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Abstract– Performant execution of data-parallel jobs
needs good execution plans. Certain properties of the
code, the data, and the interaction between them are cru-
cial to generate these plans. Yet, these properties are dif-
�cult to estimate due to the highly distributed nature of
these frameworks, the freedom that allows users to spec-
ify arbitrary code as operations on the data, and since
jobs in modern clusters have evolved beyond single map
and reduce phases to logical graphs of operations. Using
�xed apriori estimates of these properties to choose ex-
ecution plans, as modern systems do, leads to poor per-
formance in several instances. We present RoPE, a �rst
step towards re-optimizing data-parallel jobs. RoPE col-
lects certain code and data properties by piggybacking
on job execution. It adapts execution plans by feeding
these properties to a query optimizer. We show how this
improves the future invocations of the same (and simi-
lar) jobs and characterize the scenarios of bene�t. Ex-
periments on Bing’s production clusters show up to 2×
improvement across response time for production jobs at
the 75th percentile while using 1.5× fewer resources.

1. INTRODUCTION
In most production clusters, a majority of data paral-

lel jobs are logical graphs of map, reduce, join and other
operations [5, 6, 21, 24].
An execution plan represents a blueprint for the dis-

tributed execution of the job. It encodes, among other
things, the sequence in which operations are to be done,
the columns to partition data on, the degree of parallelism
and the implementations to use for each operation.
While much prior work focuses on executing a given

plan well, such as dealing with stragglers at runtime [1],
placing tasks [15, 25] and sharing the network [8, 23], little
has been done in choosing appropriate execution plans.
Execution plan choice can alleviate some runtime con-

cerns. For example, outliers are less bothersome if even
themost expensive operation is given enough parallelism.
But plan choice can do much more– it can avoid need-

less work (for example, by deferring expensive opera-
tions till a�er simpler or more selective operations) and
it can trade-o� one resource type for another to speed
up jobs (for example, in certain cases, some extra net-
work tra�c can avoid a read/write pass on the entire data
set). However, plan choice is more challenging because
the space of potential plans is large and also because the
appropriateness of the plan depends on the interplay be-

tween code, data and cluster hardware.
Early data-parallel systems force developers to spec-

ify the execution plan (e.g., Hadoop). To shield develop-
ers from coping with these details, some recent proposals
raise the level of abstraction. A few use hand-cra�ed rules
to generate execution plans (e.g., HiveQL [24]) or use
compiler techniques (e.g., FlumeJava [6]). Other declar-
ative frameworks cast the execution plan choice as the
traditional query optimization problem (e.g., SCOPE [5],
Tenzing [7], Pig [21]).

A central theme, across all schemes, is the absence of
insight into certain properties of the code (such as ex-
pected CPU and memory usage), the data (such as the
frequency of key values), and the interaction between
them (such as the selectivity of an operation).�ese prop-
erties crucially impact the choice of execution plans.

Our experience with Bing’s production clusters shows
that these code and data properties vary widely. Hence,
using �xed apriori estimates leads to performance inef-
�ciency. Even worse, not knowing these properties con-
strains plan choice to be pessimistic; techniques that pro-
vide gains in certain cases but not all cannot be used.

�is paper presents RoPE1, a �rst step towards re-
optimizing data parallel jobs, i.e., adapting execution
plans based on estimates of code and data properties. To
our knowledge, we are the �rst to do so. �e new do-
main brings challenges and opportunities. Accurately es-
timating code and data properties is hard in a distributed
context. Predicting these properties by collecting statis-
tics on the raw data stored in the �le-system is not prac-
tical due to the prevalence of user-de�ned operations.
But, knowing these properties enables a large space of im-
provements that is disjoint from prior work and so are the
methods to achieve these improvements.

�e sheer number of jobs indicates that the estimation
and use of properties has to be automatic. RoPE piggy-
backs estimators with job execution. �e scale of the data
and distributed nature of computationmeans that no sin-
gle task can examine all the data. Hence, RoPE collects
statistics at many locations and uses novel ways to com-
pose them. To keep overheads small, RoPE’s collectors can
only keep a small amount of state and work in a single
pass over data. Collecting meaningful properties, such as
the number of distinct values or heavy hitters, under these
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constraints precludes traditional data structures and leads
to some interesting designs.
�e �exibility allowed for users to de�ne arbitrary code

leads to a much tighter coupling between data and com-
putation in data parallel clusters. As long as they con-
form to well-de�ned interfaces, users can submit jobs
with binary implementations of operations. In this con-
text, predicting code properties becomes even more di�-
cult. Traditional database techniques can project statistics
on the raw data past some simple operations with alpha-
numeric expressions but doing so throughmultiple oper-
ations, more complex expressions, potentially dependent
columns and user-de�ned operations introduces imprac-
tically large error [3]. Rather than predicting, RoPE in-
struments job execution to measure properties directly.
We �nd traditional work on adaptive query optimiza-

tion to be speci�c to the environment of one database
server [2, 3, 16] and the resulting space of optimizations.
For example, a target scenario minimizes the reads from
disk by keeping one side of the join in the server’s mem-
ory. RoPE translates these ideas to the context of dis-
tributed systems andparallel plans. In doing so, RoPEuses
a few aspects of the distributed environment that make it
a better �t for adaptive optimization. Unlike the case of
a database server where most queries �nish quickly and
the server has to decide whether to use its constrained re-
sources to run the query or to re-optimize it, map-reduce
jobs lastmuch longer and the resources to re-optimize are
only a small fraction of those used by the job. Further,
if a better plan becomes available, transitioning from the
current plan to the better plan is tricky in databases [16]
whereas data parallel jobs have many inherent barriers at
which execution plans can be switched.
In Bing’s production clusters, we observe that many

key jobs are re-run periodically to process newly arriving
data. Such recurring jobs contribute 40.32% of all jobs,
39.71% of all cluster hours and 26.07% of the intermedi-
ate data produced. We also observe that the code and data
properties are remarkably stable across recurring jobs de-
spite the fact that each job processes new data. �ese jobs
are RoPE’s primary use-case.

RoPE adapts the execution plans for future invocations
of such jobs by feeding the observed properties into a
cost-based query optimizer (QO). Our prototype is built
atop SCOPE [5], the default engine for all of Bing’s map-
reduce clusters, but our techniques can be applied to other
systems. �e optimizer evaluates various alternatives and
chooses the plan with the least expected job latency. Ad-
ditionally, we modi�ed the optimizer to use the actual
code and data properties while estimating costs. Working
with aQOenablesRoPE to not only perform local changes
such as changing the degree of parallelism of operations,
but also changes that require a global context, such as re-
ordering operations, choosing appropriate operation im-

plementations and grouping operations that have little
work to do into a single physical task.

We �nd jobs that are not completely identical o�en
have common parts. Further, during the execution of a
job, while some of the global changes are logically impos-
sible due to operations that have already executed, other
changes remain feasible. RoPE canhelp in both these cases
since (a) the query optimizer can work with incomplete
estimates and (b) the code and data properties are linked
to the sub-graph at which they were collected and can be
matched to other jobs with an identical sub-graph.

Our contributions include:

● Based on experiences and measurements on Bing’s
production clusters, we describe scenarios where
knowledge of code and data properties can improve
performance of data-parallel jobs. A few of these
scenarios are novel (§2).

● Design of the �rst re-optimizer for data-parallel
clusters, which involves collecting statistics in a
distributed context, matching statistics across sub-
graphs and adapting execution plans by interfacing
with a query optimizer (§3).

● Results from a partial prototype, deployed on pro-
duction clusters, which show RoPE to be e�ective at
reoptimizing jobs (§4, §5). Production jobs speed
up by over 2× at the 75th percentile while using 1.5×
fewer resources. RoPE achieves these gains by de-
signing better execution plans that avoid wasteful
work (reads, writes, network shu�es) and balance
operations that run in parallel.

A user would expect her data-parallel jobs to run
quickly. She would expect this even though the code is
unknown, even though the data properties are hard to
estimate, even though the code and data interact in un-
predictable ways, and even though the code, the data and
the cluster hardware and so�ware keep evolving. RoPE is
a �rst step towards reoptimizing data-parallel computing.

2. COST OF IGNORING CONTEXT
It is not uncommon for data-parallel computing

frameworks such as Dryad and MapReduce to process
petabytes of data each day. However, their inability to
leverage data and computation statistics renders themun-
able to generate execution plans that are better suited for
the jobs they run and prevents them from utilizing his-
torical context to improve future executions. Here, we de-
scribe axiomatic scenarios of such ine�ciency and quan-
tify both their impact and frequency of occurrence.
2.1 Background

Our experience is rooted in Bing’s production clus-
ters consisting of thousands of multi-core servers par-
ticipating in a distributed �le system that supports
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Figure 1: Data that remains in �ight when a job has executed
for 25% (or 75%) of its running time.

both structured and unstructured data. Jobs are writ-
ten in SCOPE [5], a SQL-like mashup language with
support for arbitrary user-de�ned operators. �at is,
users specify their data parallel jobs within a declara-
tive framework (e.g., select, join, group by) but are al-
lowed to declare their own implementations of operators
as long as they �t the templates provided (e.g., extractor,
processor, combiner, reducer). A compiler translates the
query into an execution plan which is then executed in
parallel on aDryad-like [14] runtime engine. Plans are di-
rected acyclic graphs where edges represent data�ow and
nodes represent work that can be executed in parallel by
many tasks. A task can consist of multiple operations. A
jobmanager orchestrates the execution of the job’s plan by
issuing tasks when their inputs are ready, choosing where
tasks run on the cluster, and reacting to outliers and fail-
ures. To facilitate better resource allocation across con-
current jobs, individual job managers work in close con-
tact with a per-cluster global manager.
Unless otherwise speci�ed, our results here use a

dataset that contains all the events from a large produc-
tion cluster in Bing. �e events encode for each en-
tity (job/ operation/ task/ or network transfer), the start
and end times of the entity, the resources used, the com-
pletion status, and its dependencies with other entities.
Our experiments are based on examining all events dur-
ing the month of September 2011 on a cluster consisting
of tens of thousands of servers.
2.2 Little Data
We notice that while most map-reduce programs start

o� by reading a large amount of data, each successive op-
eration (�lters, reduces, etc.) produces considerably fewer
output compared to its input. Hence, more o�en than
not, just a�er a small number of these consecutive op-
erations there is very little data le� to process. We call
this the little data case. �e little-data observation can
be used to optimize the tail of most jobs. In some cases,
the degree of parallelism on many operations in the tail
can be reduced. �is saves scheduling overhead on the
un-necessary tasks. In other cases, multiple operations
in the tail can be coalesced into a single physical opera-
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SELECT A,B,C, SUM(D)
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(a) Selectivity (b) Balance (c) (Re-) Partitioning

Figure 2: Motivating examples for re-optimizing data paral-
lel computing
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(a) CDF

Range Fraction
0 3.7%
(0, .001) 12.9%
[.001, .1) 27.2%
[.1, .5) 11.3%
[.5, .9) 6.7%
[.9, 1] 32.8%
> 1 5.4%
> 2 .35%
> 10 .01%

(b) readout

Figure 3: Variation in selectivity across tasks

tion, i.e., one group of tasks executes these operations in
parallel. �is avoids needless checkpoints to disk. In yet
other cases, broadcast joins can be used instead of pair-
wise joins (see §2.6) thereby saving on network shu�e
and disk accesses. �e challenge however is that the re-
duction factors are unknown apriori and vary by several
orders of magnitude.

Fig. 1 plots the fraction of input data that remains in
�ight a�er jobs have been running for 25% (and 75%) of
their runtime. We compute the data in-�ight at any time
by taking a cut of the job’s execution graph at that time
and adding up the data exchanged between tasks that are
on either side of this cut. For convenience, we place tasks
running at that time to the le� of the cut. We see that
while some jobs have more data in �ight than their in-
put (above y = 1 line), most of the jobs have much fewer.
In fact for over 20% of jobs, the data in �ight reduces to
less than 1

104 of their input within a quarter of the job’s
running time and over 60% of jobs have less than a tenth
of data in �ight a�er three quarters of their running time.
�is means that little data, and the above optimizations,
can be brought to bear.

2.3 Varying Selectivity, Reordering
Consider a pair of commutative operations. Order-

ing them, so that the more selective operation (one with
a lower output to input ratio) runs �rst will avoid work
thereby saving compute hours, disk accesses and network
shu�e. See Fig. 2(a), where thewidth of block arrows rep-
resent the data �ow between a pair of commutative oper-
ators (indicated by the circles). Evidently, the plan on the
right avoids processing unnecessary data and potentially
saves signi�cant cluster cycles by appropriately ordering
the operators based on their selectivity. �ese pairs hap-
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(a) Runtime/Data Processed
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(b) Mem Usage/ Data Processed

Figure 4: Variation in Operation costs; in time to process
and memory usage, per unit data processed

pen o�en, due to operations that are independent of each
other (e.g. operations on di�erent columns) or are com-
mutative. Identifying these pairs can be hard in general
but SCOPE’s declarative syntax allows the use of standard
database techniques to discover such pairs. Finding the
selectivities of operations remains a challenge.
Standard database techniques to predict operator

selectivity are hard to translate to map-reduce like
frameworks due to the complexity of expressions and
long sequences of operations. �e selectivity of al-
phanumeric expressions (e.g. select on X=30) can
be predicted by using clever histograms on the raw
data (e.g. equi-depth) but creating these histograms re-
quires many passes over the data. Predicting the se-
lectivity for user-de�ned operations (e.g. select when

columnvalue.BeginsWith("http://bing")) is an open prob-
lem [3]. We see such code in a majority of jobs. More-
over, the prediction errors grow exponentially with the
length of the sequence of operations [3]. Computingmore
detailed synopsis on a random sample is o�en of only
marginal bene�t [18]. Finally, correlations between sets of
columns, as is common, increases prediction error (e.g.
select on X=30 and Y=10 can produce just as much data
as the select on X=30 or much less). RoPE estimates se-
lectivity by direct instrumentation.
Fig. 3(a) plots a CDF of the selectivity (ratio of output

to input) of operations in our dataset. Note the y axis is
in log scale. About 5% of operations produce more data
than they consume (above y = 1). �ese are typically
(outer) joins. About 34% have output roughly equalling
input. �e remaining 60% operations produce less out-
put than their input but the selectivity varies widely– 17%
produce fewer than 1

1000 ’th of their input, and the coe�-

cient of variation ( std evmean ) is 1.3 with a range from 0 to 171.
�is means that if these selectivities were available, there
is substantial room to reorder operators.

2.4 Varying Costs, Balance
Suppose we �gured out selectivities and picked the

right order. Uniquely for data parallel computing, we
need to choose the number of parallel instances for each
operation. Choosing too few instances will cause that
operation to become a bottleneck as per Amdahl’s law.
On the other hand, choosing too many leads to needless
per-task scheduling, queuing and other startup overhead.
Balance, i.e., ensuring that each operation has enough
parallelism and takes roughly the same amount of time,
can improve performance signi�cantly [22]. See Fig. 2(b)
where block arrows again represent the data�ow and the
thin arrows now represent the tasks in each of the two op-
erations. Here, using one less task for the upstreamopera-
tion and one more for the downstream operation reduces
job latency by over 30%.

Achieving balance in the context of general data paral-
lel computing is hard because the costs (runtime,memory
etc.) of the operators are unknown apriori. �ese costs
depend on the amounts of data processed, the types of
computation performed and also on the type of data. For
example, a complex sentence can take longer to translate
than a simpler one of the same length. Even worse, late-
binding, i.e., deferring the choice of the amount of paral-
lelism to the runtime is hard because local changes have
global impact; for example, the number of partitions out-
put by the map phase restricts the maximum number of
reduce tasks at the next stage. RoPE estimates these costs
to generate balanced execution plans.

Fig. 4(a) plots a CDF of the runtime per unit byte read
or written by operations in the dataset. �e analogous
plot for memory used by tasks is in Fig. 4(b). Note again
that the y axes are in log scale. While as variable as their
selectivity– the middle 50th percent of operators have
costs spread over two orders of magnitude– we �nd that
operator costs skew more towards higher values. Per unit
data processed, 20% of operations take over 100X more
time and memory than the average over the remaining
operations. It is crucial to identify these heavy operations,
to o�set their costs by increasing the parallelism and for
the case of memory, to place tasks so that they do not
compete with other memory hungry tasks.

A consequence of unpredictable data selectivity and
operator costs is the lack of balance. We �nd that our
compiler both underestimates and overestimates an op-
eration’s work. Fig. 5 plots a CDF of the runtime of the
median task in each stage. �e y axis is in log scale. �e
median task in a stage is unlikely to be impacted by fail-
ures or be an outlier. So, if the compiler apportions par-
allelism well, the median task in each stage should take
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Figure 5: Imbalance
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Figure 6: Skewness
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Figure 7: ReplacingPair-wise Joinswith
Broadcast Joins

about the same time. �is duration could be chosen to
trade-o� fault-tolerance vs. the cost of checkpointing to
disk. However, we see that while roughly 60% of all tasks
�nish within 10 seconds, 4% take over 100s with the last
1% taking over 1000s. We found the tail dominated by
tasks with user de�ned operators. Setup and scheduling
overheads outweigh the useful work in short-lived tasks
whereas the long-lived tasks are bottlenecks in the job.
2.5 Partition Skew and Repartitioning
A key to e�cient data-parallel computing is to avoid

skews in partition and to re-partition only when needed.
Consider the example in Fig. 2(c). �e naive implemen-
tation would partition the data twice– once on A, B, C (at
P1), followed by a network shu�e and a reduce to com-
pute the sum, and then again on A, B (at P2) followed by
another shu�e for the join. It is tempting to just partition
the data once, say on A, B to avoid the network shu�e
and the pass over data. Note that partitioning on fewer
keys does not violate the correctness of the reduce that
computes SUM(D). Each reduce task will now compute
many rows, one per distinct value of C, rather than just
the one row they would have produced were the map to
partition on all three columns. However, if there is not
enough entropy onA and B, i.e., only a few distinct values
have many records, then partitioning on the sub-group
can make things worse. A few reduce tasks might receive
a lot of data to process while other reduce tasks have none,
and the overall parallel execution can slow down.
Fig. 6 estimates how skewed the partitions can be in our

cluster. Note that our compiler is conservative and does
not partition on sub-groups to avoid re-partitioning. Yet
signi�cant skew happens. We de�ne skew as the ratio of
the maximum data processed by a reduce task to the av-
erage over other tasks in that reduce phase. We see that
in 20% of the reduce stages, the largest partition is twice
as large as the average and in about 5% of the stages the
largest partition is over ten times larger than the average.
Such skew causes unequal division of work and bottle-
necks but can be avoided if the data properties are known.
2.6 From operations to implementations
O�en, the same operation can be implemented in sev-

eral ways. While choosing the appropriate implementa-
tion can result in signi�cant improvements, doing so re-
quires appropriate context that is not available in today’s

��

����

����

����

����

��

����

����

�� ���� ���� ���	 ���� ���
 ���� ���� ���� ���� ��


��

�
�

��
�

�
�

��
��


��

��
�
��

�

������������������ �����!���"�

#�����������
$�%����

&������ ��'
(�%�)��*�+

Figure 8: Stability of data properties across recurring jobs

systems. For example, consider Join. �e default imple-
mentation PairJoin, involves a map-reduce operation on
each side that partitions data on the join columns. �is
causes three read/write passes on each of the sides and
at least one shu�e each across the network. However, if
one of the sides is smaller, perhaps due to the little data
case (§2.2), one could avoid shu�ing the larger side and
complete the join in one pass on that side. �e trick is to
broadcast the smaller side to each of the tasks that is oper-
ating in parallel on the larger side. �e problem though is
that when used inappropriately, a BroadcastJoin can be
even more expensive than a PairJoin.
Fig. 7 plots the potential bene�ts of replacing PairJoins

with BroadcastJoins. It shows the amount of data shuf-
�ed in either case. We see that about 40% of joins in the
dataset would see no bene�t. �is can happen if both join
inputs are considerably large and/or when the parallelism
on the larger side is somuch that broadcasting the smaller
input dataset to toomany locations becomes a bottleneck.
However, o� the remaining joins, themedian join shu�es
90% less data when using broadcast joins.

2.7 Recurring Jobs
We �nd that many jobs in the examined cluster repeat

and are re-run periodically to execute on the newly arriv-
ing data. Such recurring jobs contribute to 40.32% of all
jobs, 39.71% of all cluster hours and 26.07% of intermedi-
ate data produced. If the extracted statistics are stable per
recurring job, i.e., the operations behave statistically simi-
lar to the previous executionwhen running on newer data
of the same stream, then RoPE’s instrumentation would
su�ce to re-optimize future invocations.
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Fig. 8 plots the average di�erence between statistics col-
lected at the same location in the execution plan across
recurring jobs. We picked all of the recurring jobs from
one business group and instrumented �ve di�erent runs
of each job. While most of these jobs repeated daily, a few
repeated more frequently. �e �gure has four distribu-
tions, one per data property thatRoPEmeasures. Wedefer
details on the speci�cs of the properties (see Table 1, §3.1)
but note that while some properties, such as row length,
are more predictable than others, the overall statistics are
similar across jobs– the ratio std ev

mean is less than 0.2 for 70%
of the locations.

2.8 Current Approaches, Alternatives
To the best of our knowledge, we are the �rst to re-

optimize data parallel jobs by leveraging data and compu-
tation statistics. Current frameworks use best-guess es-
timates on the selectivity and costs of operations. Such
rules-of-thumb, as we saw in §2.2–§2.6, perform poorly.
Hadoop and the public description of MapReduce leave
the choice of execution plans, the number of tasks per
machine and even low-level system parameters such as
bu�er sizes to the purview of the developer. HiveQL [24]
uses a rule-based optimizer to translate scripts written in
a SQL-like language to sequences of map-reduce opera-
tions. Star�sh [12] provides guidance on system parame-
ters for Hadoop jobs. To do so, it builds a machine learn-
ing classi�er that projects from themulti-dimensional pa-
rameter space to expected performance but does not ex-
plore semantic changes such as reordering. Ke et. al. [17]
propose choosing the number of partitions based on op-
erator costs. In contrast, RoPE can perform more signif-
icant changes to the execution plan, similar to Flume-
Java [6] and Pig [21], but additionally does so based on
actual properties of the code and data.
It is tempting to ask end-users to specify the necessary

context, for e.g., tag operations with cost and selectivity
estimates. We found this to be of limited use for a few
reasons. First, considerable expertise and time is required
to hand-tune each query. Users o�en miss opportunities
to improve or make mistakes. Second, exposing impor-
tant knobs to a wide set of users is risky. Unknowingly,
or greedily, a user can hog the cluster and deny service
to others; for instance, by tricking the system to give her
job a high degree of parallelism. Finally, changes in the
script, the cluster characteristics, the resources available
at runtime or the nature of data being processed can re-
quire re-tuning the plan. Hence, RoPE re-optimizes exe-
cution plans by automatically inferring these statistics.

2.9 Experience Summary, Takeaways
Note that all of the problems described here happen de-

terministically. �ey are not due to heterogeneity or run-
time variations [1] or due to poor placement of tasks [15,
25] or due to sharing the cluster [13, 23]. We believe that

Query Optimizer
Distributed

Execution

compilation runtime

Query Plan

(a) Current Cluster(s)

Query Re-Optimizer
Distributed Execution + 

on-the-fly optimizations

compilation runtime

Query Plan

Data and 

Computation

Statistics

{operator|subgraph} →

{costs, statistics}…

(b) With RoPE

Figure 9: RoPE’s architecture for re-optimization

the choice of execution plan is orthogonal to these prob-
lems that arise during the execution of a plan. �e under-
lying cause is that predicting relevant data and computa-
tion statistics deep into a job’s execution is necessary to
�nd a good plan but is di�cult due to the intricate cou-
pling between data and computation.

When employed together, these improvements add up
to more than their sum. Promoting a more selective op-
erator closer to the input, can reduce the data �owing
in so much that a subsequent join may be implemented
with broadcast join. We found in practice that such global
changes to the execution plan accrue more bene�ts than
making singleton changes. RoPE achieves both types of
re-optimizations as we will see in §3.

A few key takeaways follow.

● Being un-aware of data and computation context
leads to slower responses and wasted resources.

● Unlike the case of singleton database servers, data-
parallel computation provides di�erent space for
improvements and has new challenges such as cop-
ing with arbitrary user de�ned operations and ex-
pressions.

● Global changes to the execution plan add more
value than local ones.

3. DESIGN
RoPE enables re-optimization of data parallel comput-

ing. To obtain data- and computation- context, RoPE in-
terposes instrumentation code into the job’s data�ow. An
operation can be instrumented with collectors on its in-
put(s), output(s) or both. We describe how RoPE chooses
what information to collect, avoids redundancy in the lo-
cations fromwhich stats are collected, and the algorithms
to compose statistics from distributed locations in §3.1.
�ese statistics are funneled to the job manager and are
used to improve execution plans in a few di�erent ways,
each di�ering in the scope of possible changes and the
complexity to achieve those changes.

Even though an execution plan is already chosen for
a running job, RoPE uses the statistics collected during
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the run to improve some aspects of the job. Descendant
stages that are at least a barrier away from the stageswhere
datastats are being collected will not have begun execu-
tion. �e implementation of these stages can be changed
on the �y. Stages that are pipelined with the currently ex-
ecuting stage can be changed, since inter-task data �ow
happens through the disk. Some plan changes may be
constrained by stages (or parts of stages) that have already
run. Hence RoPE performs changes that only impact the
un-executed parts of the plan, such as altering the degree
of parallelism of non-reduce stages.

RoPE uses the collected statistics to generate better ex-
ecution plans for new jobs. Here, RoPE can performmore
comprehensive changes. Recall from §2.7 that many jobs
in the examined cluster recur because they periodically
execute on new data and that the extracted datastats are
stable across runs of these jobs. In this case, upon a
new run of a recurrent job, datastats collected from pre-
vious runs are used as additional inputs to the plan op-
timizer. We describe how statistics are stored so they
can be matched with expressions from subsequent jobs
in §3.2. We also note that partial overlaps are common
among jobs [11] and our matching framework extends to
cover this case. �e methodology of how the statistics are
used is described in §3.3. An illustrative case study of the
changes that RoPE achieves is in §5.2.

3.1 Collecting contextual information
Choosing what to observe and the statistics to collect

has to be done with care since the context we collect will
determine the improvements that we can make. Broadly,
we collect statistics about the resource usage (e.g., CPU,
memory) and data properties (e.g., cardinality, number
of distinct values). See Table 1 for a summary.
�e nature of map-reduce jobs leads to a few unique

challenges. First, map-reduce jobs examine a lot of data in
a distributed fashion. �ere is no instrumentation point
that observes all the data and even if created, such in-
strumentation would not scale with the data size. Hence,
we require stat collection mechanisms to be composable,
i.e., local statistics obtained by looking at parts of the data
should be composable into a global statistic over all data.
Second, to be applicable to a wide set of jobs, the collec-
tionmethod should have low overhead, i.e., overhead that
is only a small fraction of the task that it piggybacks upon.
In particular, the memory used should scale sub-linearly
with data size and to limit computation cost, the statis-
tics should be collected in a single pass. Together, these
constraints are quite strict, so we adapt some pre-existing
streaming and approximation algorithms.
Finally, to be useful, the statistics have to be un-

ambiguous, precise, and have high coverage. By unam-
biguous, we mean that the statistics should contain meta-
data describing the location in the query tree that these

Type Description Granularity

Data
Properties

Cardinality Query Subgraph
Avg. Row Length Query Subgraph
# of Distinct values Column @ Subgraph
Heavy hitter values, their fre-
quency

Column @ Subgraph

Code
Proper-
ties

CPU and Memory Used per
Data read and written

Task

Leading
Statistics

Hash histogram Column @ Subgraph
Exact sample Column @ Subgraph

Table 1: Statistics that RoPE collects for reoptimization

∑

taski
task1

taskn

.

.

.

.

collector

Job Manager

Figure 10: A task can have many operations and hence, col-
lectors. A job manager composes individual statistics.

statistics were collected at. Global changes to the plan,
during re-optimization for subsequent jobs for example,
can alter the plan so much that previously observed sub-
trees no longer occur. Precision is an accuracy metric; we
try to match the accuracy requirements of the improve-
ments that we would like to make with the properties of
the algorithmic techniques that we use to collect statistics.
For coverage, we would like to observe as many di�erent
points in the job execution as possible. However, to keep
costs low, we ignore instrumenting operations whose im-
pact on the data is predictable (e.g., the input size of a sort
operation is the same as its output). Further, we only look
at the interesting columns. �at is, we collect column-
speci�c statistics only on columns whose values will, at
some later point in the job, be used in expressions (e.g.
record stats for col if select col=. . ., join by col=. . ., or
reduce on col follow).
Implementation: RoPE interposes stat-collectors at key
points in the job’s data�ow. Datastat collectors are pass-
through operators which keep negligible amounts of state
and add little overhead. We also extend the task wrapper
to collect the resources used by the task. When a task �n-
ishes, all datastats are ferried to the job manager (see Fig-
ure 10), which then composes the stats. �e stats are used
right away and also stored with amatching service for use
with future jobs (see Figure 9(b)).

3.1.1 Data Properties
At each collection point we collect the number of rows

and the average row length. �is statistic will inform
whether data grows or shrinks and by how much as it
�ows through the query tree. Composing these statis-
tics is easy–for example, the total number of rows a�er
a select operation is simply the sum of the number of
rows seen by the collectors that observe the output of that
select across all the tasks that contain that select.
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Further, for each interesting column, we compute the
number of distinct values and the heavy hitters, i.e., values
that repeat in a large fraction of the rows. �ese statistics,
as we will see shortly, help avoid skews during partition
and also help pick better implementations. Computing
these statistics while keeping only a small amount of state
in a single pass is challenging, let alone the need to com-
pose across di�erent collection points.
Our solution builds on some state-of-the-art tech-

niques that we carefully chose because we could extend
them to be composable. We will only sketch the basic al-
gorithms and focus on how we extended them.

Lossy Counting to find Heavy Hitters.
Suppose we want to identify all values that repeat more
frequently than a threshold, say 1% of the data size N .
Doing this in one pass, naively, requires tracking running
counts of all distinct values and uses up to O(N) space.
Lossy counting [19] is an approximate streaming al-

gorithm, with parameters s, ε that has these properties.
First, it guarantees that all values with frequency over sN
will be output. Further no value with a frequency smaller
than (s−ε)N will be output. Second, the worst case space
required to do so is (sub-linear) 1

ε log (εN). In practice,
we �nd that the usage is o�en much smaller. �ird, the
frequency estimated undercounts the true frequency of
the elements by at most εN . �e key technique is rather
elegant; it tracks running frequency counts but a�er ev-
ery ⌈ 1ε ⌉ records, it retires values that do not pass a test on
their frequency. For more details, please refer [19].

RoPE uses a distributed form of lossy counting. Each
stat collector employs lossy counting on the subset of data
that their task observes with parameters s = 2ε, ε. To
compute heavy hitters over all the data, we add up the
frequency estimates over all collectors and report distinct
values with count greater than εN . Interestingly, compos-
ing in thismanner retains the properties of lossy counting
with slight mods. A proof sketch follows.
Proof Sketch: Let N i be the number of records observed
by the i’th collector. Note that s−ε = ε and∑N i = N First,
for the frequency estimation error, if a value is reported
by stat collector i, we know that its frequency estimate is
no worse o� than εN i . If the value is not reported, its fre-
quency estimate is zero; but by the existence constraint,
we know that the element did not occur more than 2εN i
times at this collector. Summing up the errors across col-
lectors, we conclude that the global estimate is not o� the
true frequency by more than 2εN . Second, for false posi-
tives, we note that we only keep values whose cumulative
recorded count is greater than εN , that means their true
frequency is at least εN . �ird, for false negatives, sup-
pose a value has a global frequency greater than f > 3εN ,
then it has to occur more than 3εN i > sN i times at some
collector, and so will be reported. Even more, since we

just showed that the cumulative error is no worse than
2εN , its cumulative recorded count will be no worse than
f − 2εN which is larger than εN , hence RoPE will report
this value a�er composition. Finally, the space used at
each collector is 1

ε log (εN i)meeting our requirements.
Implementation: RoPE uses ε = .01. Micro-benchmarks
show that frequency estimates are neverworse o�bymore
than εN and the space used is small multiples of log( N

ε ).

Hash Sketches to count Distinct Values.
Counting the number of distinct items in sub-linear state
and in a single pass has canonically been a hard problem.
Using only O(logN) space, hash sketches [9] computes
this number approximately. �at is, the estimate is a ran-
dom variable whose mean is the same as the number of
distinct values and the standard deviation is small.

�e key technique involves uniformly random hashing
the values. �e �rst few bits of the hash value are used to
choose a bit vector. From the remaining bits, the �rst non-
zero bit is identi�ed and the corresponding bit is set in the
chosen bit vector. Such a hash sketch estimates the num-
ber of distinct values because 1

2 of all hash-values will be
odd and have their �rst non-zero bit at position 1, 1

22 will
do so at position 2 and so on. Hence, the maximum bit
set in a bit-vector is proportional to the logarithm of the
number of distinct values. Using a few bit-vectors rather
than one guards against discretization error. �e actual
estimator is a bit more complex to correct for additive
bias. For more details, please refer [9].

RoPEuses a distributed formof hash sketches. Each stat
collector maintains local hash sketches and relays these
bit vectors to the jobmanager.�e jobmanagermaintains
global bit vectors, such that the i th global bit vector is an
OR of all the individual i th bit vectors. By doing so, the
global hash sketch is exactly the same as would be com-
puted by one instrumentation point that looks at all data.
Hence, RoPE retains all the properties of hash sketches.
Implementation: If the hash values are h bits long, where
h = O(logN), and the �rst m bits choose the bit-vector,
then there are 2m bit vectors and the size of the hash
sketch is h ∗ 2m bits. RoPE uses m = 6 and h = 64.
Hence, each task’s hash sketch is 512B long. Our micro-
benchmarks show that hash sketches retain precision
even as the number of distinct values grows to 240.

3.1.2 Operation Costs
We collect the processing time and memory used

by each task. A task is a multi-threaded process that
reads one or more inputs from the disk (locally or over
the network) and writes its output to the local disk.
However, popular data-parallel frameworks can combine
more than one operation into the same task (e.g. data ex-
traction, decompression, processing). Since such opera-
tions runwithin the same thread and frequently exchange
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data via shared memory, the per-operator processing and
memory costs are not directly available. But, per-operator
costs are necessary to reason about alternate plans, e.g.,
reordering operators. Program analysis of the underlying
code could reason about how the operators interact in a
task, but this analysis can be hard because the interactions
are complex, e.g., pipelining. Also, pro�ling individual
operators does not scale to the large number of UDOs.
Instead, RoPE uses a simple approach that only estimates
the costs of the more costly operations.
�e approach works as follows. First, tasks containing

costly operations are likely to be costly as well. We pick
stages with costs in the top tenth percentile as expensive.
We only use the costs of the median task in each stage to
�lter the impact from failures and other runtime e�ects.
Second, not all the operators in expensive tasks are ex-
pensive. So, for each operator, we compute a con�dence
score as the fraction of the stages containing the opera-
tor that have been picked as expensive. An operator will
have a high con�dence score only if it exclusively occurs
in expensive tasks. �ird, we compute the support of an
operator as the number of distinct expensive stages that it
occurs in. Finally, we estimate the cost of operators, that
have high con�dence and high support scores, as the av-
erage cost of the stages containing that operator.
To validate this approach, we pro�led over 200K ran-

domly chosen stages from the production cluster. It is
hard to obtain ground truth at this scale. Hence, we cor-
roborate our results on succinctness – only a few among
all the operations should be expensive, and coverage –
most of the expensive tasks should contain at least one
expensive operation. �is method identi�ed 22.3% and
15.6% of the operators as expensive for CPU and mem-
ory costs respectively. �is number was higher than ex-
pected because there are only a few generic operations but
many UDOs. Most of the costly operations were UDOs.
Further, 87.9% (92.4%) of the tasks picked as expensive
based on their memory (cpu) cost contained at least one
expensive operator. Hence, their cost can be explained by
these operations. Very few contained more than one ex-
pensive operation. �e succinct set of operations identi-
�ed as expensive and the high coverage of this set makes
us optimistic about this simple method. Fig 11 plots the
relative cost values attributed to the expensive operations.

3.1.3 Leading Statistics
�e ability to predict behavior of future operators is

invaluable, especially for on-the-�y optimizations. Do-
ing so precisely is hard. Rather than aspiring for pre-
cise predictions in all cases, RoPE collects simple leading
statistics to help with typical pain points. We collect his-
tograms and random samples on interesting columns (i.e.
columns which are involved in where/group by clauses or
joins) at the earliest collection points preceding the oper-
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Figure 11: Normalized memory and user CPU costs for the
operators identi�ed as expensive.

ator at which those columns will be used.
We looked at several histogram generators, including

equi-width, equi-depth and serial but ended up with a
simpler, albeit less useful alternative.�is is because none
of the others satis�ed our single pass and bounded mem-
ory criterion with a reasonable accuracy. For each inter-
esting column, in an operator, we build a hash-based his-
togram with B buckets, that is hashed on a given column
value (hash[column value] % B → bucket) and counts the
frequency of all entries in each bucket. RoPE uses B = 256.

We also use reservoir sampling to pick a constant sized,
random sample of the data �owing through the operator.
For each interesting column, RoPE collects up to 100 sam-
ples but no more than 10KB.

3.2 Matching context to query expressions
As metadata to enable matching, with each stat collec-

tor we associate a hash-value that captures the location of
the collector in the query graph. In particular, location in
the query graph refers to a signature of the input(s) along
with a topologically sorted chain of all the operators that
preceded the stat collector on the execution plan. We col-
loquially refer to this as the query subgraph. RoPE uses 64
bit hashes to encode these query subgraphs.

3.3 Adapting query plans
We build on top of SCOPE Cloud Query Opti-

mizer (CQO) which is a cost-based optimizer. CQO
translates the user-submitted script into an expression
tree, generates variants for each expression or group of
expressions and �nally chooses the query tree with the
lowest cost. However, lacking direct knowledge of query
context, the CQO uses simple apriori constants to deter-
mine the costs and selectivities of various operators as
well as the data properties. By providing exactly this con-
text, RoPE helps the CQOmake better decisions.

RoPE imports statistics uses a stat-view matching tech-
nique similar to the analogousmethod in databases [4, 10,
18]. Statistics are matched in during the exploration stage
in optimization, i.e. before implementing physical alter-
natives but a�er equivalent rewrites have been explored.
�e optimizer then propagates the statistics o�ered at one
location to equivalent semantic locations, e.g., cardinality
of rows remains the same a�er a sort operation and can be
propagated. For expressions that have no direct evidence
available, the optimizer makes-do by propagating statis-
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Figure 12: �eRoPEprototype consists of 3 key components:
a distributed statistics collection module, a pre-processor to
the existing SCOPE compiler that provides matching func-
tionality and a basic on-the-�y runtime optimizer.

tics from nearby locations with apriori estimates on the
behavior of operators that lie along the path. Such uncer-
tain estimates are deemed to be of lower quality and are
used only when other estimates are unavailable.
We extended the optimizer to make use of these statis-

tics. Cardinality, i.e., the number of rows observed at each
collection point, helps estimate operator selectivity and
compare reordering alternatives. Along with selectivity,
the computation costs of operations are used to deter-
mine whether an operation is worth doing now or later
when there is less work for it. Costs also help determine
the degree of parallelism, the number of partitions, and
which operations to �t within a task. Besides the choice
of broadcast join, statistics also help decide when self-join
or index-join are appropriate. Most of these optimiza-
tions are speci�c to the context of parallel executions. We
believe that there is more to do with statistics than what
RoPE currently does, but our prototype (§4) su�ces to
provide substantial gains in production (§5).

4. PROTOTYPE
�e prototype collects all the statistics described in §3.

Data stats are written to a distributed �le system and the
matching functionality (§3.2) runs as a pre-processing
step of the job compiler. �e statistics collection code is a
few thousand lines of C#, which during code generation
for each operator, gets placed into the appropriate loca-
tion in the operator’s data�ow. Note that not all operators
collect statistics, and even when they do, they do not col-
lect all types of statistics. Collected statistics are passed
to the C++ task wrapper via re�ection which piggybacks
them along with task status reports to the job manager.
Composing statistics required a few hundred lines of code
in the job manager.
We allow the compiler to specify varying requirements

across the columns. �e constants also can change, to
trade-o� costs for improved precision, based on previous
statistics or other information that the compiler has such
as required accuracy of an estimate.
Parts of the code are production quality to the extent

that all of our results here are from experiments that run
in Bing’s production clusters. Rather than implementing
every optimization possible with the statistics that RoPE
collects, we built a subset up to production quality code
in order to deploy, run and gain experiences from Bing’s
production clusters. We acknowledge that our prototype
is just that, and there is more bene�t to be achieved.

Using these statistics required extensive changes in the
SCOPE query optimizer involving several hundred lines
of code spread over several tens of �les.

5. EVALUATION
Webuilt and deployedRoPE on a large production clus-

ter that supports the Bing search engine at Microso�.

5.1 Methodology
Cluster: �is cluster constitutes of tens of thousands
of 64-bit, multi-core, commodity servers; processes
petabytes of data each day and is shared acrossmany busi-
ness groups. �e core of the network is moderately over-
subscribed and hence shu�ing data across racks remains
more expensive than transfers within a rack.
Workload Evaluated:Wepresent results from evaluating
RoPE on all the recurring jobs of a major business group
at Bing and randomly chosen jobs from ten other busi-
ness groups. �e dataset has over 80 jobs. We repeat each
job over ten times for each variant that we compare. �e
only modi�cation we do to the jobs is to pipe the output
to another location in the distributed �le system so as to
not pollute the production data. �ough small, since we
pick a large set of jobs, our dataset spans a wide range
of characteristics. Latency of the unmodi�ed runs varied
from minutes to several hours. Tasks ranged from small
tens to hundreds of thousands. �e largest job had sev-
eral tens of stages. User-de�ned operations are prevalent
in the dataset, as is common across our cluster.
Compared Variants: For each job, we compare the ex-
ecution plan generated by RoPE with the execution plan
generated without RoPE.�e latter is a strong strawman,
since it uses apriori �xed estimates of operator costs and
selectivities and is the current default in our production
clusters. Early results from a variant that was equiva-
lent to Hive over Hadoop, i.e., one that translated users’
jobs into literal map-reduce execution plans, were signif-
icantly worse than our cluster’s baseline implementation.
Here, we omit those results.
Metrics: Our evaluation metrics are the reduction in
job completion time and resource usage. Resources in-
clude cluster slot occupancy computed in machine-hour
units, as well as the total amount of data read, written and
moved across low bandwidth (inter-rack) network links.

5.2 A Case Study
Many plan changes can be performed given the statis-

tics that RoPE collects. We report a case study that il-
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Figure 13: Case Study: Evolution of the execution plan as RoPE provides more statistics. See Table 2 for how well these plans
do upon execution.

lustrates some of the changes to execution plans that
achieved signi�cant gains in practice. Aggregate results
from applying RoPE to a wide variety of jobs are in §5.3.
Consider a job that processes four datasets. Let these be

requests (R), synonyms (S), documents (D) and classi�ed
URLs (C).�e goal is to compute how many requests (of
a certain type) access documents (of a certain other type).
Doing so, involves the following �ve operations:

1. Filter requests (R) by location. �is operation has a
selectivity of 1

2000 x.
2. Join requests (R) with synonyms (S). �ere are

many synonyms per word, so the selectivity is 50x.
3. Apply a user-de�ned operation (UDO) to docu-

ments (D).�e selectivity is 1
8 x but has a very large

CPU cost per document.
4. Join documents (D) with the list of classi�ed

URLs (C).�is has a selectivity of 1
10 x.

5. Join synonymized requests with documents con-
taining classi�ed URLs; has a selectivity of 4

5 x.
6. Finally, count number of requests per document

URL.
�e dataset sizes are R: 3GB, S: 18GB, D: 12GB, C: 160MB.
Figure 13(b) shows the plan computed by the unmodi-

�ed optimizer which uses apriori estimates on data prop-
erties and costs. Each circle represents a stage, a collec-
tion of tasks that execute one or more operations which
are listed in the adjacent label (see legend in 13(a)). Unla-
beled stages are aggregates [14]. �e size of the circle de-
notes the number of tasks allocated to that stage, in log-
arithmic scale. �e color of the circle in linear redscale
denotes the average time per task in that stage, darker im-
plies longer. Figure 13(d)(13(c)) show the plan generated
using (a subset of) the statistics provided by RoPE. We ex-
plain the �gures as we go along. Table 2 shows how well
these plans do when executed, the metrics are averaged
over �ve di�erent runs.
Recall that the compiler sets costs proportional to the

data processed and sets selectivity based on the type of the
operation– for instance, �lters are assumed to be more
selective than joins. �ese apriori estimates have mixed

results. �ey pick the right choice for the operation on
requests; the more selective �lter operation (#1) is done
before joining with synonyms (#2) (see Fig. 13(b) top
le�). However, for documents, the plan performs the
user-de�ned �lter (UDO) (#3) before the more selective
join (#4) leading to a lot of wasted work. As we see in Ta-
ble 2, due to the high cost of the UDO, this plan takes over
17x the time of the next best alternative.
By providing an estimate of the UDO’s selectivity, RoPE

lets the compiler join the documents dataset with the clas-
si�ed dataset �rst. Figure 13(c) depicts such a plan (see
change in middle right). From Table 2, we see that since
the UDO is applied on fewer data, the median execution
time improves substantially. And, not many more tasks
are needed since fewer documents through the UDO
means fewer net work, and so the cluster hours decrease
as well. But, by performing the UDO later, more data is
shu�ed across the network, since the join with classi�eds
is done on un�ltered documents.

When comparing these two plans, note that the thick-
ness of the edges represent data volume moving between
stages in logarithmic scale (see legend). Also, the color
indicates the type of data movement. Dark solid lines
denote data �ow from a partition stage to an aggregate
stage (many to many) which has to move over the net-
work. Light solid lines indicate one-to-one data �ow.
Here, data-local placement can avoid movement across
the network. Dotted lines indicate broadcast, i.e., the
source stage’s output is read by every task in the destina-
tion stage. Double edges indicate two source tasks per
destination task, i.e., at least one of the sides has to be
moved over the network.

With the UDO at a better place, the bottleneck moves
to two new places. �e average task duration of the stage
with the UDO is very high (deep red). If the compiler
knew the cost of the UDO, it could apportion more tasks
to this stage to resolve this bottleneck. Similarly, even
though requests (R) becomes small a�er applying the very
selective �lter (#1), the compiler is unaware and picks a
pair-wise join for #2. �is causes the large dataset S to be
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Alternate Execution Plans Performance
Latency (s) Cluster Oc-

cupancy (s)
Cross Rack
Shu�e (GB)

Reads+Writes
To Disk (GB)

Tasks

Un-modi�ed (Fig.13(b)) 1x 1y 21.23 91.96 234
Push UDO to appropriate location (Fig. 13(c)) .057x .201y 30.35 125.68 236
+ Replace pair-wise join with broadcast (not shown) .016x .227y 13.29 94.05 211
+ Balance (not shown) .008x .215y 12.82 90.75 341
RoPE (+push UDO even lower, little data,Fig. 13(d)) .006x .139y 15.98 84.04 366

Table 2: Summarizes salient features of executing a typical job with and without RoPE. Overall, with RoPE latency reduces by
almost 160X, while using 7X fewer cluster hours.

partitioned and shu�ed across the network needlessly.
Figure 13(d) shows the plan where RoPE provides the

compiler with the selectivity and costs of all the opera-
tions. Intermediate plans have been omitted for brevity.
Table 2 shows that the median execution of this plan im-
proves by another 9.5x. A few changes are worth noting.
First, operation #2 is now implemented as a broad-

cast join. �is not only saves cross rack shu�e and
reads/writes to disk but also avoids partitioning both
these datasets. Since pair-wise joins shu�e data across
the network, such stages are more at risk from congestion
induced outliers. We observed this with the default plan.
Second, given the high cost of the UDO (#3), the com-

piler instead of addingmore tasks to the stage with opera-
tion #4 defers the UDO till even later, i.e., till a�er opera-
tions #5 and #6. Both these operations are net data reduc-
tive, however #6 is particularly so since it produces one
row for each document url that is in the eventual output.
�e increase in cost from performing other operations on
more data was lower than the bene�ts from performing
the UDO on fewer data.
More optimizations are enabled recursively. �e com-

piler realizes that both sides of the input for the join in
operation #5 are small due to the cumulative impact of
earlier operations, leading to the third improvement– im-
plement operation #5 also as a broadcast join.

�is leads to a fourth improvement that is subtle. No-
tice that operation #6, a reduce operation that needs data
to be partitioned by document url to compute the number
of times eachURL occurs, now lies between operations #5
and #3 thereby eliminating one complete map-reduce!
To understand why, note that the join in operation #5

matches words in synonymized requests with words in
the classi�ed documents. Typically this join would re-
quire both inputs to be partitioned on words. However,
here there is so little data that the le� side (requests) can
be broadcast and the right side (documents) can be parti-
tioned in any way. Hence the right side is partitioned on
url immediately a�er it is read to facilitate operation #6
and never re-partitioned thereby providing for coalescing
many more operations into the same stage. �e enabler
for this optimization is little data– the later parts of most
data parallel jobs can bene�t from serial plans. Achieving
the change, however, requires reasoning about the entire
execution plan and not one stage at a time which is pos-

sible in RoPE due to the interface with a query optimizer.
Fi�h, to o�set the cost of the UDO, the compiler as-

signs more tasks (larger size) to the stage that now imple-
ments the UDO (along with operations #5 and #6). Do-
ing so, is again a global change because the earlier oper-
ations have to partition the data enough ways. To bene-
�t from not re-partitioning, the compiler implements the
join in #4 with the same (larger) amount of parallelism.

Finally, a potential change that was not performed is
worth discussing. Since the classi�eds dataset is small (C),
it is possible to implement operation #4 also as a broad-
cast join. But the compiler chooses to not do that. �e
reason is that the documents have to be partitioned by
url to facilitate the reduce in op #6. Either they are parti-
tioned before the join op #5 or a�er. If the partition hap-
pens before, as is the case with the chosen plan, the large
amount of work in the stage doing ops #5, #6 and #3 needs
more parallelism resulting in more partitions, i.e., more
tasks in op #4. But, the network costs of broadcasting C
grow linearly with the number of tasks in op #4 o�setting
the savings which is one additional read/write of C. Par-
titioning a�er op #5 would mean one more map-reduce
on the critical path and just before the end of the job. Any
outliers here would directly impact the job unlike outliers
on the shu�e before op #4 which is not on the critical
path since more work lies on the le� side of the DAG.

Overall, we see that signi�cant reductions result from
optimizations building on top of each other. Unfortu-
nately, the space of optimizations is not monotonic; some
times using more tasks is better, whereas at other times
pushing a �lter a�er some operators but before some oth-
ers is the best choice. By providing accurate estimates of
code and data properties, RoPE is a crucial �rst step to-
wards picking appropriate execution plans.

5.3 Aggregate results
Here, we present aggregated results across jobs in the

dataset.�ese are runs of production jobs in a production
cluster, so the noise from other jobs and other tra�c on
the cluster is realistic.

Figure 14(a) plots a CDF of the ratio between the job
runtimes without and with RoPE. So, y = 1 implies no
bene�t. Samples below that line are regressions while
those above indicate improvement. To compute a single
metric from a disparate set of jobs, we weight job by the
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(a) Reduction in Job Latency
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(c) Reduction in data shu�ed across racks
Figure 14: Aggregated results from production dataset (see 5.3)

total cluster hours that it occupies. All the results in this
section share this format.
Figure 14(a) shows that 25% (50%) of the jobs speed

up by over 2x (1.5x). Several signi�cant jobs see over
5x reduction in their latencies. Upon inspection we �nd
that all the samples under the y = 1 line are from two jobs.
Both jobs have a small number of stages (and tasks). RoPE
does not change their execution plans. Noise due to the
cluster is the likely cause for lower performance. �e vast
majority of jobs see performance improvements.�e rea-
son is due to one or more of the optimizations described
in the case study above.
Figure 14(b) shows that the latency savings due to RoPE

are not from simply using more resources. In fact by
avoiding wasteful work, RoPE speeds up jobs while reduc-
ing cluster usage. At the 50th (75th) percentile, jobs use
1.2x (1.5x) fewer cluster hours with RoPE.

Figure 14(c) shows that while the volume of cross rack
shu�e is lower for some jobs, it stays the same for many
and increases for only a few. �is is expected since while
some of the optimizations enabled by RoPE lower cross
rack shu�e, others can increase it. Our optimization goal
is to improve job latency and hence, on all the other met-
rics, we only indirectly constrain RoPE. Yet, we �nd that
RoPEmostly achieves its gains by shu�ing fewer amounts
of data across the network. Figure 15(b) shows a similar
pattern for the data read and written to disk. Figures 15(a)
and 15(c) show that RoPE’s plans mostly use fewer tasks
and stages, though sometimes, for e.g., when o�setting
the cost of UDOs, RoPE can use more tasks.

In summary, RoPE judiciously uses resources to im-
prove job latency. Some gains accrue from avoiding
wasted work, others from trading a little more of one type
of resource for large savings on another while still others
accrue from balancing the parallel plans.

6. RELATED WORK
Recent work on data-parallel cluster computing frame-

work has mainly focused on solving issues that arise dur-
ing the execution of jobs, by sharing the cluster [13, 23],
tackling outliers [1], fairness vs. locality [25] and net-
work scheduling [8]. Others incorporate new functional-
ity such as the support for iterative and recursive control

�ow [20]. Orthogonally, RoPE generates better execution
plans by leveraging data and execution insights.

�e AutoAdmin project examined adapting physical
database design, e.g., choosing which indices to build and
which views tomaterialize, based on the data and queries.

Closer to us, is the work that adapts query plans based
on data. Kabra and DeWitt [16] were one of the earliest to
propose a scheme that collects statistics, re-runs the query
optimizer concurrentlywith the query, andmigrates from
the current query plan to the improved one, if doing so is
predicted to improve performance. �ey mainly address
the challenges of trading o� re-optimization vs. doing
actual work and of re-using the partial executions from
the old plan to avoid wasting work that is already done.
�ese challenges are easier in the context of map-reduce
while collecting statistics is harder due to the distributed
setting. Further, RoPE explores new opportunities arising
due to the parallel nature of plans.

Eddies [2] adapts query executions at amuch �ner, per-
tuple, granularity. To do so, Eddies (a) identi�es points
of symmetry in the plan at which re-ordering can hap-
pen without impacting the output, (b) creates tuple rout-
ing schemes that adapt to the varying selectivity and costs
of operators. RoPE looks at a disjoint space of optimiza-
tions (choosing appropriate degrees of parallelism and
operator implementations), which are not easily cast into
Eddies’ tuple routing algorithm.

Star�sh [12] examines Hadoop jobs, one map followed
by one reduce, and tunes low-level con�guration vari-
ables inHadoop such as io.sort.mb. To do so, it constructs
a what-if engine based on a classi�er trained on exper-
iments over a wide range of parameter choices. Results
show that the prescriptions from Star�sh improve on de-
veloper’s rules-of-thumb on non-traditional servers (e.g.,
fewer memory or cores). RoPE is complementary because
(a) it applies to jobs that are more complex than a map
followed by a reduce, (b) explores a larger space of plans
and (c) uses a cost-based optimizer.

7. DISCUSSION
Recurring jobs are a �rst-order use case in our pro-

duction system. We �nd that RoPE achieves meaning-
ful improvements to such jobs. However, it is important
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(b) Reduction in intermediate writes to disk
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(c) Reduction in # of Tasks
Figure 15: Aggregated results from production dataset (see 5.3)

to note that statistics from a run only cover sub-graphs
of operations used in that execution plan. �is informa-
tion may not su�ce to �nd the optimal plan. A�er a few
runs, we usually �nd all the necessary statistics since each
run can explore new parts of the search space. However,
plans chosen during this transition are not guaranteed to
monotonically improve. In fact, there are no general ways
to bound the worst case impact from plans chosen based
on incomplete information. As a result, RoPE largely errs
on the side of very conservative changes.
We defer to future work some advanced techniques

that choose plans given uncertainity regimes over statis-
tics or choose a set of plans, each of which has an associ-
ated validity range speci�ed over statistics, and switch be-
tween these plans at runtime depending on the observed
statistics [3]. Clearly these techniques are more complex
than RoPE, the risks from picking worse plans are larger
here, and to the best of our knowledge using these ideas
in the context of parallel plans is an open problem.

8. FINAL REMARKS
Results from a deployment in Bing show that leverag-

ing properties of the data, the code and their interaction
signi�cantly improves the execution of data parallel pro-
grams. �e improvements derive from using statistics to
generate better execution plans. Note that these improve-
ments are mostly orthogonal to those from solving run-
time issues during the execution of the plans (e.g., out-
liers, placing tasks). �ey are also in addition to those
accrued by a context-blind query optimizer over literally
executing the programs as speci�ed by the users.
While RoPE leverages database ideas, we believe that

the realization in the context of data parallel programs
is interesting due to challenges that are new (e.g., dis-
tributed collection), or are more important in this con-
text (e.g., user de�ned operations) and novel opportuni-
ties for improvement (e.g., recurring jobs, little data and
the optimizations speci�c to parallel plans such as choos-
ing degree of parallelism to achieve balance).
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