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ABSTRACT
In spite of the standardization of the OpenFlow API, it is very dif-
ficult to write an SDN controller application that is portable (i.e.,
guarantees correct packet processing over a wide range of switches)
and achieves good performance (i.e., fully leverages switch capa-
bilities). This is because the switch landscape is fundamentally
diverse in performance, feature set and supported APIs. We pro-
pose to address this challenge via a lightweight portability layer
that acts as a rendezvous point between the requirements of con-
troller application and the vendor knowledge of switch implemen-
tations. Above, applications specify rules in virtual flow tables
annotated with semantic intents and expectations. Below, vendor
specific drivers map them to optimized switch-specific rule sets.
NOSIX represents a first step towards achieving both portability
and good performance across a diverse set of switches.

Categories and Subject Descriptors
C.2.1 [Computer-communication networks]: Network Architec-
ture and Design; C.4 [Performance of Systems]: Design studies

Keywords
Software-Defined Networks, OpenFlow, Switch Diversity,
Portability

1. INTRODUCTION
A core promise of SDN is that SDN users are freed from being

locked to specific hardware vendors through the use of standard-
ized APIs—they should be able to “mix and match” different types
and vendors of switches in their network, without having to change
the controller application. However, in spite of the standardization
of the OpenFlow API, it is very difficult today to write an SDN con-
troller application that is truly portable, i.e., that guarantees correct
packet processing and has good performance over a wide range of
switches.

The reason for this challenge is that the switch landscape is fun-
damentally diverse: Switches are built in software or hardware,
and optimized for different trade-offs of cost and scale. Software
switches [3, 10] profit from the fast CPUs and I/O in modern servers
on the control plane. On the data plane however, their performance
varies with the load on the server and the characteristics of the in-
stalled flows. In contrast, hardware switches [5, 7] only carry a
relatively weak CPU, and impose strict resource constraints. Once
a flow is installed, however, they provide full bisection data plane
bandwidth. Among them, there is significant variety in the number
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of flow tables, the number of flows that can be installed in each ta-
ble, and the matches and actions supported. Pipelines are fixed or
partially flexible. Table sizes can vary with their contents. While
recent work [11] makes the case that switch pipelines should be
fully flexible, in today’s reality they are not. We believe such switch
diversity is not a short term phenomenon. Consequently, the SDN
community should address the portability problem.

Fundamentally, the challenge of portability is thus that expec-
tations of the application have to be matched to the feature-set and
performance characteristics of the switch that forwards the packets.
To bridge this gap, there are two basic approaches:

Top down: Generic applications across all the switches. In a top-
down approach, operators write applications using a generic repre-
sentation, independent of the actual pipeline and capabilities of the
switch and without any specifications of device-level properties.
For example, OpenFlow 1.0 only uses the TCAM table of a switch,
which makes it easy to write portable programs, but leaves most
of a typical switch pipeline unused. Other top-down approaches
either represent the network as a single virtual switch with uncon-
strained resources [20], or provide a declarative flow programming
language that applications use [16]. A compiler then translates the
higher layer application commands to optimized OpenFlow mes-
sages. This approach enables portability and simplifies the pro-
gramming of applications, but the compiler is highly complex to
design and necessarily incurs overhead. Without the help of appli-
cations, it is difficult to come up with optimal solutions, as flow
characteristics are not known in advance. Also, a high level ab-
straction is less appropriate for applications “close to the metal”
that require access to low-level details on the wire. It is also chal-
lenging to rewrite a switch-specific compiler for each high-level
language.

Bottom up: Switches expose capabilities to the applications or
the runtime system. Recent OpenFlow specifications have shifted
towards a bottom-up approach, where switches expose a more de-
tailed model of their internal architecture. However, it is difficult
to express the entire forwarding behavior in a generic language.
OpenFlow 1.3/1.4 exposes multiple switch tables, but the actual
pipeline logic, and individual contracts and resource limits for these
tables are still not included (e.g., TCAM may have flexible number
of entries as discussed in Section 2). If the switch exposes too little
information, applications are unable to fully optimize their perfor-
mance. However, if the switch exposes too many details, applica-
tion programmers may either simply not care about these details,
or have to make choices without full confidence.

Neither of the above approaches is able to solve the diversity
problem in the general case. Solving the problem of portability in
SDN requires bringing together knowledge from both the applica-
tion programmer (about what the application is semantically try-



ing to achieve, what its priorities are, what trade-offs it can make)
and the switch vendor (about the exact feature set and performance
characteristics of the switch).

As a new point in the design space, we propose a lightweight
compatibility layer between the controller applications and the switches,
called NOSIX. The idea is to combine both the application pro-
grammers’ expertise of their requirements and the vendors’ exper-
tise of their switch architecture. In a NOSIX system, application
writers group rules and annotate the groups with expectations and
optimization goals, while vendors provide software device drivers
that map these groups to the hardware. To retain the efficiency
and richness of the OpenFlow programming model, NOSIX does
not fully isolate the application from the switch characteristics. In-
stead, it gives applications a choice: They can omit details they
do not care about, or provide specific requirements where they do.
This enables more efficient resource usage in the switches, fosters
switch innovations, while simplifying controller applications.

In presenting NOSIX, we hope to widen the discussion in the
field to include approaches that are practical with currently avail-
able hardware, where switch pipelines are only partially flexible
and not all tables provide a TCAM-like feature-set. The concrete
API is intended to serve as an example that clarifies and illustrates
this approach.

2. SWITCH DIVERSITY
Today’s switch implementations differ substantially in both the

data plane and control plane. According to Open Networking Foun-
dation [8], there are 25 OpenFlow hardware and software switch
products from 15 companies. They differ in both the data plane
and the controller-switch interactions [28, 18].

2.1 The pipeline of flow tables
Today’s OpenFlow specifications, even version 1.4, only expose

part of “the switch brain”. To illustrate the complexity, we dis-
cuss a model of a traditional ASIC-based hardware switch based
on our hands-on experiences [4]. The switch has a partially flexi-
ble pipeline of tables that can each match on specific attributes and
perform, which includes: (1) the classification table at each input
port, which classifies packets based on input port and VLAN tag id.
This table has about 1000 entries and sets the metadata to be used
for the following tables. (2) the L2 table, which matches on the tu-
ple of exact destination MAC address and VLAN ID. The table has
hundreds of thousands of entries, and can send the packets either
directly out (skipping the following tables) or further through the
pipeline. (3) the TCAM-based ACL table, which matches on arbi-
trary fields and has a wide range of possible actions. The table has
limited size of only a few thousands of entries, but the size is not
constant: the table is subdivided into slices, which need to be con-
figured based on the number of bits that need to be matched. For
instance, when we match on IPv6 addresses, a slice has to be re-
configured to “double wide” mode, reducing the number available
table entries. Given the complexity of switch design details, it is
hard to expose all the features to the applications. (4) the SRAM-
based L3 table, which matches on IPv4 addresses using longest
prefix match. This table has tens of thousands of entries and can
rewrite the destination IP addresses.

The details of the table pipelines vary across switches [18]. Switches
may be able to skip pipeline stages or loop back to earlier stages.
They may be able to output a packet twice in the pipeline, but only
modify it once. In multi-module switches, TCAMs can be at a cen-
tral location and managed by a single entity (e.g., Cisco Catalyst
4500 Supervisor) or they can exist on each line card and managed
by local CPUs (e.g., HP ProCurve 5400). OVS [10], a software

switch, has a kernel-level hash table that handles micro flow rules,
and a user-space table that handles wildcard rules and transparently
inserts micro flow rules into the kernel-level hash table.

Switch tables differ in their sizes, supported matches and actions.
For OF 1.0, the HP ProCurve 5406zl supported 1500 flows, while
the NEC PF5820 supported 750 flows [25]. As discussed before,
the size may even vary with content. For matches, there exist multi-
ple types of TCAMs optimized on specific matches in order to serve
different goals (e.g., FIB, ACL, QoS) and performance [12]. For
example, one of three hardware switches evaluated by Rotsos [28]
did not support IP address rewriting. The Intel switch [6] supports
more complex and flexible flow match specifications and actions.
OVS supports the full set of matching and actions and a conceptu-
ally unbounded number of rules.

Switches have different packet processing performance in the
data plane. Hardware switches can typically forward packets at
full line-rate, independent of the switch CPU and host bus. Fea-
tures not directly supported by the hardware may be implemented
in software on the slow path, which is orders of magnitude slower.
In contrast, software switches may expose different performance
for rules kept in the kernel or in the user space [24], and may dete-
riorate with growing flow table size [28, 15].

Implications: This diversity creates the challenge of if and where
(in which flow-table) an application should install its rules. It is
challenging for applications to fully understand and leverage the
features of different switches for the best performance. It is also
challenging for operators to write generic applications while achiev-
ing good performance.

2.2 Controller-switch interactions
The controller-switch interactions include rule updates from the

controller to the switch and the state updates from the switch to
the controller. In hardware switches, rule and state updates may
incur different delays due to limits of the switch CPU, or scheduling
conflicts to the underlying ASIC[28]. Software switches can update
rules and answer state queries faster but may still be delayed under
heavy CPU load. Depending on their architecture, switches may be
able to perform groups of changes atomically or not.

Applications often keep a local copy of the flow table at the
controller and synchronize the local flow tables with those at the
switch. However, this is non-trivial because switches may auto-
matically expire some rules and may delay table modification com-
mands. When the control channel is temporarily interrupted and
recovered, the application no longer knows the state of the switch.
The most common practice is to clear the switch flow table in this
case, and repopulate it from scratch. While this solution restores to
the flow table to a known state, it also breaks forwarding during re-
covery. Applications with a more sophisticated strategy may query
the switch flow table on reconnect, and only delete surplus and add
rules in the switch flow table. This does not break the forwarding,
but requires the entire flow table to be transmitted from the switch
to the controller. Also, rules that have been correctly expired by the
switch due to timeouts may be re-installed by the controller.

Implications: Communication between the controller and the switches
incurs delays and limited bandwidth. As a result, it is challenging
for applications to understand the performance of such interactions
for different switches, and optimize their performance accordingly.

2.3 Diversity is fundamental
Some feature and performance differences among switches stem

from the fact that OpenFlow and SDN are still nascent. First gen-
eration SDN switches were built on top of existing switch fabrics,



limiting the achievable feature set. While new proposals advocate
more flexible pipelines [11], these are not yet widely available. At
this point, all parts of the SDN stack are still evolving rapidly (e.g.,
NoviFlow [1] builds OpenFlow switches on NPUs), resulting in in-
consistent feature sets and support for new features (e.g., Groups in
OpenFlow 1.1+). We expect that this evolution-based diversity will
persist for several years until the SDN ecosystem stabilizes.

However, even in the long term, switches will continue to be di-
verse due to economic pressures. SDN protocols are not meant to
standardize switch implementations but only the controller APIs.
There will always be switch implementations with different trade-
offs of cost and scale. Switches will be customized for different
applications and markets. For example, we need different types of
switches for wide area networks and data center networks, at the
edge and in the core of networks. Both hardware and software will
continue to evolve independently. For example, when new SDN
switches support larger TCAMs and more tables, applications writ-
ten for OpenFlow 1.0 need to be rewritten to leverage these new
features.

Implications: Switch diversity not only exists in today’s SDN, but
will remain in the future because of diverse markets and hardware
evolution. As a result, applications always face the trade-off of
portability (i.e., running on all types of switches) and performance
(i.e., optimizing for individual switches).

3. THE NOSIX APPROACH
We now discus a hybrid approach that attempts to strike a bal-

ance between portability and performance across switches. The
key idea is to introduce an abstraction that separates the applica-
tion’s expectations from the switch-specific implementations. We
argue that the applications should choose a pipeline model that fits
their goal with some freedom. They then specify their require-
ments about rules, updates, and notifications in annotations. It is
then switch vendors’ job to choose the best way to implement these
expectations by leveraging the knowledge of their own switches.

Note that our intention is to discuss the approach rather than pro-
pose a fixed API, so we focus on highlighting key design points: (1)
A pipeline of virtual flow tables to represent application expecta-
tions on what rules should be processed at the switch. Each virtual
flow table contains flow-based rules with priorities that match pack-
ets on different header fields, take actions, and accumulate coun-
ters. The tables are defined by the application and assembled in a
custom pipeline. (2) A switch-specific driver that maps the VFT
pipeline onto the physical pipeline available on the switch. The
driver performs a static mapping based on the information in the
virtual pipeline, and its annotations, and its knowledge of the prop-
erties of the physical pipeline. This driver can be placed either at a
low layer in the controller OS, or on the switch itself.

3.1 Virtual flow tables (VFTs)
Virtual Flow Tables (VFTs) are the basic components in NOSIX.

The applications can freely define the rules without worrying about
either the resource constraints and feature sets in the forwarding
plane, or the delay and throughput of updates and notifications. We
first give an example to show how these virtual flow tables work
(Figure 1). Assume a virtual networking application, which dis-
tributes traffic to different virtual networks. The application can
specify a pipeline of VFTs: First, a VFT that classifies which vir-
tual network the traffic belongs to (classify host) based on the input
port and/or the VLAN tag, and sets some metadata identifying the
virtual network the host is on. Then, in each virtual network, the
application handles traffic differently based on the dl proto field.

For instance, the ARP rule table maps known MAC address to IP
addresses. The ACL table performs access control of IP traffic and
the L3 routing table decides the routing for the traffic. The key
properties of our proposed virtual flow tables are summarized as
follows:

VFTs are predefined by applications: Applications pre-define
a pipeline of virtual flow tables (VFTs) and then install rules in
these VFTs as they operate. We only allow applications to pre-
define the pipeline because physical switch pipeline is hard for dy-
namic reconfiguration. In the general case, rules cannot be reshuf-
fled without intermittent data plane impact. While current switch
TCAMs can be sliced and reconfigured to adapt to different appli-
cation scenarios (e.g., enabling or disabling matches on Ethernet,
IPv4 or IPv6 addresses to optimize space), these operations typi-
cally cannot be performed online. Note that while the structure of
the pipeline is static, the rules themselves are not. Applications can
still dynamically insert rules into the VFTs on-line at any time.

VFTs are not constrained by physical switch tables: The rules in
the VFTs do not need to be always in the physical flow tables. For
instance, in the example above, the application uses a dedicated
table to handle the responses to ARP queries in the network. In
the absence of specialized hardware support, the switch driver can
emulate this table in software. NOSIX makes this decision based
on the performance requirements of the application as expressed
by the annotation. We can map a VFT to rules in multiple physical
tables or map multiple VFTs into the same physical table. In the
example in Figure 1, NOSIX may decide to combine the sequential
virtual tables (classify protocol and ACL) and install the combined
rules from both tables into the same TCAM table.

Applications specify their expectations using annotations to VFTs:
To enable NOSIX to make smart decisions in mapping VFTs, ap-
plications need to expose the properties of these VFTs and their
expectations using annotations. In the following, we describe two
examples of such annotations. This is not intended to be an exhaus-
tive list. We expect the language of such annotations to be dynamic
and grow as applications and switches develop and common pat-
terns emerge.

Requirements: Applications can describe their requirements on how
switches should handle the rules in each VFT, in order to guar-
antee good performance of their rule processing at switches. The
requirements include which switch table to install the rules (e.g., a
table optimized for matching on MAC and a table for longest prefix
match), the rule processing rate (e.g., at least 500 rules per second),
consistency requirements (e.g., per-flow consistency [27]).

These requirements represent mandatory preconditions that the
application requires to perform according to its SLA. If the feature-
set of the switch does not permit the requirements to be fulfilled, the
application fails to run and the operator is notified to either upgrade
the switch or change the requirements.

Promises: To increase the degrees of freedom of placing the rules,
applications can give promises about their expected usage of the
rules in each VFT. The example promises include flow size and
rule update rate. For instance, ARP and DNS flows are often short
lived and have only a few packets. Therefore, the VPT for ARP and
DNS may have the promise of the flow size < 10 pkts/flow and the
rule update rate < 5 flows/sec. By contrast, rules stemming from
the migration of virtual machines are likely to match a large amount
of packets at high rates, but these packets occur only sporadically.
The application can install these rules in another VFT but with a
promise of larger flow sizes but a lower rule update rate. With
these promises, NOSIX can map a VFT to the right physical flow



Host_classify
Match: inport, l2_src
Action: SetMetadata
Size: 50000

Classify Protocol
Match: dl_proto
Action: Goto ARP, ACL
Size: 1000

ACL
Match: *
Action: Drop
Size: 1000

ARP
Match: Arp_THA
Action: Output, Drop
Size: 50k, Speed: <1MB/s

L2 Table
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L3_route
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L3 Route

Match: nw_dst_pfx
Action: Output
Size: 5000

Figure 1: Example of virtual flow tables

tables and reserve more table entries for the other VFTs.
Figure 1 shows how an application annotates each table based on

its expectations. For example, the application annotates the maxi-
mum size of each VFT, and the ARP VFT with a promise that ARP
traffic would not go beyond 1Mbps. Note that we only discuss a
few representative requirements and promises above. NOSIX can
be extended to support more properties based on applications’ re-
quirements because they are not constrained by the switch imple-
mentations. For future work, we will study how to incentivize ap-
plications to tell the right requirements and promises.

Update rules in VFTs with transactions: To simplify the pro-
gramming model for the application, NOSIX exposes a transaction-
based API for applications to change rules in VFTs. There are two
primitives: start transaction(consistency level) and commit(wait).
All the rule operations the applications have on the virtual flow
tables after start transaction must remain inactive until the com-
mit command. The end state of the transaction is that either all or
none of the operations are applied. The application can specify the
consistency level explicitly (e.g., no consistency, per-packet con-
sistency, and per-flow consistency). The default consistency level
is no consistency, which does not provide any guarantee that the
changes are applied atomically on the switch.

The transaction language in NOSIX is defined on a per-switch
basis. Network-wide semantics can be implemented on top of it [27,
13]. Note that NOSIX itself makes no guarantees or assumptions
about the availability of transactions on the switch API. Instead,
it provides a language for the application to specify that it requires
such behavior. This enables varying implementations in the drivers,
based on the options in the hardware. For instance, a driver may
leverage their knowledge of operation orderings and may take ad-
vantage of disabled table entries in the hardware tables, where such
features are available.

VFTs are defined based on rule properties instead of rule func-
tions: Applications use VFTs to describe the properties of their
rules but not their functions. Rules for the same function may be
distributed on multiple VFTs. For example, an application may di-
vide its access control rules into two VFTs, one with frequently
changing rules for operators to isolate immediate threats, and the
other with stable rules. In this way, NOSIX can map the two VFTs
to different physical flow tables at switches. Rules with different
functions may fit in the same VFT. For instance, if the access con-
trol rules and routing rules have similar promises and requirements
(e.g., in terms of packet processing time and rule change rates),

the application can install both types of rules in a single VFT and
NOSIX does not need to distinguish them in the physical flow ta-
bles.

3.2 Switch drivers
Efficiently mapping the VFTs onto the physical switches requires

detailed knowledge about the feature set and resource constraints
of the switch. Despite the progress of OpenFlow specifications, de-
scribing these trade-offs in precision using a vendor-agnostic lan-
guage is still difficult. For instance, switches may be able to par-
tition their TCAMs, using different matching modes on different
parts. The hash-based tables may experience different hash colli-
sions, depending on the hash functions used. We argue that instead
of striving to expose the entire complexity of the pipeline to appli-
cation, the application should just expose its expectations via VFTs,
and then switch drivers should map VFTs to physical switches (e.g.,
Figure 1). The switch drivers have the following key features:

Switch drivers are programmed by vendors: Vendors are in the
best position to implement switch drivers because they understand
their switches well. Switch drivers hide switch heterogeneity from
applications and enable diversity and innovations of both the switch
data plane and control plane. In the data plane, instead of following
the same specification, vendors now have the flexibility to design
their own features (e.g., the types and number of flow tables) and
optimize its resource usage (the size and matching fields for each
flow table), as long as they can use the driver to manage the rules
based on applications’ expectations. For example, the application
may define one table for measurement rules and another for data
rules, and the switch driver may merge and map them to the single
TCAM table in a hardware switch. In the control plane, vendors
can design different mechanisms to process rule updates and send
network events and flow counters to the applications.

Switch drivers can be on the switch or on the controller: We do
not make a strong case here about where the switch driver should
be placed. The switch driver may reside on the switch itself. An
advantage is that this approach maintains the clean separation be-
tween SDN programmer responsibility (controller) and switch ven-
dor responsibility (on the switch). The disadvantage is that the need
for standardization at the controller-switch boundary limits the rate
of innovation possible. Note that today some vendors already use
firmware to mimic OpenFlow features they cannot support in their
hardware (e.g., packet encapsulation).

In contrast, the switch driver may also reside at a low level of



the controller software stack, by moving part of the switch control
plane to the controller (i.e., closer to the applications). There are
several advantages: (1) The control channel between the controller
and the switch may have delay churns and failures, leading to high
complexity in programming applications. With the switch drivers,
the vendors fully control the messages between the controller and
the switch (e.g., update rules, send notifications), and thus can in-
troduce different control protocols.1 (2) Today, the limited CPU
at some switches significantly limits the control plane performance
and the switch feature set. With switch drivers, vendors can lever-
age the more powerful computing resources shared across switches
in the controller, and decide whether to implement a feature in the
data plane, the firmware, or the switch driver. (3) A single driver
in the controller can manage all the switches belonging to the same
vendor, enabling more switch-specific optimization. (4) It is much
easier to program the software-based switch driver at the controller
than at the switch because it is easy for debugging and reuse mod-
ules. That said, some components of the switch drivers should be
located at the switches for lower latency (e.g., rule rearrangement
in the TCAM). If the driver is directly embedded into the controller
software, it has to be rewritten for each individual controller. This
can be circumvented by having a language-agnostic API inside the
controller OS, e.g., through a virtual file system API [23].

Switch drivers automatically synchronize between VFTs and
physical tables: When an application modifies the rules in the
virtual flow table, the switch drivers should update the rules in
the switches accordingly based on the application’s requirements.
The switch drivers also handle flow expiration at switches, and
re-synchronize the physical tables with VFTs when the controller-
switch channel fails.

Switch drivers also synchronizes the flow-level counters from
the physical flow tables at switches to the virtual flow tables. These
drivers optimize the rule update and counter collection performance
based on the switch feature set and the trade-off of features and
performance. For example, if the switch supports more advanced
ways of collecting flow-level counters [14], the switch driver can
automatically decide how to tune the parameters for these features.
If the switch has a trade-off between the counter collection and rule
updates, the switch driver can schedule these operations based on
the detailed understanding of the trade-off.

Switch drivers send feedback to applications: Sometimes it is
impossible for the switch drivers to find a way to meet the ap-
plication’s requirements of the virtual flow tables. For example,
when an application requires a VFT with millions of flow-level
rules and with the performance requirement of line speed packet
processing, the switches can neither install the rules in the hard-
ware table because it is not large enough; nor in the software ta-
ble because it is not fast enough. When these scenarios happen,
the switch driver sends feedback to the application indicating the
VFTs that the switch cannot realize. The applications have to mod-
ify the VFTs and NOSIX can try to map the new VFTs to the phys-
ical tables again. Or applications may rebalance the rules across
switches if possible. The feedback is also useful for resource allo-
cation across applications. For example, in order to ensure fairness
of resource utilization among VFTs proposed by different applica-
tions, NOSIX may send feedback to those applications that require
too many resources. We leave the detailed design for supporting
multiple applications for future work.

Overhead: The overhead of NOSIX involves (a) keeping the ag-

1In fact, Open vSwitch already added its extensions to the
controller-switch interactions in the OpenFlow protocol.
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gregate desired VFT state of the network on the controller, (b) re-
peatedly computing the mapping between virtual and physical state
(c) efficiently transferring the physical state to the switch. As it
heavily depends on the exact choice of annotation language, ab-
straction level and implementation, we leave a quantitative discus-
sion for future work.

4. NOSIX CASE STUDY
We provide a preliminary simulation of how NOSIX can enable

switch-specific optimization by mapping application expectation
and optimization goals with the underlying switch infrastructure.
We use two examples to show the benefits for NOSIX to have ap-
plication knowledge and understand switch design, respectively.

Benefits of having application knowledge: We evaluate our sys-
tem with an application that creates two VFTs: one with access
control rules on elephant flows (e.g., large file downloads) and an-
other with forwarding rules for mice flows (e.g., ARP, DNS queries).
Similar to B4 [19], we assume that applications know some prop-
erties of their traffic. For instance, in the Google WAN [17] appli-
cations are aware of scheduled high-bandwidth traffic when servers
are migrated. Even for general Internet traffic, there is correlation
between the protocol and TCP port of a flow and its characteris-
tics [21]. The application annotates each VFT with promises on
the number of bytes per flow (100 MB for the elephant flow and 10
MB for the mice flow). The application reactively installs a flow
entry in the switch for every new incoming flow for both VFTs.
We generate a mix of 20% elephant flows and 80% mice flows.
The switch has 1 Gbps forwarding rate and the TCAM table has
500 entries. The bandwidth between the controller and the switch
is 10 Mbps. We gradually increase the total number of flows until
it exceeds the TCAM capacity.

We compare two approaches: (1) Baseline: The switch sends the
first packet of each flow to the controller. The application then re-
actively installs the rule at the switch, so all the following packets
can match the rule directly. Once the flow table is full, the switch
sends all the new flows to the controller for processing. (2) NOSIX:
Since NOSIX knows the elephant and mice flows from VFTs, the
switch driver prioritizes flow table entries for elephant flows and
redirects all the mice flows to the controller. As shown in Figure 2
and 3, at first, both NOSIX and the baseline install rules reactively
based on the incoming flows. Once the flow table is full, the base-
line redirects all new flows to the controller irrespective of mice
or elephant flows, and thus its throughput is limited by the control
channel bandwidth. In contrast, NOSIX removes the rules for mice
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flows and redirects all the mice flows to the controller. As a result,
NOSIX achieves higher throughput and drops fewer flows for both
mice and elephant flows than the baseline.

Benefits of knowing switch design: We evaluate an application
with three VFTs: a reactive L2 access control table, a proactive L2
rewrite table, and a proactive L3 routing table. The switch has an
L2 table with 30K entries and a TCAM table with 2K entries.

We compare two approaches: (1) Baseline: The baseline as-
sumes that some switches only support OpenFlow 1.0. In order
for the application to be generic across all the switches, the appli-
cation can only use the single TCAM table. As a result, the switch
caches the micro flows in TCAM table and redirects everything to
controller. (2) NOSIX: the switch driver leverages the knowledge
of switch details and makes use of both tables efficiently. NOSIX
merges L2 access control and L2 rewrite rules (VFT1 and VFT2)
and map them into L2 hardware table. NOSIX then uses switch
TCAM table for the proactive L3 routing. As shown in Figure 4
and 5, the baseline starts dropping flows when total number of in-
coming flow exceeds the TCAM size of 2k entries. In contrast,
NOSIX scales out to 26k new flows. The throughput of NOSIX
decreases beyond 26k flows, because the control channel is over-
loaded and there is no room to send even first packet of incoming
flow to the controller for inspection.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 5000  10000  15000  20000  25000  30000  35000

N
u
m

b
e
r 

o
f 

fl
o
w

s 
d
ro

p
p
e
d

Number of flows/sec

NOSIX:Mice Flows Dropped
NOSIX:Elephant Flows Dropped

BL:Mice Flows Dropped
BL:Elephant Flows Dropped

Figure 5: The number of flows dropped with the table pipeline

5. RELATED WORK
Recent work [16, 29] takes a programming language approach to

reducing the complexity of programming SDN. They define declar-
ative or functional languages to enable composition of management
modules, reduce the programming complexity, and leverage com-
pilers and runtime systems to optimize the performance. Instead,
NOSIX focuses on optimizing the flow-programming pipeline, with
the idea that other, higher-level primitives such as Frenetic or the
Onix NIB [20] could be built on top of it – in a way an LLVM
compiler (Low Level Virtual Machine) of networks. Bosshard [11]
proposes a more flexible switch pipeline. NOSIX focuses an ap-
proach that works today, where such switches are not yet available.
Yanc [23] proposes to leverage operating systems solutions such as
file systems to build network controllers. Similar to Yanc, NOSIX
also leverages the device driver idea from the operating system.
However, NOSIX focuses on supporting portability with diverse
switches.

OF-config [9] and the type-length-value (TLVs) in OpenFlow
1.4 allow more syntactic flexibility for SDN messages. NOSIX’s
switch drivers can be built upon them to support more switch-specific
functions and optimization. The Service Abstraction Layer (SAL)
in the OpenDaylight project [2] focuses mainly on software engi-
neering aspects of composing software on the controller side, while
NOSIX is an abstraction for flow programming in switches. Recent
projects that enrich the switch feature set with additional function-
ality (e.g., OpenFlow Fast-Reroute support, Data-Driven Connec-
tivity [22], Intel Data Plane Development Kit [6]) have highlighted
the necessity to continue to innovate on the controller-switch inter-
face. NOSIX can take advantage of those changes in the data plane
without exposing them to the application.

Flow Adapter [26] shares the similar idea of mapping a virtual
pipeline to the physical pipeline. Flow Adapter takes an algorith-
mic approach and assumes the switch consists of a series of TCAM-
based tables. In reality, hardware switch pipelines consist of many
specialized-purpose tables. Therefore, NOSIX leverages the an-
notated virtual flow tables to figure out how to make use of those
special-purpose tables in different switches to improve the resource
utilization.



6. SUMMARY
Programming software-defined networks is challenging in the

presence of a heterogeneous switch landscape, and applications
have to choose between portability and efficiency. This is not a
short-term phenomenon, as ASIC Design involves complex cost
trade-offs and incurs long product cycles. As such, there is a natu-
ral tension between the dynamics of what the software side expects
and the hardware can provide.

We propose NOSIX, a lightweight portability layer, which al-
lows application to express their expectations on virtual flow tables,
while relying on the vendors to build switch drivers to optimize
for specific switch implementations. The approach is indented to
be practical even in today’s highly diverse and limited ASIC land-
scape. As such, it does not attempt to isolate the application entirely
from the switch. Instead, it provides a lever that enables applica-
tions to specify details that they care about and omit ones that are
not important. We expect the annotation language to grow in ex-
pressiveness and abstraction level over time. As part of our ongoing
work, core aspects of NOSIX are currently being integrated into a
production enterprise-grade controller framework.
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