition of savings (we factor in the memory used to storesetting aside sufficient physical memory to account for
the shared and patched/compressed pages): this case prevents using the memory saved by Difference
Engine to create additional VMs. Not doing so, how-
ever, may result in temporarily overshooting the physi-
cal memory capacity of the machine and cause a system
For both the workloads, HashSimilarityDetec- crash. We therefore require adem?Fd'paging mechar_wism
- . L to supplement main memory by writing pages out to disk
tor(2,1) with one candidate does surprisingly well. There.
is a substantial gain due to hashing two distinct blocks" such cases. _ _ .
in the page separately, but little additional gain by hash- A good candidate page for swapping out would likely
ing more blocks. Combining blocks does not help much N0t be accessed in the near future—the same requirement
at least for these workloads. Furthermore, storing moréS compressed/patched pages. In fact, Difference Engine
candidates in each hash bucket also produces little gai!SO considers compressed and patched pages as candi-
Hence, Difference Engine indexes a page by hashing 64dates for swapping out. Once the contents of the page
byte blocks at two fixed locations in the page (chosen a@f€ written to disk, the page can be reclaimed. When
random) and using each hash value as a separate index3VM accesses a swapped out page, Difference Engine
store the page in the hash table. To find a candidate sinfétches it from disk and copies the contents into a newly
ilar page, the system computes hashes at the same tvflocated page that is mapped appropriately in the VM's
locations, looks up those hash table entries, and choos&d€mory.
the better of the (at most) two pages found there. Since disk I/O is involved, swapping in/out is an ex-
Our current implementation uses 18-bit hashes to keepensive operation. Further, a swapped page is unavail-
the hash table small to cope with the limited size of theable for sharing or as a reference page for patching.
Xen heap. In general though, larger hashes might be usetherefore, swapping should be an infrequent operation.
for improved savings and fewer collisions. Our analysisDifference Engine implements the core mechanisms for
indicates, however, that the benefits from increasing thgaging, and leaves policy decisions—such as when and
hash size are modest. For example, usimaghSimilari- how much to swap—to user space tools. We describe our
tyDetector(2,1) with one candidate, a 32-bit hash yields reference implementation for swapping and the associ-
a savings of 24.66% for MED-1, compared to a savings ated tools in Section 4.6.
of 20.11% with 18-bit hashes.

3.3 Compression 4 Implementation

1 Total memory actually used 100
Total memory allocated to VM

Finally, for pages that are not significantly similar to We have implemented Difference Engine on top of Xen
other pages in memory, we consider compressing ther8.0.4 in roughly 14,500 lines of code. An additional
to reduce the memory footprint. Compression is use20,000 lines come from ports of existing patching and
ful only if the compression ratio is reasonably high, and,compression algorithms (Xdelta, LZO, WKdm) to run in-
like patching, if selected pages are accessed infrequentlgide Xen.



4.1 Modifications to Xen vent us from saving any memory at all, since every VM’s
address space will be mapped byi itseenmu into Domain-

t%' Our initial prototype addressed this issue by modify-
{hg i oenmu to map a small, fixed number (16) of pages
rom each VM at any given time. While simple to im-
lement, this scheme suffered from the drawback that,
or 1/O-intensive workloads, theoemnmu process would

Xen and other platforms that support fully virtualized
guests use a mechanism called “shadow page tables”
manage guest OS memory [24]. The guest OS has i
own copy of the page table that it manages believing tha
they are the hardware page tables, though in reality it i

just a map from the guest’s virtual memory to its notion AP
J b g y constantly have to map VM pages into its address space

of physical memory (V2P map). In addition, Xen main- d d. leading t desirabl ¢ d
tains a map from the guest’s notion of physical memoryon emand, leading fo undesirable periormance degra-

to the machine memory (P2M map). The shadow pagéiation. To address this limitation, we implemented a

table is a cache of the results of composing the V2P ma|9ynamIC aging mephanlsm inoemi—VvM pages are
with the P2M map, mapping guest virtual memory di- mapped into Domain-0 on demand, but not immediately

rectly to machine memory. Loosely, it is the virtualized unmapped. Every ten seconds, we unmap VM pages

analog to a software TLB. The shadow page table enyvhich were not accessed during the previous interval.

ables quick page translation and look-ups, and more im4.1.3 Block Allocator

portantly, can be used directly by the CPU. . . .

Difference Engine relies on manipulating P2M mapsPatCh'.ng and compression may result in compact repre-
and the shadow page tables to interpose on page access%%matlons of a page that are much smaller tha_n the page
For simplicity, we do not consider any pages mappe ize. We wrote a custom block allocator for Difference

ngine to efficiently manage storage for patched and

by Domain-0 (the privileged, control domain in Xen), .
which, among other things, avoids the potential for cir- compressed pages. The allocator acquires pages from the
' ' domain heap (from which memory for new VMs is allo-

cular page faults. Our implementation method gives rise
to two slight complications. cated) on demand, and returns pages to the heap when no

longer required.
4.1.1 Real Mode

On x86 hardware, the booting-on-bare-metal process disL-L Clock
ables the x86 real-mode paging. This configuration is reDifference Engine implements a not-recently-used
quired because the OS needs to obtain some informatioNRU) policy [21] to select candidate pages for sharing,
from the BIOS for the boot sequence to proceed. Wherpatching, compression and swapping out. On each invo-
executing under Xen, this requirement means that pageation, the clock scans a portion of the memory, checking
ing is disabled during the initial stages of the boot pro-and clearing theeferencedR) andmodified(M) bits on
cess, and shadow page tables are not used until paging&ges. Thus, pages with tRéM bits set must have been
turned on. Instead, the guest employs a direct P2M mafpeferenced/modified since the last scan. We ensure that
as the page table. Hence, a VM’s memory is not availabléuccessive scans of memory are separated by at least four
for consideration by Difference Engine until paging hasseconds in the current implementation to give domains a
been turned on within the guest OS. chance to set thB/M bits on frequently accessed pages.
In the presence of multiple VMs, the clock scans a small
4.1.2 1/O Support portion of each VM’s memory in turn for fairness. The
To support unmodified operating system requirementexternal APl exported by the clock is simple: return a
for 1/0 access, the Xen hypervisor must emulate mucHist of pages (of some maximum size) that have not been
of the underlying hardware that the OS expects (such agccessed in some time.
the BIOS and the display device). Xen has a software In OSes running on bare metal, tRéM bits on page-
I/0 emulator based on Qemu [7]. A per-VM user-spacetable entries are typically updated by the processor. Xen
process in Domain-0 known a®enu performs all nec-  structures the P2M map exactly like the page tables used
essary /O emulation. Theoenmu must be able to read by the hardware. However, since the processor does not
and write directly into the guest memory, primarily for actually use the P2M map as a page table RHd bits
efficiency. For instance, this enables theeru process are not updated automatically. We modify Xen's shadow
to DMA directly into pages of the VM. By virtue of ex- page table code to set these bits when creating readable
ecuting in Domain-0, the oermu may map any pages of or writable page mappings. Unlike conventional operat-
the guest OS in its address space. ing systems, where there may be multiple sets of page
By default,i oenu maps the entire memory of the tables that refer to the same set of pages, in Xen there is
guest into its address space for simplicity. Recall, how-only one P2M map per domain. Hence, each guest page
ever, that Difference Engine explicitly excludes pagescorresponds unambiguously to one P2M entry and one
mapped by Domain-0. Thusperu will nominally pre-  set ofR/M bits.



Using theR/M bits, we can annotate each page withis allocated out of Xen’s heap space, which is quite lim-
its “freshness”: ited in size: the code, data, and heap segments in Xen
-~ ) must all fit in a 12-MB region of memory. Changing the

* Recently modified C1): The page has beenwritten 045 size requires pervasive code changes in Xen, and
since the last scaifiM,R=1,1] will likely break the application binary interface (ABI)

« Not recently modified (C2): The page has been for some OSes. We theref(_)re restrict the s_ize of the page-
accessed since the last scan, but not modifieds.r""mng_haSh table so that it can hold entrle_s for drily
[M,R=1,0] of physwgl memory. Hence lefere.nce Engine processes

memory in five passes, as described by Klosteal.

¢ Not recently accessed@3): The page has not been [13]. In our test configuration, this partitioning results
accessed at all since the last scamh,R=0,0] in a 1.76-MB hash table. We divide the space of hash

function values into five intervals, and only insert a page

» Not accessed for an extended periodd4): The  nto the table if its hash value falls into the current inter-
page has not been accessed in the past few scans.ya|. A complete cycle of five passes covering all the hash

Note that the existing tw&/M bits are not sufficient value intervals is required to identify all identical pages

to classifyC4 pages—we extend the clock's “memory” 4.4 Page-similarity Detection
by leveraging two additional bits in the page table en- o ) .
tries to identify such pages. We update these bits when € goal of the page-similarity component is to find
page is classified a83 in consecutive scans. Together, Pairs of pages with similar content, and, hence, make
these four annotations enable a clean separation betwe§andidates for patching. We implement a simple strat-
mechanism and policy, allowing us to explore different®Y for finding similar pages based on hashing short
techniques to determine when and what to share, patcfp!/0Ccks within a page, as described in Section 3.2. Specit-
and compress. By default, we employ the following pol- ically, we use theHashSimilarityDetector(2,1) de-
icy. C1 pages are ignoreC2 pages are considered for scnbgd there, which hashes _short data blocks from two
sharing and to be reference pages for patching, but cann#tcations on each page, and indexes the page at each of
be patched or compressed themsel\@3;pages can be those_tw_o locations in a separat_e page-similarity hash ta-
shared or patche4 pages are eligible for everything, ble, distinct from the page-_sharlng ha_sh table described
including compression and swapping. above. Wg use the 1-candidate variation, where at most
We consider sharing first since it delivers the mostO"€ Page is indexed for each block hash value.
memory savings in exchange for a small amount of meta Recall that the clock makes a complete scan through
data. We consider compression last because once a pag€mory in five passes. The page-sharing hash table is
is compressed, there is no opportunity to benefit from fu-cleared after each pass, since only pagéhin a pass
ture sharing or patching of that page. An alternate, moréire considered for sharing. However, two similar pages
aggressive policy might treat all pages as if they were inMay appear in different passes if their hash values fall in
stateC4 (not accessed in a long time)—in other words, different intervals. Since we want to only consider pages
proactively patch and compress pages. Initial experimenthat have not been shared in a full cycle for patching, the
tation indicates that while the contribution of patched andPage-similarity hash table isot cleared on every pass.
compressed pages does increase slightly, it does not yieI-EhiS approach also increases the chances of finding better
a significant net savings. We also considered a policy tha¢@ndidate pages to act as the reference for a patch.
selects pages for compression before patching. Initial ex- The page-similarity hash tabl@ay be cleared after
perimentation with the workloads in Section 5.4.2 showsconsidering every page in memory—that is, at the end
that this policy performs slightly worse than the default©f each cycle of the global clock. We do so to prevent
in terms of savings, but incurs less performance overheagtale data from accumulating: if a page changes after it
since patching is more resource intensive. We suspedtas been indexed, we should remove old pointers to it.
that it may be a good candidate policy for heterogeneou$ince we do not trap on write operations, it is simpler to
workloads with infrequently changing working sets, butjust discard and rebuild the similarity hash table.
do not explore it further here. Only the last step of patching—building the patch and
. replacing the page with it—requires a lock. We per-
4.3 Page Sharing form all earlier steps (indexing and lookups to find simi-
Difference Engine uses the SuperFastHash [4] functioriar pages) without pausing any domains. Thus, the page
to compute digests for each scanned page and insert®ntents may change after Difference Engine indexes the
them along with the page-frame number into a hash tapage, or after it makes an initial estimate of patch size.
ble. Ideally, the hash table should be sized so that it caiThis is fine since the goal of these steps is to find pairs
hold entries for all of physical memory. The hash tableof pages that will likely patch well. An intervening page



modification will not cause a correctness problem, only a ]

patch that is larger than originally intended. gswapd VM-1
4.5 Compression | Monitor || handler2 |
Compression operates similarly to patching—in both i loemu2 | VM-2
cases the goal is to replace a page with a shorter repre- Event § Channel

sentation of the same data. The primary difference is that I Xen I

patching makes use of a reference page, while a com-
pressed representation is self contained.

There is one important interaction between compres-
sion and patching: once we compress a page, the pagee A swap-out notification is received from Xen via an
can no longer be used as a reference for a later patched  event channel. This allows the hypervisor to initiate
page. A naive implementation that compresses all non-  swapping if more memory is urgently required (for
identical pages as it goes along will almost entirely pre-  instance, when creating a private copy of a shared

vent page patches from being built. Compression of a  page). The hypervisor indicates the amount of free
page should be postponed at least until all pages have  memory desired.

been checked for similarity against it. A complete cy- ) )

cle of a page sharing scan will identify similar pages, ® A SWap-out request is received from another pro-
so a sufficient condition for compression is thatpage cess. This allows other user space tools (for in-
should be compressed until a complete cycle of the page ~ Stance, the VM creation tool) to initiate swapping
sharing code finishesWe make the definition of “not to free memory. We currently employ XenStore [5]
accessed for an extended period” in the clock algorithm ~ for such communication, but any other IPC mecha-
coincide with this condition (staté4). As mentioned in nism can be used.

Section 4.2, this is our default policy for page compres- Note thatswapd always treats a swap-out request as a
sion. hint. It will try to free pages, but if that is not possible—
4.6 Paging Machine Memory if no suitable candidate page was .availa_ble, for.instance,
or if the swap space became full—it continues silently. A
Recall that any memory freed by Difference Engine cansingle flat file of configurable size is used as storage for
not be used reliably without supplementing main mem-the swap space.
ory with secondary storage. That is, when the total al- To swap out a pageswapd makes a hypercall into
located memory of all VMs exceeds the system memoryxen, where a victim page is chosen by invoking the
capacity, some pages will have to be swapped to diskglobal clock. If the victim is a compressed or patched
Note that this ability to overcommit memory is useful in page, we first reconstruct it. We pause the VM that owns
Xen independent of other Difference Engine functional-the page and copy the contents of the page to a page in
ity, and has been designed accordingly. Domain-0’s address space (supplieddwapd). Next,

The Xen VMM does not perform any 1/O (delegating we remove all entries pointing to the victim page in the
all I/0 to Domain-0) and is not aware of any devices. P2M and M2P maps, and in the shadow page tables. We
Thus, it is not possible to build swap support directly in then mark the page as swapped out in the correspond-
the VMM. Further, since Difference Engine supports un-ing page table entry. Meanwhilswapd writes the page
modified OSes, we cannot expect any support from theontents to the swap file and inserts the corresponding
guest OS. Figure 3 shows the design of our swap implebyte offset in a hash table keyed kyDomain ID, guest
mentation guided by these constraints. A single swafpage-frame number. Finally, we free the page, return it
daemon gwapd) running as a user process in Domain- to the domain heap, and reschedule the VM.

0 manages the swap space. For each VM in the system, When a VM tries to access a swapped page, it incurs
swapd creates a separate thread to handle swap-in rea page fault and traps into Xen. We pause the VM and
quests. Swapping out is initiated syvapd, when one allocate a fresh page to hold the swapped in data. We
of the following occurs: populate the P2M and M2P maps appropriately to ac-
commodate the new page. Xen dispatches a swap-in re-
e The memory utilization in the system ex- questtoswapd containing the domain ID and the fault-
ceeds some user configurable threshold (theng page-frame number. The handler thread for the fault-
H GHWATERMARK). Pages are swapped out until ing domain inswapd receives the request and fetches
a user configurable threshold of free memory isthe location of the page in the swap file from the hash
attained (the ONWATERVARK). A separate thread table. It then copies the page contents into the newly al-
(themenor y_noni t or ) tracks system memory.  located page frame within Xen via another hypercall. At

Figure 3: Architecture of the swap mechanism.



Function | Mean execution time (:s) custom micro-benchmark described in Section 5.3. To

shar e_pages 6.2 benchmark paging, we disabled all three mechanisms
cow.br eak 25.1 and forced eviction of 10,000 pages from a single 512-
conpr ess_page 29.7 MB VM. We then ran a simple program in the VM that
unconpr ess 10.4 touches all memory to force pages to be swapped in.
5?;;&%"’198 3?2'2 Table 2 shows the overhead imposed by the ma-
swap_out _page 48.9 jor Difference Engine operations. As expected, col-

swap_i n_page 7151.6 lapsing identical pages into a copy-on-write shared
page 6hare_page) and recreating private copies
(cow. br eak) are relatively cheap operations, taking ap-
this point,swapd notifies Xen, and Xen restarts the VM Proximately 6 and 2ps, respectively. Perhaps more sur-
at the faulting instruction. prising, however, is that compressing a page on our hard-
ware is fast, requiring slightly less than 88 on average.

Table 2: CPU overhead of different functions.

This implementation leads to two interesting interac- ; . )
tions betweeri oemu and swapd. First, recall that Patching, on the other hand, is almost an order of magni-

i oemu can directly write to a VM page mapped in its tude slower: creating a patchdt ch_page) takes over

address space. Mapped pages might not be accessed (0 #S- This time is primarily due to the overhead of
til later, so a swapped page can get mapped or a mappé@dmg a good candidate pase page and constructing Fhe
page can get swapped out without immediate detectiorP@(ch. Both decompressing a page and re-constructing
To avoid unnecessary subsequent swap ins, we modif§ Pached page are also fairly fast, taking 10 and.48

i oemu to ensure that pages to be mapped will be first €SPECIVEly. _

swapped in if necessary and that mapped pages becomeSWapping out takes approximately 38. However,
ineligible for swapping. Also note that controiustbe this doesnot include the time to actually write the page
transferred from Xen tswapd for a swap in to com- to disk. This is intentional: once the page contents have
plete. This asynchrony allows a race condition whergP®€n copied to user space, theg immediately avail-

i oenu tries to map a swapped out page (so Xen initi- able for being swapped in; and the actual write to the disk
ates a swap in on its behest) and proceeds with the acce8¥9ht be delayed because of file system and OS buffering
before the swap in has finished. This race can happelft Pomain-0. Swapping in, on the other hand, is the most
because both processes must run in Domain-0 in the XefXPensive operation, taking approximately 7 ms. There
architecture. As a work around, we modifpenu to &€ a few caveats, however. First, swapping in is an asyn-
block if a swap in is still in progress insidavapd using ~ chronous operation and might be affected by several fac-
shared memory between the processes for the requird@'s: including process scheduling within Domain-0; it

synchronization. is nota tight bound. Second, swapping in might require
reading the page from disk, and the seek time will depend
5 Evaluation on the size of the swap file, among other things.

We first present micro-benchmarks to evaluate the cosp-2 Clock Performance

of individual operations, the performance of the g|0ba|The performance of app“cations running with Differ-
clock and the behavior of each of the three meChanismSi@nce Engine depends upon how effective|y we choose
isolation. Next, we evaluate whole system performancejdle pages to compress or patch. Patching and com-
for a range of workloads, we measure memory savinggression are computationally intensive, and the benefits
and the impact on application performance. We quanof this overhead last only until the next access to the
tlfy the contributions of each Difference Engine mech- page. Reads are free for shared pages, but not so for
anism, and also present head-to-head comparisons witbmpressed or patched pages. The clock algorithm is in-
the VMware ESX server. Finally, we demonstrate howtended to only consider pages for compression/patching

our memory savings can be used to boost the aggregatRat are not likely to be accessed again soon; here we
system performance. Unless otherwise mentioned, akbvaluate how well it achieves that goal.

experiments are run on dual-processor, dual-core 2.33- For three different workloads, we trace the life-
GHz Intel Xeon machines and the page size is4 KB.  time of each patched and compressed page. The
. ; lifetime of a page is the time between when it was

5.1 Costof Individual Operations patched/compressed, and the time of the first subsequent
Before quantifying the memory savings provide by Dif- access (read or write). The workloads range from best
ference Engine, we measure the overhead of variousase homogeneous configurations (same OS, same ap-
functions involved. We obtain these numbers by en-plications) to a worst case, highly heterogeneous mix
abling each mechanism in isolation, and running the(different OSes, different applications). The RUBIS and



workload generator within it. At the end of each run, we
destroy the container VM and again give memory some
time to stabilize before the next run. We ran benchmarks
with varying degrees of similarity, where similarity is de-
fined as follows: a similarity of 90% means all pages dif-
fer from a base page by 10%, and so any two pages will
differ from each other by at most 20%. Here, we present
the results for 95%-similar pages, but the results for other
P values are similar.
Qo Each VM image is configured with 256 MB of mem-
Life time (ms) ory. Our workload generator allocates pages filling 75%
(192 MB) of the VM’'s memory. The stabilization period
Figure 4: Lifetime of patched and compressed pages for thifiezent is a function of several factors, particularly the period of
workloads. Our NRU implementation works well in practice. the global clock. For these experiments, we used a sleep
time of 80 seconds between each phase. During the write
. " step, the workload generator writes a single constant byte
5'4'1).' We use the MED-1 workload described earlier at 16 fixed offsets in the page. On each of the time series
(Sef:tlon 3.2)asthe heteroge-neou.s V\./ork.load. _graphs, the significant events during the run are marked
_ Figure 4 plots the cumulative distribution of the life- ith 5 vertical line. These events are: (1) begin and (2)
time of a page: the X-axis shows the lifetime (in eng of the allocation phase, (3) begin and (4) end of the
ms) in log scale, and the Y-axis shows the fracuoq ofread phase, (5) begin and (6) end of the write phase, (7)
compressed/patched pages. A good clock algorithnhegin and (8) end of the free phase, and (9) VM destruc-
should give us high lifetimes, since we would like to jgn.
patch/compress only those pages which will not be ac- Figure 5 shows the memory savings as a function of

cessed in the near future. As the figure shows, almosf§ye for each mechanism for identical pages (for brevity,

80% of the victim pages have a lifetime of at least 10 seCy,q gmit results with zero pages—they are essentially the

onds, and roughly 50% have a lifetime greater than 10Q; e 55 identical pages). Note that while each mech-

seconds. This is true for both the homogeneous and thg,ism achieves similar savings, the crucial difference
mixed workloads, indicating that our NRU implementa- ;s that reads are free for page sharing. With compres-

tion works well in practice. sion/patching, even a read requires the page to be recon-
structed, leading to the sharp decline in savings around
event (3) and (5).
To understand the individual contribution of the three At the other extreme are random pages. Intuitively,
techniques, we first quantify the performance of eachnone of the mechanisms should work well since the op-
in isolation. We deployed Difference Engine on threeportunity to share memory is scarce. Figure 6 agrees:
machines running Debian 3.1 on a VM. Each machineonce the pages have been allocated, none of the mecha-
is configured to use a single mechanism—one machinaisms are able to share more than 15-20% memory. Page
uses just page sharing, one uses just compression, astiaring does the worst, managing 5% at best.
one just patching. We then subject all the machines to From the perspective of page sharing, similar pages are
the same workload and profile the memory utilization. no better than random pages. However, patching should
To help distinguish the applicability of each techniquetake advantage of sub-page similarity across pages. Fig-
to various page contents, we choose a custom workdre 7 shows the memory savings for the workload with
load generator that manipulates memory in a repeatablgages of 95% similarity. Note how similar the graphs
predictable manner over off-the-shelf benchmarks. Oufor sharing and compression look for similar and random
workload generator runs in four phases. First it allocategages. Patching, on the other hand, does substantially
pages of a certain type. To exercise the different mechabetter, extracting up to 55% savings.
nisms in predictable ways, we consider four distinct pa S
types: zgro pages, rar¥dom pages, identical pageps 212%14 Real-world Applications
similar-but-not-identical pages. Second, it reads all theAMe now present the performance of Difference Engine
allocated pages. Third, it makes several small writes tan a variety of workloads. We seek to answer two ques-
all the pages. Finally, it frees all allocated pages andions. First, how effective are the memory-saving mech-
exits. After each step, the workload generator idles foranisms at reducing memory usage for real-world appli-
some time, allowing the memory to stabilize. For eachcations? Second, what is the impact of those memory-
run of the benchmark, we spawn a new VM and start thesharing mechanisms on system performance? Since the
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Figure 7: Workload: Similar Pages with 95% similarity. Faibg does significantly better than compression and sharing

degree of possible sharing depends on the software cother, we configure ESX to use its most aggressive page
figuration, we consider several different cases of applicasharing settings where it scans 10,000 pages/second (de-
tion mixes. fault 200); we configure Difference Engine similarly.

To put our numbers in perspective, we conduct heads.4.1 Base Scenario: Homogeneous VMs
to-head comparisons with VMware ESX server for three
different workload mixes. We run ESX Server 3.0.1 build In our first set of benchmarks, we test the base scenario
32039 on a Dell PowerEdge 1950 system. Note that eveWhere all VMs on a machine run the same OS and ap-
though this system has two 2.3-GHz Intel Xeon procesplications. This scenario is common in cluster-based
sors, our VMware license limits our usage to a singleSystems where several services are replicated to provide
CPU. We therefore restrict Xen (and, hence, Differencdault tolerance or load balancing. Our expectation is that
Engine) to use a single CPU for fairness. We also enSignificant memory savings are available and that most of
sure that the OS images used with ESX match those usdf€ savings will come from page sharing.
with Xen, especially the file system and disk layout. Note On a machine running standard Xen, we start from
that we are only concerned with the effectiveness of thel to 6 VMs, each with 256 MB of memory and run-
memory sharing mechanisms—not in comparing the apning RUBIS [10]—an e-commerce application designed
plication performance across the two hypervisors. Furto evaluate application server performance—on Debian
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Figure 9: Four identical VMs execute dbenctrigure 10: Memory savings for MED-1. Dif- Figure 11: Memory savings for MED-2. Dif-

For such homogeneous workloads, both Diffeference Engine saves up to 45% more memdigrence Engine saves almost twice as much
ence Engine and ESX eventually yield similathan ESX. memory as ESX.

savings, but DE extracts more savingsile the

benchmark is in progress.

3.1. We use the PHP implementation of RUBIS; each into the RUBIS workload. As before, we measure the time
stance consists of a Web server (Apache) and a databatsken to finish the compile and the memory savings for
server (MySQL). Two distinct client machines generatevarying number of virtual machines. We summarize the
the workload, each running the standard RUBIS work-results here for brevity: in each case, the performance
load generator simulating 100 user sessions. The benchinder Difference Engine is within 5% of the baseline,
mark runs for roughly 20 minutes. The workload genera-and on average Difference Engine delivers around 40%
tor reports several metrics at the end of the benchmark, isavings with four or more VMs.

particular the average response time and the total number We next compare Difference Engine performance with
of requests served. the VMware ESX server. We set up four 512-MB virtual

We then run the same set of VMs with Difference En- machines running Debian 3.1. Each VM executes dbench
gine enabled. Figures 8(a) and 8(b) show that both the tof2] for ten minutes followed by a stabilization period of
tal number of requests and the average response time r2d minutes. Figure 9 shows the amount of memory saved
main unaffected while delivering 65-75% memory sav-as a function of time. First, note thatentualljpooth ESX
ings in all cases. In Figure 8(c), the bars indicate the averand Difference Engine reclaim roughly the same amount
age memory savings over the duration of the benchmarlof memory (the graph for ESX plateaus beyond 1,200
Each bar also shows the individual contribution of eachseconds). Howevewhile dbench is executing, Differ-
mechanism. Note that in this case, the bulk of memoryence Engine delivers approximately 1.5 times the mem-
savings comes from page sharing. Recall that Differencery savings achieved by ESX. As before, the bulk of Dif-
Engine tries to share as many pages as it can before coference Engine savings come from page sharing for the
sidering pages for patching and compression, so sharingomogeneous workload case.
is expected to be the largest contributor in most case
particularly in homogeneous workloads.

Next, we conduct a similar experiment where each VMGiven the increasing trend towards virtualization, both
compiles the Linux kernel (version 2.6.18). Since theon the desktop and in the data center, we envision that a
working set of VMs changes much more rapidly in a ker-single physical machine will host significantly different
nel compile, we expect less memory savings comparetypes of operating systems and workloads. While smarter

%.4.2 Heterogeneous OS and Applications
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these differences, there will still be a diverse and hetero-  soogss S5 T000—— 3001260 T800

geneous mix of applications and environments, under- Total offered load (# clients)
scoring the need for mechanisms other than page shar- (a) Total requests handled

ing. We now examine the utility of Difference Engine
in such scenarios, and demonstrate that significant addi- e—e Baseline 4VMs
tional memory savings result from employing patching ssoop 7 DE VIS
and compression in these settings. 3000} " DE 7VMs
Figures 10 and 11 show the memory savings as a
function of time for the two heterogeneous workloads—
MIXeD-1 and MXED-2 described in Section 3.2. We
make the following observations. First, in steady state,
Difference Engine delivers a factor of 1.6-2.5 more mem-
ory savings than ESX. For instance, for thaxX¥ip-2
workload, Difference Engine could host the three VMs A
allocated 512 MB of physical memory each in approxi- 600 800 1000 1200 ~ 1400 1600
: . Total offered load (# clients)
mately 760 MB of machine memory; ESX would require
roughly 1100 MB of machine memory. The remaining,
significant, savings come from patching and compres
sion. And these savings come at a small cost. Table 3
summarizes the performance of the three benchmarks in The goal is to increase the load on the system to sat-

the MIXED-1 workload. The baseline configuration is yration. The solid lines in Figures 12(a) and 12(b) show
regular Xen without Difference Engine. In all cases, per-the total requests served and the average response time
formance overhead of Difference Engine is within 7% of for the baseline, with the total offered load marked on
the baseline. For the same workload, we find that perforthe X-axis. Note that beyond 960 clients, the total num-
mance under ESX with aggressive page sharing is alsger of requests served plateaus at around 180,000 while
within 5% of the ESX baseline with no page sharing.  the average response time increases sharply. Upon inves-
tigation, we find that for higher loads all of the VMs have
more than 95% memory utilization and some VMs actu-
Difference Engine goes to great lengths to reclaim memally start swapping to disk (within the guest OS). Using
ory in a system, but eventually this extra memory need$ewer VMs with more memory (for example, 2 VMs with
to actually get used in a productive manner. One can cert.2 GB RAM each) did not improve the baseline perfor-
tainly use the saved memory to create more VMs, bummance for this workload.
does that increase the aggregate system performance? Next, we repeat the same experiment with Difference
To answer this question, we created four VMs with Engine, except this time we utilize reclaimed memory to
650 MB of RAM each on a physical machine with create additional VMs. As a result, for each data point
2.8 GB of free memory (excluding memory allocated on the X-axis, the per VM load decreases, while the ag-
to Domain-0). For the baseline (without Difference En- gregate offered load remains the same. We expect that
gine), Xen allocates memory statically. Upon creatingsince each VM individually has lower load compared
all the VMs, there is clearly not enough memory left to to the baseline, the system will deliver better aggregate
create another VM of the same configuration. Each VMperformance. The remaining lines in Figures 12(a) and
hosts a RUBIS instance. For this experiment, we used 2(b) show the performance with up to three extra VMs.
the Java Servlets implementation of RUBIS. There areClearly, Difference Engine enables higher aggregate per-
two distinct client machines per VM to act as workload formance and better response time compared to the base-
generators. line. However, beyond a certain point (two additional
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Figure 12: Up to a limit, Difference Engine can help increaggregate
ystem performance by spreading the load across extra VMs.

5.4.3 Increasing Aggregate System Performance
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