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Abstract

Utility computing, elastic computing, and cloud
computing are all terms that refer to the concept of
dynamically provisioning processing time and storage
space from a ubiquitous “cloud” of computational re-
sources. Such systems allow users to acquire and re-
lease the resources on demand and provide ready ac-
cess to data from processing elements, while relegating
the physical location and exact parameters of the re-
sources. Over the past few years, such systems have
become increasingly popular, but nearly all current
cloud computing offerings are either proprietary or
depend upon software infrastructure that is invisible
to the research community.

In this work, we present Eucalyptus, an open-source
software implementation of cloud computing that uti-
lizes compute resources that are typically available to
researchers, such as clusters and workstation farms.
In order to foster community research exploration of
cloud computing systems, the design of Eucalyptus em-
phasizes modularity, allowing researchers to experi-
ment with their own security, scalability, scheduling,
and interface implementations. In this paper, we out-
line the design of Eucalyptus, describe our own im-
plementations of the modular system components, and
provide results from experiments that measure perfor-
mance and scalability of an Eucalyptus installation
currently deployed for public use.

The main contribution of our work is the presenta-
tion of the first research-oriented open-source cloud

computing system focused on enabling methodical
investigations into the programming, administration,
and deployment of systems exploring this novel dis-
tributed computing model.

1 Introduction

Scalable Internet services [1, 4, 24, 44] deliver mas-
sive amounts of computing power (in aggregate) on de-
mand to large, internationally distributed user commu-
nities through well-defined software interfaces. Until
recently, however, access to these services has been re-
stricted to human-oriented and simple query-style ap-
plication programming interfaces (APIs). With few
exceptions, an application programmer wishing to in-
corporate such a service as a software component had
little ability to direct and control computation inside
the service explicitly.

Cloud computing [11, 46] has emerged as a new
paradigm for providing programmatic access to scal-
able Internet service venues. 1 While significant de-
bate continues with regard to the “optimal” level of
abstraction that such programmatic interfaces should
support (c.f., software-as-a-service versus platform-

1The term “cloud computing” is considered by some to be syn-
onymous with the terms “elastic computing,” “utility computing,”
and occasionally “grid computing.” For the purposes of this paper,
we will use the term “cloud computing” to refer to cloud, elastic,
or utility computing but not to grid computing. The difference is
explained in Section 4.
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as-a-service versus infrastructure-as-a-service [13, 25,
26, 34]), the general goal is to provide users with the
ability to program resources within a very-large-scale
resource “cloud” so that they can take advantage of
the potential performance, cost, and reliability bene-
fits that access to scale makes possible.

In short, the model is to provide a large user base
with the ability to program some specified fraction of
the resources hosted by a scalable service provider
(e.g., Google [24], Amazon [4], SalesForce [44],
3Tera [1], etc.) through one or more well defined ser-
vice interfaces. However, while the interfaces are pub-
lic, the infrastructure maintained by the various service
providers is almost exclusively proprietary. Thus it is
not possible (or at least not easy) for researchers to
build, deploy, modify, instrument, or experiment with
a cloud infrastructure under their own control.

In this paper, we describe the design and implemen-
tation of Eucalyptus – an open-source software infras-
tructure architected specifically to support cloud com-
puting research and infrastructure development. The
design of Eucalyptus is distinctive in that it

• must be able to deploy and execute in hardware
and software environments not under the control
of its designers, and

• must be modularized to allow component-wise
modification or replacement,

while achieving the greatest degree of scalability
possible. This work describes the system architec-
tural trade-offs imposed upon the design by these two
requirements, the way in which they have been ad-
dressed by the current version of Eucalyptus that is
currently available and in use, and the degree to which
these trade-offs impact the functionality and perfor-
mance of the overall system.

The motivation for Eucalyptus is an exploratory
one. Cloud computing as an emerging concept has
great potential, but the speed of commercial engineer-
ing leaves fundamental questions either not fully de-
fined or unanswered. Thus, while cloud systems are
providing users a valuable service, the closed nature of
the software has created a situation where researchers
interested in cloud computing topics are finding it dif-
ficult to formulate experiments due to the lack of a
common, flexible framework in which they can work.

1.1 Open-Source Infrastructure as a Service

Although most existing cloud computing imple-
mentations share the common high-level notion of
flexible, scalable, and dynamic computational “provi-
sioning,” there is significant variation in exactly how
that power is presented to the end user. Some systems,
such as Amazon’s Elastic Compute Cloud (EC2) [17]
and Enomalism [18], allow users to allocate entire vir-
tual machines (VMs) on demand, thus providing what
is commonly referred to as Infrastructure as a Service
(IaaS). Here, the user is responsible for providing the
operating system kernel, base OS software, and any
user level software and applications they wish to run
and the IaaS system provisions physical resources and
instantiates the user’s VMs.

Eucalyptus implements IaaS, with the key differen-
tiations being that it is specifically designed to be easy
to install and maintain in a research setting, and that
it is easy to modify, instrument, and extend. Specifi-
cally, commercial cloud infrastructures take advantage
of the ability to control the local resource configuration
(hardware versioning, O.S. versioning, network and
storage policies, etc.) and access to large collections of
potentially expensive resources (e.g., publicly visible
and routable Internet addresses). In a research setting,
it is unlikely that the cloud infrastructure can mandate
a specific configuration for all hardware and software
it manages, nor is it possible to predicate functionality
on the availability of very large resource sets.

Further, because IaaS systems each typically target
a specific installation, they are not engineered with ex-
tensibility or portability as a primary concern, nor is
the need for ease of system administration given pri-
macy in the design. The difficulties are compounded
by the need to be able to incorporate multiple compute
clusters into a single resource pool from which cloud
allocations are to be drawn. Few open-source software
packages of any kind are designed to install and de-
ploy on multiple compute clusters that then operate
together as an ensemble. Thus, Eucalyptus is a rela-
tively unique example of IaaS and also a harbinger of
future multi-cluster open-source design experiences.
The way in which it frames and then addresses the
challenges that arise as a result, forms the basis of the
contribution this paper makes.

Specifically, we describe
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• a simple open architecture for implementing
cloud functionality at the IaaS level,

• experiences with implementing this architecture
using open-source Web-service software as the
intrinsic technology, and

• performance results demonstrating the viability
of the resulting cloud computing system.

IaaS, however, is not the only approach to imple-
menting cloud computing that the commercial sector
is currently pursuing. Amazon and Google also both
provide Data as a Service (DaaS) capabilities, through
the Simple Storage Service (S3) [43] and parts of App
Engine [7] respectively, where users can both store
and access massive amounts of data from the provided
computational resources. In addition, Google’s App
Engine [7], also provides a language-level abstrac-
tion, making it generically categorizable as Platform
as a Service (PaaS), where access to computational
power and storage is gained through language-specific
APIs and libraries. Finally, companies such as Sales-
force.com [44] provide a number of high-level soft-
ware service packages (e.g., Web-accessible Customer
Relationship Management, Enterprise Resource Plan-
ning, Inventory Control, Payroll, etc.). This higher-
level approach is often described as Software as a Ser-
vice (SaaS).

We have chosen to focus Eucalyptus at the IaaS
level for two reasons. First, Amazon.com’s EC2 is per-
haps the most commercially successful cloud comput-
ing endeavor to date and it implements IaaS. Eucalyp-
tus is interface-compatible with EC2, making it possi-
ble to test its functionality against one of the most ma-
ture commercial examples of cloud computing. This
availability of a “gold standard” greatly influenced the
design since it is possible to gauge immediately how
closely our open-source rendition of the functional-
ity matches its exemplar. Second, higher-level cloud
computing abstractions all seem to depend on similar
IaaS functionality, at least conceptually. We do not
claim that all cloud computing infrastructures include
an IaaS layer in their software architecture. How-
ever, for the purposes of further research and open-
source development, we speculate that self-contained
IaaS functionality that can be layered upon will prove
both foundational and beneficial.

Further, we believe that the results garnered from
our experiences with Eucalyptus may prove to be sem-
inal. The software infrastructure in various package
forms has been publicly available since approximately
June 1st of 2008 and since its public release, uptake
has been surprisingly rapid (so rapid, in fact, that the
project has been the subject of increasingly visible dis-
cussion in the popular press, hence our decision to ob-
fuscate its name in this paper). We believe the initial
success of the project stems from our choice of EC2
as an interface to support, but also from a significant
effort to make the software as easy to download and in-
stall as possible. Indeed, using the Rocks [42] cluster
configuration system, installation and launch is essen-
tially a “one-button” operation (installation from Red-
Hat Package Management format or source is more
complicated but still streamlined and documented).
No other cloud system, of which we are aware, com-
bines support for open development with ease of in-
stallation and maintenance as basic design goals while,
at the same time, attempting to emulate commercially
available functionality as a way of stimulating com-
munity research and development.

2 Eucalyptus Design

The Eucalyptus design is primarily motivated
by two engineering goals: extensibility and non-
intrusiveness. Eucalyptus is extensible as a result of
its simple organization and modular design. Further,
we have implemented Eucalyptus using open-source
Web-service technologies, which serve to illuminate
its internals. As a collection of Web services, Euca-
lyptus components have well defined interfaces (de-
scribed by WSDL documents), support secure com-
munication (using WS-Security policies), and rely
upon industry-standard Web-services software pack-
ages (Axis2, Apache, and Rampart). This choice of
implementation technology also supports the second
design goal – that of non-intrusive or “overlay” de-
ployment. We do not assume that researchers inter-
ested in Eucalyptus are necessarily willing to dedicate
entire collections of machines to Eucalyptus alone (al-
though this model of operation is also supported), nor
do we assume that they are willing to allow Eucalyp-
tus to modify the local software configuration in po-
tentially disruptive ways. Intrusiveness is admittedly a
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subjective metric. For the purposes of our work, we as-
sume that a site wishing to use Eucalyptus is willing to
support virtualized execution through Xen [8] and to
host Web services. With these two requirements ful-
filled, Eucalyptus can be deployed and executed with-
out modification to the underlying infrastructure.

2.1 Architectural Overview

Academic research groups have access to a num-
ber of resources; for instance, small clusters, pools
of workstations, and various server/desktop machines.
Since public IP addresses are usually scarce, and
the security ramifications of allowing complete ac-
cess from the public Internet can be daunting, sys-
tem administrators commonly deploy clusters as pools
of “worker” machines on private, unroutable networks
with a single “head node” responsible for routing traf-
fic between the worker pool and a public network. Al-
though this configuration provides security while us-
ing a minimum of publicly routable addresses, it usu-
ally means that, while most machines can initiate con-
nections to external hosts, external hosts cannot typi-
cally connect to machines running within each cluster.

For example, an administrator might configure two
small Linux clusters, a small server pool, and a collec-
tion of computer lab workstations. The clusters each
have a single front-end machine with a publicly acces-
sible IP address, while the nodes are connected via a
private network such that they can only contact each
other and their respective front-ends. The server and
workstation machines have public IP addresses, but the
workstations are behind a firewall and can not be con-
tacted from the outside world. In this scenario, it is
clear that it is not possible to install a fully connected
system, since many of the machines can only initiate
connections to external hosts or are entirely isolated
from external networks. In addition, the two sets of
cluster nodes may even have overlapping IP addresses
since their networks are fully private and unroutable.
In order to make all of these types of resources part
of a single cloud, we reflect the hierarchical nature of
this typical configuration in the architecture of Euca-
lyptus, as depicted in Figure 1, where the three hier-
archical levels are shown. These hierarchical compo-
nents are sufficiently general to accommodate instal-
lation on common network hierarchies found within

many institutions, an example of which is depicted in
Figure 2.

Node Controller

The Node Controller (NC) is the component that
executes on the physical resources that host VM in-
stances and is responsible for instance start up, in-
spection, shutdown, and cleanup. There are typically
many NCs in a Eucalyptus installation, but only one
NC needs to execute per physical machine, since a sin-
gle NC can manage multiple virtual machine instances
on a single machine. The NC interface is described
via a WSDL document that defines the instance data
structure and instance control operations that the NC
supports (runInstance, describeInstance, terminateIn-
stance, describeResource and startNetwork). The run,
describe, and terminate operations on an instance per-
form minimal system setup, followed by calls to the
underlying hypervisor (Xen in the current implementa-
tion) to control and inspect running instances. The de-
scribeResource operation reports current physical re-
source characteristics (compute cores, memory, and
disk capacity) to the caller and the startNetwork opera-
tion sets up and configures the virtual Ethernet overlay
described in more detail in Section 2.2.

Cluster Contoller

A collection of NCs that logically belong together
report to a single Cluster Controller (CC) that typi-
cally executes on a cluster head node or server that has
access to both private and public networks. The CC
is responsible for gathering state information from its
collection of NCs, scheduling incoming VM instance
execution requests to individual NCs, and managing
the configuration of public and private instance net-
works. The WSDL that describes the CC interface is
similar to the NC interface, except that each operation
is plural instead of singular (runInstances, describeIn-
stances, terminateInstances, describeResources). The
describe and terminate instance control operations are
merely pass-thru operations to the relevant NC mod-
ule. When a CC receives a runInstances request, it per-
forms a simple scheduling task of determining which
NCs can support the incoming instance by querying
each NC through describeResource and choosing the
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Figure 1. Eucalyptus employs a hierarchical de-
sign to reflect underlying resource topologies.
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Figure 2. Example location of CLC, CC and NC
components running within a typical resource
environment.

first NC that has enough free resources. The CC also
implements a describeResources operation, however,
instead of reporting actual physical resources avail-
able, this operation takes as input a description of re-
sources that a single instance could occupy, and returns
the number of instances of that type can be simultane-
ously executed on the NCs.

Cloud Controller

Each Eucalyptus installation includes a single
Cloud Controller (CLC) that is the user-visible en-
try point and global decision-making component of an
Eucalyptus installation. The CLC is responsible for
processing incoming user-initiated or administrative
requests, making high-level VM instance scheduling
decisions, processing service-level agreements (SLAs)
and maintaining persistent system and user metadata.

The CLC itself is composed of a collection of ser-
vices (Figure 3) that handle user requests and authen-
tication, persistent system and user metadata (e.g.,
VM images and ssh key pairs), and the management
and monitoring of VM instances. The services are
configured and managed by an enterprise service bus
(ESB) [45] that publishes services and mediates han-
dling of user requests while decoupling the service im-
plementation from message routing and transport de-
tails. Our design emphasizes transparency and sim-
plicity in order to foster experimentation and exten-
sion of Eucalyptus, particularly with respect to cloud

behavior. To achieve extensibility at this level of gran-
ularity, the architectural components of the CLC (in-
cluding, but not limited to the VM scheduler, SLA
engine, and user/administrative interfaces) are mutu-
ally isolated behind well-defined internal interfaces
where ESB configuration controls their orchestration.
With this as a foundation, our CLC implementa-
tion can function as an Amazon EC2 work-alike by
inter-operating with the EC2 client tools using both
Web-services and Query interfaces (Amazon publishes
specification documents describing these interfaces).
We chose EC2 because it is relatively mature, has a
large existing user community, and because it imple-
ments a well-defined IaaS functionality. However, the
interface parsing is modularized so that Eucalyptus can
support different interfaces, either as a way of emu-
lating other infrastructures or to allow interface cus-
tomization.

Client Interface

The CLC’s client interface service essentially acts as a
translator between the internal Eucalyptus system in-
terfaces (i.e., the NC and CC instance control inter-
faces) and some defined external client interface. For
example, Amazon provides a WSDL document that
describes a Web-service SOAP-based client interface
to their service as well as a document describing an
HTTP Query-based interface, both of which can be
translated by the CLC user interface service into Eu-
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Figure 3. Overview of services that comprise the Cloud Controller. Lines indicate the flow of mes-
sages where the dashed lines correspond to internal service messages.

calyptus internal objects. We use JiBX [32] binding
tool to specify a mapping of XML elements onto in-
stances of Java objects, which we have used to create
bindings that map the body of EC2 SOAP messages
onto internal Eucalyptus objects.

The Query interface does not lend itself to this
model however. First, there is no XML document to
consume. Second, the authentication mechanism is
different and in conflict with the WS-Security policy
enforced. Third, conflicts exist between the structure
of SOAP requests and Query requests for the same
field of the same kind of request.

The solution stems from the observation that the
Query interface for EC2 is a strict subset of the SOAP
interface. As a result, we have developed a simple
binding framework that maps HTTP Parameter names
onto object fields guided by annotations. We then
rely on annotations of the target object to aid in de-
obfuscating inconsistencies such as elided lists and un-
wrapped complex types (i.e., field names of a child
class). Ultimately, JiBX is used to marshal the bound
object using the namespace for the EC2 SOAP inter-
face. The result is two-fold: First, JiBX will vali-
date the object that is actually a legal SOAP inter-
face request, hence, a legal EC2 client request. Sec-
ond, the marshalled XML document can be supplied
as the SOAP body to allow further processing to con-
tinue along the exact same path it would have taken if

the message had been SOAP to begin with.

Administrative Interface

In addition to supporting primary tasks, such as start-
ing and stopping instances, a cloud infrastructure must
support administrative tasks, such as adding and re-
moving users and disk images. Eucalyptus supports
such tasks though a Web-based interface, implemented
by the cloud controller, and command-line tools. Un-
like the client interface, however, the administrative in-
terface is unique to Eucalyptus. That is, while cloud
purveyors do publish their client interfaces they do not
generally publish administrators’ interfaces. Thus, we
have defined one for the system that is independent of
any specific client interface or intrinsic IaaS function-
ality.

Users are added to a Eucalyptus installation either
through the action of an administrator or by filling out
an on-line form that is sent to the administrator for
approval. Control over account creation thus rests in
the hands of a human being, which we found neces-
sary given the absence of automated approval meth-
ods, such as credit card verification used by Amazon.
It is up to the cloud administrator to try to ensure that
a new account will not be misused. By forcing new
users to confirm their interest in the account by click-
ing on a link received in an email message, Eucalyptus
maps the identity of a user to the their email address.
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If that is not sufficient, the administrator may choose
to verify the identity of the applicant with the help of
other information on the sign-up form. Once added,
a user account can be temporarily disabled or perma-
nently removed by an administrator. At any point, the
administrator can find out which instances a user is ex-
ecuting and terminate them.

Currently, disk images in Eucalyptus can be added
to the system only by an administrator. An image
consists of a Xen-compatible guest OS kernel, a root
file system image, and, optionally, a RAM disk im-
age. Adding an image constitutes uploading these
three components into the system and naming the im-
age. After a image is added, any user can run instances
of that image. Administrators may temporarily dis-
able or permanently remove the image. Finally, the ad-
ministrator is in charge of adding and removing nodes
from cluster controller’s configuration.

Instance Control

Creation of virtual machine instance metadata in
Eucalyptus is managed by a component of the CLC
named the VmControl service. VmControl continu-
ously maintains a simple local representation of the
state of underlying resources (i.e., number of instances
each CC could potentially create). When instance cre-
ation events are initiated, it coordinates with the other
services in the CLC to resolve user request references
to image, keypairs, networks, and security groups. Al-
location then consists of validating references to meta-
data, application of an allocation strategy producing a
’pre-allocation’, meaning that as far as the VmCon-
trol component is concerned, the resources have been
locally reserved. Messages are then disseminated to
the CCs involved in the allocation. Each such CC will
schedule the instance request to its locally controlled
NCs which, finally, create the virtual machine instance
itself and respond accordingly.

SLA Implementation and Management

Service-level agreements (SLAs) are implemented as
extensions to the message handling service which can
inspect, modify, and reject the message, as well as the
state stored by VmControl. Ultimately, the VmControl
rationally arbitrates access to resources and enforces

system-wide or user-specific service-level agreements.
These decisions require data about the state of re-
sources that is captured in a system model and the re-
sult of update events (i.e., either a change to the model
or information about a failure). We have implemented
an extensible SLA scheme, which couples the state
model with event handling to support further work in
quantitative study of service level agreements.

The VmControl relies on a local model for decision-
making purposes. To keep the model up to date, each
CC is passively polled to obtain the state of its in-
stance availability, allocations, virtual network, and
registered images. Information gathered via polling is
treated as ground truth and user requests are handled in
transactions that commit only when they are reflected
on the resources.

Nonetheless, the model may become inconsistent,
causing the system to agree to an SLA with a user that
is unsatisfiable. This can happen when when messages
are lost (e.g., due to network partition) and the state of
resources changes (the period between polling events
can be thought of as a network partition). However,
loss of messages can be identified (polling is semi-
synchronous) and times when the model is in an in-
valid state can, ultimately, also be detected (after the
system recovers and ground truth can be inspected).
Consequently, the likelihood that the model will be in-
correct at a given moment can be computed.

We have implemented a simple yet powerful ini-
tial SLA that allows users to control the high-level
network topology of their instances. While resource
providers typically think of collections of machines
in terms of “clusters” or “pools”, we have adopted
the more general concept of “zones” that is currently
used by Amazon EC2. Within EC2, a “zone” is cor-
related to a vague geographic location such as “east
coast U.S.” or “west coast U.S.”, while we use the
term to refer to a logical collection of machines that
has several NC components and a single CC compo-
nent. Eucalyptus allows users to specify a zone con-
figuration upon instance execution, which allows an
instance set to reside within a single cluster or poten-
tially across clusters. Each configuration offers differ-
ent administrative and network performance character-
istics, which we explore in more detail in Section 2.2.
In addition, Eucalyptus further co-opts the notion of
zone, extending it to support different SLAs with re-
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spect to trade-offs between the number of resources
acquired and their relative topology. In the current im-
plementation, the default set of zones supplied allows
users to request a specific cluster, the emptiest cluster,
any single cluster unless no cluster provides the mini-
mum requested, and multiple clusters.

2.2 Virtual Networking

Perhaps one of the most interesting challenges in
the design of a cloud computing infrastructure is that
of VM instance interconnectivity. One of the most at-
tractive characteristics of cloud systems stems from
the fact that although the underlying physical ma-
chines may have complex and restrictive networking
topologies, a simpler, more configurable VM intercon-
nection topology can be presented to the user through
virtualization. When designing Eucalyptus, we rec-
ognized that the VM instance network solution must
address connectivity, isolation, and performance.

First and foremost, every virtual machine that Euca-
lyptus controls must have network connectivity to each
other, and at least partially to the public Internet (we
use the word “partially” to denote that at least one VM
instance in a “set” of instances must be exposed exter-
nally so that the instance set owner can log in and in-
teract with their instances). Because users are granted
super-user access to their provisioned VMs, they may
have super-user access to the underlying network inter-
faces. This ability can cause security concerns, in that,
without care, a VM instance user may have the ability
to acquire system IP or MAC addresses and cause in-
terference on the system network. In addition, if two
instances are running on one physical machine, a user
of one VM may have the ability to snoop and influ-
ence network packets belonging to another. Thus, in
a cloud shared by different users, VMs belonging to a
single cloud allocation must be able to communicate,
but VMs belonging to separate allocations must be iso-
lated. Note that current hypervisor offerings do not
support this notion of grouping directly. Finally, one
of the primary reasons that virtualization technologies
are just now gaining such popularity is that the perfor-
mance overhead of virtualization has diminished sig-
nificantly over the past few years, including the cost
of virtualized network interfaces. Our design attempts
to maintain inter-VM network performance as close to

native as possible.
Each instance controlled by Eucalyptus is given two

virtual network interfaces; one is referred to as “pub-
lic” while the other is termed “private”. The public
interface is assigned the role of handling communi-
cation outside of a given set of VM instances, or be-
tween instances within the same availability zone as
defined by the SLA. For example, in an environment
that has available public IP addresses, they may be
assigned to VM instances at instance boot time, al-
lowing communication both to and from the instance.
In environments where instances are connected to a
private network with a router that supports external
communication through network address translation
(NAT), the public interface may be assigned a valid
private address giving it access to systems outside the
local network through the NAT-enabled router. The
instance’s private interface, however, is used only for
inter-VM communication across zones, handling the
situation where two VM instances are running inside
separate private networks (zones) but need to commu-
nicate with one another. The basic instance network-
ing configuration is shown in Figure 4, which depicts
the instance’s public interface as connected to the pub-
lic network via a bridge connected to the resource’s
real interface.

Within Eucalyptus, the cluster controller currently
handles the set up and tear down of instance virtual
network interfaces. The CC can be configured to set
up the public interface network in three ways corre-
sponding to three common environments we currently
support. The first configuration instructs Eucalyptus
to attach the VM’s public interface directly to a soft-
ware Ethernet bridge connected to the real physical
machine’s network, allowing the administrator to han-
dle VM network DHCP requests the same way they
handle regular DHCP requests. The second config-
uration allows the administrator to define a dynamic
pool of IP addresses that will be assigned via a DHCP
server that is executed by the CC. In this configuration,
the administrator defines a network, an interface on the
CC that is connected to that network, and a range of IP
addresses that are dynamically assigned as instances
are started. Finally, we support a configuration that
allows an administrator to define static Media Access
Control (MAC) and IP address tuples. In this mode,
each new instance created by the system is assigned
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Figure 4. Each Eucalyptus VM instance is as-
signed a public interface for external network
connections, and a private network interface
connected to a fully virtual Ethernet network for
inter-VM communication.
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Bridge 

Figure 5. If two different user instances (A and
B) are running on the same resource, we employ
VLAN tagging as a means of isolating network
traffic between VMs.

a free MAC/IP tuple, which is released when the in-
stance is terminated.

The instance’s private interface is connected via
a bridge to a fully virtual software Ethernet system
called Virtual Distributed Ethernet (VDE) [49]. VDE
is a process-level implementation of the Ethernet pro-
tocol, where users can specify and control virtual Eth-
ernet switch and cable abstractions that are imple-
mented as programs running in user-space. Once a
VDE network has been created, connections to real
Ethernet networks can be established through the Uni-
versal TUN/TAP interface, which, in essence, provides
Ethernet packet communication from the Linux kernel
to user-space processes. When an Eucalyptus system
is initiated, it sets up a VDE network overlay that con-
sists of one VDE switch per CC and NC component
and as many VDE wire processes as can be established
between switches. If there are no firewalls existing on
the physical network, the VDE network will be fully
connected, where each VDE switch is connected to ev-
ery other VDE switch. The VDE switches support a
spanning tree protocol, which allows redundant links
to exist while preventing loops in the network, thus
giving the VDE network a level of redundancy when
the switches are fully connected. However, since NC
components may be behind a firewall, the only require-

ment is that each VDE switch has at least one wire to
some other VDE switch in the system, which is typi-
cally satisfied by a single connection to the CC.

At instance run time, the NC responsible for con-
trolling the VM creates a new Ethernet bridge that
is connected to the local VDE switch and configures
the instance to attach its private interface to the new
bridge. At this point, our original requirement of in-
stance connectivity is satisfied, since any VM started
on any VDE-connected NC will be able to contact any
other VM over the virtual Ethernet, regardless of the
underlying physical network configuration. Currently,
we allow the administrator to define a class-B IP sub-
net that is to be used by instances connected to the
private network, and each new instance is assigned a
dynamic IP address from within the specified subnet.

The second requirement of the virtual network is
that it supports instance network traffic isolation. We
require that if two instances, owned by separate users,
are running on the same host or on different hosts con-
nected to the same physical Ethernet, they do not have
the ability to inspect or modify each other’s network
traffic. To meet this requirement, each set of instances
owned by a particular user is assigned a tag that is then
used as a virtual local area network (VLAN) identifier
assigned to that user’s instances. Once a VLAN iden-
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tifier has been assigned, all VDE switch ports that are
connected to the instance’s private interfaces are con-
figured to tag all incoming traffic with the VLAN tag
and to only forward packets that have the same VLAN
tag. Hence, a set of instances will only be forwarded
traffic on VDE ports that other instances in the set are
attached to, and all traffic they generate will be tagged
with a VLAN identifier at the virtual switch level, thus
isolating instance network traffic even when two in-
stances are running on the same physical resource.
Figure 5 shows how two instances owned by user A
and user B running on the same physical resource are
connected to the VDE network through ports config-
ured to only forward traffic based on a particular VM’s
assigned VLAN.

3 Experiment

To illustrate the performance characteristics of Eu-
calyptus as well as to observe its functionality under
user load not generated by the development team, we
have installed Eucalyptus on a small research Linux
cluster at our home institution and made it available
for general use to the wider community as a “public
cloud.” The hardware configuration comprises 7 com-
pute nodes and one head-node. The compute nodes are
on an isolated network, while the front-end is publicly
accessible. Each system has two Intel Xeon 3.2GHz
processors, 3GB of RAM and approximately 40GB of
available disk (single SCSI drive). We are running a
single CLC on the front-end, a single CC on the front-
end, and one NC per compute node.

Users request access to the Eucalyptus Public
Cloud (OPC) by requesting credentials from the CLC
through the user signup web page. Subsequent cloud
allocation requests are limited to 4 instances which
will be terminated automatically after 6 hours. A
reverse firewall prevents EPC hosted instances from
making network connections to external network ad-
dresses (public Linux distribution sites are excepted
to allow instance configuration) to avoid inadvertent
“spam-bot” hosting. Only a local EPC zone is avail-
able as an externally accessible SLA.

All experiments detailed in this section have been
conducted using the EPC in the presence of ambient
induced load. That is, unless otherwise indicated, we
measured the performance of the EPC in the presence

of load being generated by its users (i.e. in a non-
dedicated mode).

3.1 Instance Throughput

The first experiment we perform is designed to mea-
sure the performance of VM instance control opera-
tions. Because Eucalyptus is interface compatible with
Amazon’s EC2, we are able to perform the same ex-
periments on both Eucalyptus and EC2 without cus-
tomization. The primary purpose in doing so is to ver-
ify that the EC2 functionality is, indeed, fully repli-
cated by Eucalyptus. Less rigorously, the quantitative
comparison serves as a high-level test for whether our
implementation is pathologically inefficient. In fact,
during early phases of Eucalyptus design we discov-
ered a number of performance “bugs” through com-
parisons with EC2.

Because one of the primary functions of Eucalyptus
is to control the execution of VM instances on a collec-
tion of resources, we perform an “instance throughput”
experiment where we measure the time from when a
user wishes to execute a collection of instances to the
time the instances are booted and available for use on
the network. For this experiment, we measure the to-
tal time between an instance execution request to the
point when we can first detect that the instance is run-
ning. In order to measure the instance state, we rely on
the Amazon EC2 command-line tool “ec2-describe-
instances”, which simply queries the cloud server for
information about a user’s instances and prints the in-
formation to the user’s terminal. To gather a single
data point, we first take a timestamp followed imme-
diately by a launch of an instance or set of instances
using the client tool “ec2-run-instances”. Then, we re-
peatedly poll the server using “ec2-describe-instances”
until our initiated instance enters a “running” state, at
which point we take another timestamp. The differ-
ence between the two timestamps constitutes a single
data point that represents the number of seconds be-
tween a user instance creation request and the user be-
coming aware that the instance(s) are available for use.
Each trial is characterized by four variables and tim-
ings are reported in seconds. The first variable is the
VM type requested, where the VM type is defined as
the number of cores, amount of RAM, and allocated
disk space. The second variable is the instance image
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itself, which we control by loading identical copies in-
side both EC2 and the EPC. For this experiment we run
trials for a “small” VM type with a corresponding im-
age called “ttylinux” [48]; a compact Linux image that
boots very quickly and offers a minimal networked
Linux installation when fully booted. The third vari-
able of interest is the number of instances simulta-
neously requested, which we vary from one to eight
instances. The final variable is of course the system
used; either Eucalyptus or Amazon EC2.

In Figure 6 we show the results of the instance
throughput experiment. The figure shows two em-
pirical cumulative distribution functions that allow us
to examine both the magnitude and variance of time
taken to create instances in EC2 and the EPC. Each
data point represents the percentage (Y axis) of in-
stance creation trials that took at least the number of
seconds denoted at the point’s corresponding position
on the X axis.

Notice that for both cases (one and eight concurrent
instance creation trials), though the range of creation
times overlap, all empirical quantiles in the EPC case
are lower than those of EC2. For example, 98 percent
of the eight concurrent instance creation trials com-
pleted in less than 24 seconds within EPC, while only
75 percent completed in less than 24 seconds within
EC2. For the one instance case, the difference is even
more striking, with 98 percent of the trials complet-
ing in less than 17 seconds within the EPC and only
32 percent completing in less than 17 seconds within
EC2.

This result, we believe, indicates that the Eucalyp-
tus implementation is relatively efficient given its tar-
get environment. However it does not indicate that
the EPC is outperforming EC2. The actual EC2 har-
nesses a vast resource pool and, as such, should al-
most certainly incur a measurable performance over-
head over an Eucalyptus implementation running on a
small cluster. At the same time, the implementation of
the EPC does seem to compare well with that of the
system it emulates indicating that its implementation
is, at least, relatively high performance. This supposi-
tion is further supported by the (somewhat surprising)
similarity in the shapes of two distribution plots. Both
are unimodal with relatively similar tail weights. At
present we are unable to go beyond this observation
and to make a direct inference (say from confidence

bounds on the variance) about the similarity of the two
performance profiles however doing so is something
we hope to achieve in the near future.

3.2 Network Performance

Our second performance experiment is designed to
study the characteristics of our network solution and
to compare it with EC2’s networking approach. Since
we do not know the network configuration and the
hardware employed by EC2, it is not possible to com-
pare the two systems in terms of functional detail.
Rather large discrepancies in performance should be
interpreted as indicating a significant difference in ap-
proach or a “bug” in the Eucalyptus implementation.

The network experiment was conducted between
two simultaneously launched instances, one acting as
a server and the other as a client. We launched the in-
stances from a disk image of Debian’s “etch” Linux
distribution and installed a network performance mea-
suring tool “iperf” into it. In addition to “iperf,” which
was used for TCP and UDP experiments, we used
“ping” to measure the round-trip latency of an ICMP
echo. Finally, the TCP buffer conditioning and exper-
iment duration was chosen to saturate a dedicated gi-
gabit interconnection network.

To study how physical distance between the ma-
chines hosting VMs affects network performance, we
conducted this experiment both between instances
within one availability zone and between instances lo-
cated in two different zones. For EC2 this meant that
the network traffic traveled from one Amazon site to
another, albeit both located on the east coast of the US
(only three availability zones are currently offered by
Amazon and all three are located on the east coast).
For EPC this meant that the network traffic traversed
the “private” network interface implemented by VDE,
as described in Section 2.2. Although instances in two
different Eucalyptus zones might be able to commu-
nicate over their “public” interfaces (if all addresses
are publicly routable) and thus achieve better perfor-
mance, the “private” interface experiments shows how
Eucalyptus performs when offering the same privacy
guarantees as EC2.

The results of our network experiment are shown in
Figure 7. Here, we show TCP throughput and round-
trip latency between two instances, inside EC2 and
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Figure 6. Empirical CDFs comparing number of seconds taken to start one and eight VM instances
within EC2 and Eucalyptus.

EPC, within a single availability zone and between
zones. In addition to the individual measurements
from 32 independent trials, we show their arithmetic
means (square features) and 95% confidence intervals,
when the interval is wide enough to be of interest.

Within EC2, we observe that bandwidth within a
single availability zone outperforms bandwidth be-
tween zones by approximately a factor of 2, whereas
the factor is closer to 10 within the EPC. It is clear
that our chosen private networking solution (VDE) im-
poses a significant performance penalty that is not ap-
parent within EC2. We believe the reason for this
difference lies in the fact that with VDE, the private
networking overlay is running almost entirely in user
space, resulting in more memory copies per packet.
Another reason for the poor performance of our pri-
vate networking solution can be inferred from the la-
tency results, showing a significantly greater variance
in the RTT for ICMP packets traveling over the VDE
network. Similar to the bandwidth result, we found
the latency in some cases was over 10 times greater
between EPC zones than within a single zone, again
indicating that the VDE network imposes significant
network performance degradation.

In both bandwidth and latency experiments, how-
ever, Eucalyptus delivers native network performance
when VDE is not selected. Thus by choosing and SLA
that specifies an allocation should not span clusters,
a user can ensure that her cloud allocation will real-

ize native interconnect speed at the possible expense
of scalability (since an allocation will be limited to, at
most, the size of one cluster).

This experiment also demonstrates, in rather stark
terms, the performance impact associated with the
overlay approach implemented by Eucalyptus. Specif-
ically, VDE is necessary to implement a secure, user-
space layer-2 overlay for each cloud allocation that can
span separate private cluster networks.

4 Related Work

Cloud computing stems from recent innovations in
operating system virtualization and scalable Internet
services. It also shares intellectual underpinning with
grid computing, although the precise nature of this
sharing is a matter of some debate.

Machine virtualization projects producing VM hy-
pervisor software [8, 9, 30, 50] have enabled new
mechanisms for providing resources to users. In par-
ticular, these efforts have influenced hardware de-
sign [3, 27, 31] to support transparent operating sys-
tem hosting. The “right” virtualization architecture
remains an open field of study [2]): analyzing, opti-
mizing, and understanding the performance of virtual-
ized systems [28, 29, 36, 37, 51] is an active area of
research. Eucalyptus implements a cloud computing
“operating system” using Xen-based virtualization as
its initial target hypervisor and this work, particularly
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Figure 7. TCP throughput (left) and round-trip latency (right) measurements between instances
started within EC2 and Eucalyptus. Individual measurements from 32 independent runs are shown
together with their arithmetic means and 95% confidence intervals.

with respect to performance benchmarking, serves as
a starting point for studying the overheads introduced
by Eucalyptus.

Thanks in part to the new facilities provided by vir-
tualization platforms, a large number of systems have
been built using these technologies for providing scal-
able Internet services [1, 5, 12, 15, 16, 24, 44], that
share in common many system characteristics: they
must be able to rapidly scale up and down as work-
load fluctuates, support a large number of users requir-
ing resources “on-demand”, and provide stable access
to provided resources over the public Internet. While
the details of the underlying resource architectures on
which these systems operate are not commonly pub-
lished, Eucalyptus is almost certainly shares some ar-
chitectural features with these systems due to shared
objectives and design goals.

In addition to the commercial cloud computing of-
ferings mentioned above (Amazon EC2/S3, Google
AppEngine, Salesforce.com, etc.), which maintain a
proprietary infrastructure with open interfaces, there
are open-source projects aimed at resource provision-
ing with the help of virtualization. Usher [35] is
a modular open-source virtual machine management
framework from academia. Enomalism [18] is an
open-source cloud software infrastructure from a start-
up company. Virtual Workspaces [33] is a Globus-
based [19] system for provisioning workspaces (i.e.,

VMs), which leverages several pre-existing solutions
developed in the grid computing arena. The Cluster-
on-demand [14] project focuses on the provisioning
of virtual machines for scientific computing applica-
tions. oVirt [40] is a Web-based virtual machine man-
agement console.

While these projects produced software artifacts
that are similar to Eucalyptus, there are several dif-
ferences. First, Eucalyptus was designed from the
ground up to be as easy to install and as non-intrusive
as possible, without requiring sites to dedicate re-
sources to it exclusively (one can even install it on a
laptop for experimentation.) Second, the Eucalyptus
software framework is highly modular, with industry-
standard, language-agnostic communication mecha-
nisms, which we hope will encourage third-party ex-
tensions to the system and community development.
Third, the external interface to Eucalyptus is based on
an already popular API developed by Amazon. Fi-
nally, Eucalyptus is unique among the open-source of-
ferings in providing a virtual network overlay that both
isolates network traffic of different users and allows
two or more clusters to appear to belong to the same
Local Area Network (LAN).

Grid computing must also be acknowledged as an
intellectual sibling of, if not ancestor to, cloud com-
puting [10, 20, 38, 47]. The original metaphor for
a computational utility, in fact, gives grid computing
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its name. While grid computing and cloud computing
share a services oriented approach [21, 22] and may
appeal to some of the same users (e.g., researchers and
analysts performing loosely-coupled parallel compu-
tations), they differ in two key ways. First, grid sys-
tems are architected so that individual user requests
can (and should) consume large fractions of the total
resource pool [39]. Cloud systems often limit the size
of an individual request to be tiny fraction of the total
available capacity [6] and, instead, focus on scaling to
support large numbers of users.

A second key difference concerns federation. From
its inception, grid computing took a middleware-based
approach as a way of promoting resource federation
among cooperating, but separate, administrative do-
mains [19]. Cloud service venues, to date, are unfeder-
ated. That is, a cloud system is typically operated by a
single (potentially large) entity with the administrative
authority to mandate uniform configuration, schedul-
ing policies, etc. Eucalyptus conforms to the design
constraints governing cloud systems.

Several research projects and white papers in the
last few years have studied the performance ramifi-
cations of deploying specific workloads (often scien-
tific ones) in today’s commercial clouds. For example,
Palankar et al. [41] benchmarked Amazon’s S3 cloud
storage solution for scientific applications, pointing
out several current characteristics of the system that
need to be addressed before it is appropriate for ac-
cess to scientific data. Garfinkel [23] analyzed Ama-
zon’s EC2 management, performance and security fa-
cilities and reported on their experience with moving
large scale research application to the cloud. This
work, while valuable by itself, could be significantly
augmented through experimentation with Eucalyptus,
both in terms of experimental verification and by al-
lowing the researchers of these works to more pre-
cisely understand the measured resource performance
response through system instrumentation. In addition,
the performance results presented in this paper are di-
rectly relevant to these other benchmarking efforts.

Overall, we find that there are a great number of
cloud computing systems in design and operation to-
day that expose interfaces to proprietary and closed
software and resources, a smaller number of open-
source cloud computing offerings that typically re-
quire substantial effort and/or dedication of resources

in order to use, and no system antecedent to Eucalyp-
tus that has been designed specifically with support
academic exploration and community involvement as
fundamental design goals.

5 Conclusion and Future Work

In this work, we have presented the Eucalyptus
open-source cloud computing software framework.
We have shown that Eucalyptus is distinctive among
other cloud computing IaaS systems in that it sup-
ports an industry standard interface (Amazon EC2),
deploys as an overlay atop existing commonly encoun-
tered resource configurations (small clusters, worksta-
tion pools, etc), and has been designed as a modu-
lar system where components may be replaced or en-
hanced in order to foster future cloud computing re-
search efforts. The entire Eucalyptus system is avail-
able for download and has been successfully installed
both on clusters and numerous personal computing en-
vironments.

Benchmarking Eucalyptus against EC2 reveals that
it is relatively efficient. While it outperforms EC2 in
absolute terms, it does so in an environment with sig-
nificantly fewer resources. Only when a process-level
virtual network overlay is employed is performance
substantially degraded. However, by adapting the con-
cept of availability zone from EC2, Eucalyptus allows
users to trade network performance for scalability ex-
plicitly though a default set of SLAs supplied with the
system. This adaptation supports the claim that Eu-
calyptus allows new cloud computing techniques and
policies to be developed. Thus we conclude that Euca-
lyptus is not inherently inefficient and provides facil-
ities for cloud computing research that are otherwise
unavailable.

In addition to constantly supporting new features,
we are particularly interested in using Eucalyptus as a
platform for experimenting with novel cloud comput-
ing concepts such as dynamic SLA generation, new
virtual networking topologies for floating static IP ad-
dresses across clouds, investigations on how to imple-
ment a truly secure cloud infrastructure, and investi-
gating novel user and administrative cloud interfaces.
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