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ABSTRACT

�is paper introduces a new single-pass reservoir weighted-sampling

stream aggregation algorithm, Priority-Based Aggregation (PBA).

While order sampling is a powerful and e�cient method for weighted

sampling from a stream of uniquely keyed items, there is no current

algorithm that realizes the bene�ts of order sampling in the context

of stream aggregation over non-unique keys. A naive approach to

order sample regardless of key then aggregate the results is hope-

lessly ine�cient. In distinction, our proposed algorithm uses a

single persistent random variable across the lifetime of each key in

the cache, and maintains unbiased estimates of the key aggregates

that can be queried at any point in the stream. �e basic approach

can be supplemented with a Sample and Hold pre-sampling stage

with a sampling rate adaptation controlled by PBA. �is approach

represents a considerable reduction in computational complexity

compared with the state of the art in adapting Sample and Hold

to operate with a �xed cache size. Concerning statistical proper-

ties, we prove that PBA provides unbiased estimates of the true

aggregates. We analyze the computational complexity of PBA and

its variants, and provide a detailed evaluation of its accuracy on

synthetic and trace data. Weighted relative error is reduced by 40%

to 65% at sampling rates of 5% to 17%, relative to Adaptive Sample

and Hold; there is also substantial improvement for rank queries.
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1 INTRODUCTION

1.1 Motivation

We consider a data stream comprising a set of (key, value) pairs

(ki ,xi ). Exact aggregation would entail computing the total value

Xk =
∑
i :ki=k xi for each distinct key k in the stream. For many

�is material is based in part upon work supported by the National Science Foundation

under Grant Numbers CNS-1618030 and CNS-1701923.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’17, November 6–10, 2017, Singapore.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4918-5/17/11. . . $15.00

DOI: h�ps://doi.org/10.1145/3132847.3133042

applications, this is unfeasible due to the storage required to ac-

commodate a large number of distinct keys. �is constraint has

motivated an extensive literature on computing summaries of data

streams. Such summaries can be used to serve approximate queries

concerning the aggregates through estimates X̂k of Xk , typically

accomplished by assigning resources to the more frequent keys.

�is problem of stream aggregation has drawn the a�ention of

researchers in Algorithms, Data Mining, and Computer Network-

ing, who have proposed a number of solutions that we review in

Section 2. Nevertheless, applications of this problem continue to

emerge in new se�ings that bring their own challenges and con-

straints. �ese include: streams of transactional data generated

by user activity in Online Social Networks [16], transactional data

from customer purchases in online retailers [31], and streams of

status reports from customer interfaces of utility service providers

reported via domestic Internet service [29].

A well-established application for real-time streams of opera-

tional tra�c measurements collected by Internet Service Providers

(ISPs) has gathered renewed interest in the context of So�ware De-

�ned Networks (SDN) [41]. �ese provide the opportunity to move

beyond industry standard summaries based on Sampled NetFlow

and variants [8]. Data Center operators increasingly wish to control

tra�c at a �ner space and time granularity than has been typical

for Wide Area Networks, requiring per �ow packet aggregates over

time scales of seconds or shorter [28, 38]. An important goal is

to balance tra�c loads over multiple network paths, and between

servers. Two distinct analysis functions can support this goal:

• Heavy Hi�er Identi�cation. Heavy Hi�ers (HHs) are �ows or

groups of �ows that contain a disproportionate fraction of packets

and/or bytes. �ese may be present in the exogenous loads, or

may be indicative of underlying problems in the load balancing

mechanisms [5].

• General Purpose Summarization. (key, aggregate) summaries

over �ows or groups for �ows can be further aggregated over arbi-

trary subpopulation selectors, e.g., for what-if analyses for load bal-

ancing. �is aggregation capability is present in Stream Databases

developed to run on high speed tra�c measurement systems [15].

Sampling is an a�ractive summarization method for supporting

applications including those just described. First, sample sets can

serve downstream applications designed to work with the original

data, albeit with approximate results. Second, sampling supports

retrospective queries using selectors formulated a�er the summary

was formed. �is enables sum queries over subpopulations whose



constituent keys are not individually heavy hi�ers. Finally, sam-

pling can o�en be tuned to meet speci�c goals constraints on mem-

ory, computation and accuracy that match data characteristics to

query goals. We distinguish between two types of space constraint.

�e working storage used during the construction of the summary

may be limited. An example is stream summarization of Internet

tra�c by routers and switches, where fast memory used to aggre-

gate packet �ows is relatively expensive [34]. But the �nal storage
used for the �nished summary generally has a smaller per item re-

quirement than the working storage. A �nal storage constraint can

apply, for example, when storage must be planned or pre-allocated

for the summary, or when the size of the summary is limited in

order to bound the response time of subsequent queries against it.

Reservoir Sampling [39] is commonly used to obtain a �xed size

sample. In stream aggregation reservoir sampling, an arriving item

(k,x ) is used to modify the current aggregate estimate X̂k or Xk
if k is in the reservoir, e.g., by adding x to X̂k . If k is not in the

reservoir, and the capacity ofm is already used, a random decision

is made whether to discard the arriving item, or to instantiate a

new aggregate for k while discarding one of the items currently in

the reservoir. In general, discard probabilities are not uniform, but

are weighted as a function of aggregate size to realize estimation

goals for subsequent analysis. In addition, estimates of retained

items must be adjusted in order to maintain statistical properties of

the aggregate estimates, such as unbiasedness. �e time complexity

to process an arriving item and adjust the estimates of the retained

items is a crucial determinant for the computational feasibility of

stream aggregation. Fixed size summaries are essential in cases

where the stream load can vary signi�cantly over time and is not

otherwise controlled. A prime example comes from Internet tra�c

measurement, where the o�ered load can varying signi�cantly both

due to time-of-day variation, and due to exogenous events such as

routing changes. Reservoir sampling acts to adapt the sampling to

variations in the rate of arriving items, e.g. to take a periodic �xed

size sample per router interface.

Order sampling has been proposed as a mechanism to imple-

ment uniform and weighted reservoir sampling in the special case

that items have unique keys [23]. In order sampling, all sampling

decisions depend on a family of random order variables generated

independently for each arriving item. For arrival at a full reservoir

of capacitym, from them + 1 candidate items (those currently in

the reservoir and the arriving item) the item of lowest order is

discarded. Several order sampling schemes have been proposed

to ful�ll di�erent weighted sampling objectives; including Prob-

ability Proportional to Size (PPS) sampling [37] also known as

Priority Sampling [17], and Weighted Sampling without Replace-

ment [12, 18, 36]. Stream order sampling can be implemented as

a priority queue in increasing order [17]. While order sampling

can be applied directly to an unaggregated stream and samples

aggregated post-sampling, this is clearly wasteful of resources.

1.2 Contribution and Summary of Results

�is paper proposes Priority-Based Aggregation (PBA), a new sampling-

based algorithm for stream aggregation built upon order sampling

that can provide unbiased estimates of the per key aggregates. PBA

and its variants provide greater accuracy across a variety of heavy

hi�er and subpopulation queries than competitive methods in data

driven evaluations. Our speci�c contributions are as follows:

Estimation Accuracy. PBA is a weighted sampling algorithm de-

veloped from Priority Sampling that yields a stream summary in

the form of unbiased estimates of all aggregates in the stream. A

modi�cation of PBA uses biased estimation to reduce error for

smaller aggregates, while having a negligible impact on accuracy

for larger aggregates. In experimental comparisons with a compara-

ble sampling based method, Adaptive Sample and Hold [9, 19], our

methods reduced weighted relative estimation error over all keys

by between 38% and 65% at sampling rates between 5% and 17%

when applied to synthetic and network tra�c traces. �e accuracy

for rank queries was also improved.

Computational Complexity. To the best of our knowledge, PBA is

the �rst algorithm to employ order sampling based on a single

random variable per key in the context of stream aggregation. �is

enables PBA to achieve low computational complexity for updates.

It is average O (1) to process each arrival that is either added to a

current aggregate, or that presents a new key that is not selected for

sampling. �e exception comes when an arriving key not currently

in storage replaces an existing key; the complexity of this step is

worst case O (logm) in a reservoir of capacity m. Retrieval of the

estimates is O (1) per key.

Priority-Based Adaptive Sample and Hold (PBASH). We incorporate

the well known weighted Sample and Hold [19] algorithm as a pre-

sampling stage, for which the sampling probabilities are controlled

from the adaptation of the PBA second stage. �is enables us to

exploit the computational simplicity of the original (unadaptive)

Sample and Hold algorithm while taking advantage of the relatively

low computational adaptation costs of PBA, as compared with

existing versions of Adaptive Sample and Hold [9, 27].

�e outline of the rest of paper is as follows. In Section 2 we

review related work to give a more detailed motivation for our

approach and set the scene for our later experimental evaluations.

Section 3 describes the PBA algorithm and establishes unbiased-

ness of the corresponding estimators. Section 4 describes four

optimizations of these basic algorithms. Section 4.1 describes De-
ferred Update for which we show that the unbiasing of estimates

that must be performed on all aggregates a�er another is discarded

can be deferred, for each such aggregate until an item with match-

ing key arrives. Section 4.2 describes pre-aggregation of successive

items with the same key in the input stream. Section 4.3 describes

the use of Sample and Hold as an initial sampling stage, and how its

adaptation is controlled from PBA. Section 4.4 describes a scheme

to reduce estimation errors for small aggregates through the in-

troduction of bias. Section 5 speci�es the algorithm incorporating

these optimizations, describes our implementation, and reports

on computational and space complexity. Section 6 describes data

driven evaluations, before we conclude in Section 7. Proofs are

deferred to Section 8.

2 RELATEDWORK

In the earliest work in reservoir sampling k items from a stream

of distinct keys [39], the nth
item is chosen with probability 1/n,

giving rise to a uniform sample. To approximately count occur-

rences in a stream with repeated keys, Concise Samples [21] used



uniform sampling, maintaining a count of sampled keys. In net-

work measurement Sampled NetFlow [8] takes a similar approach

maintaining an aggregate of weights rather than counts. In Count-

ing Samples [21], previously unsampled keys are sampled with a

certain probability, and if selected, all matching keys increment the

key counter with probability 1. Sample and Hold [19] is a weighted

version of the same approach. Both schemes can be extended to

adapt to a �xed cache size, by decreasing the sampling probability

and resampling all current items until one or more is ejected. �e

set of keys cached by ASH is a PPSWR sample (sampling probability

proportional to size without replacement), also known as bo�om-k

(order) sampling with exponentially distributed ranks [12, 13, 36].

�e comparisons of this paper use the form of ASH for Frequency

Cap Statistics from [9], applied in the case of unbounded cap; see

also an equivalent form in [10]. �e number of deletion steps from

a reservoir of size m in a stream of length n is O (n logm) and each

such deletion step must process O (m) items, based on generation

of new randomizers variables for each item. By contrast, PBA re-

quires only a single randomizer per key, and is able to maintain

items in a priority queue from which discard cost in only O (logm).
Concerning memory usage, PBA requires maintenance of larger

working storage per item, while the implementation of ASH in

[9] temporarily requires a similar amount during the discard step.

Final storage requirements are the same. Step Sampling [11] is a

related approach in which intermediate aggregates are exported.

Beyond sampling, many linear sketching approaches have been

proposed; see e.g. [3, 14, 22, 24, 25]. More recently, Lp methods

have been proposed in which each key is sampled with probability

proportional to a power of its weight [4, 26, 33]. A general approach

to sketch frequency statistics in a single pass is proposed in [6], with

applications to network measurement in [30]. A drawback of sketch

methods is that for a given accuracy, their space is logarithmic in the

size of the key domain, which can be problematic for large domains

such as IP addresses. Retrieval of the full set of aggregates (as

opposed to query on speci�c keys) is costly, requiring enumerating

the entire domain for each sketch; tuning of the sketch for speci�c

queries, e.g., using dyadic ranges, is preferable. In our case, the full

summary can be read directly in O (m) time. Space factors in the

sketch-based methods also grow polynomially with the inverse of

the bias, whereas our method enables unbiased estimation. Beyond

these comments, we do not perform an explicit comparison with

sketch-based methods, instead referring the reader to a comparative

evaluation of sketches with ASH for subpopulation queries in [10].

Finally, weighted reservoir priority sampling from graph streams

of unique edges has recently been developed in [2], building on the

conditionally independent edge sampling [1].

3 PRIORITY-BASED AGGREGATION

3.1 Preliminaries on Priority Sampling

Priority Samplingm items from a set ofn > m weights {xi : i ∈ [n]}

is accomplished as follows. For each item i generate ui uniformly

in (0, 1], and compute its priority ri = xi/ui . Retain the (random)

top m priority items, and for each such item de�ne the estimate

x̂i = max{xi , z}, where z is the (m + 1)st
largest priority. For the

remaining n −m items de�ne x̂i = 0. �en for each i , E[x̂i ] = xi
where the expectation is taken of the distribution of the {ui : i ∈

[n]}. Priority sampling can be implemented as reservoir streams

sampling, taking the �rstm items, then processing the remaining

n −m items in turn, provisionally adding each to the reservoir then

using the above algorithm to discard one item.

3.2 Algorithm Description

We consider a stream of items {(kt ,xt )}t ∈T where T = [|T |] =
{1, 2, . . . , |T |} ⊂ N. xt > 0 is a size and k a key that is a member

of some keyset K . Let

Xk,t =
∑

s≤t,ks=k

xs (1)

denote the total size of items with key k arriving up to time t whose

key is k . Let Kt denote the set of unique keys arriving up to and

including time t . We aim to construct a �xed size random summary

{X̂k,t : k ∈ K̂t } where K̂t ⊂ Kt with |K̂t | ≤ m which provides

unbiased estimates over all of Kt E[X̂k,t ] = Xk,t for all k ∈ Kt .

Implicitly X̂k,t = 0 for k < K̂t .

To accomplish our goal we extend Priority Sampling to include

aggregation over repeated keys. Sampling will be controlled by a

family of weights {Wk,t : k ∈ K̂t }. �ese generalize the usual �xed

weights of priority sampling in that they can be both random and

time dependent, although within certain constraints that we will

specify. �e arrival (k,x ) = (kt ,xt ) is processed as follows:

(1) If the arriving key is in the reservoir, k ∈ K̂t−1 then we increase

Xk,t = Xk,t−1
+ x , leave the sample keyset unchanged, K̂t = K̂t−1,

and await the next arrival.

(2) If the arriving key is not in the reservoir, k < K̂t−1, then we

provisionally admitk to the sample set forming K̂ ′t = K̂t−1∪{k }. We

initialize X̂k,t to x , qk to 1, and generate the random uk uniformly

on (0, 1]. �en:

(a) If |K̂ | ≤ m we set K̂t = K̂ ′t and await the next arrival.

(b) Otherwise |K̂ | > m, we discard the key

k∗ = arg mink ′∈K̂t
Wk ′,t /uk ′

from K̂ ′t and set z∗ =Wk∗,t /uk∗ . For each remaining k ′ ∈ K̂ set

qk ′,t = min{qk ′,t−1
,Wk,t /z

∗} and X̂k ′,t = X̂k ′,t−1
qk,t−1

/qk ′,t .

While the description above is convenient for mathematical analy-

sis, we defer a formal speci�cation to Section 5, where Algorithms 1

and 2 incorporate optimizations described in Section 4 that improve

performance relative to a literal implementation of steps (1), (2),

(2a), (2b) above.

3.3 Unbiased Estimation

We now establish unbiasedness of X̂k,t whenWk,t is the cumulative

increase in the size in k since k was last admi�ed to the sample. For

each key k let Tk denote the set of times t at which k was admi�ed

to a full reservoir, i.e.,

Tk = {t : k , K̂t−1, k ∈ K̂t , |K̂t−1 | =m} (2)

When k ∈ K̂t−1, let τk,t = max[0, t −1]∩Tk denote the most recent

time prior to t at which k was admi�ed to the reservoir, and for the

arriving key kt we set τkt ,t = t prior to admission.



Let T 0 = {t : kt < K̂t−1} ⊆ T denote the times at which the

arriving key was not in the current sample. Let τt = max[0, t − 1]∩

T 0
denote the most recent time prior to t that an arriving key was

not the sample. For an integer interval Y we will use the notation

Y 0 = T 0 ∩ Y . For any t ∈ T and k ∈ K̂ ′t , uk was generated at time

τk,t . If k is discarded from K̂ ′t , a subsequent arrival of k in an item

will have a new independent uk generated.

Our �rst version of PBA is governed by the exact weightsWk,t
that the total size in key k of arrivals since k was most recently

admi�ed to sample, i.e.,

Wk,t = Xk,t − Xk,τk,t−1
=

∑
s ∈[τk,t ,t ]:ks=k

xs (3)

Note thatWk,t can be maintained in the sample set by accumulation.

For each t ∈ T 0
and i ∈ K̂ ′t let

zi,t = min

j ∈K̂ ′t \{i }

Wj,t

uj
. (4)

and zs denote the unrestricted minimum zs = minj ∈K̂ ′t

Wj,t
uj . �e

conditions under which i ∈ K̂ ′t survives sampling are

{i ∈ K̂t } = {i ∈ K̂
′
t } ∩ {Wi,t /ui > zi,t } (5)

As a consequence zi,s = zs if i ∈ K̂s . For t ∈ T 0
de�ne

qk,t = min{1, min

s ∈[τk,t ,t ]
0

Wk,s/zs } (6)

and

Qk,t =

{
qk,t if k = kt
qk,t /qk,τt , otherwise

(7)

For k ∈ Kt , de�ne X̂k,t iteratively by

X̂k,t =




X̂k,t−1
+ δk,kt xt t < T 0

(X̂k,t−1
+ δk,kt xt )/Qk,t t ∈ T 0

, k ∈ K̂t
0, otherwise

(8)

where δi, j = 1 if i = j and 0 otherwise. �e proof of the unbiased-

ness of X̂k,t is deferred to Section 8.

Theorem 3.1. X̂k,t is unbiased: E[X̂k,t ] = Xk,t .

We have also proved that replacingWk,t with an a�ne function

of the current estimator X̂k,t also yields an unbiased estimator at

the next time slot. �is has the utility of reducing memory usage

since a separateWk,t per aggregate is not needed. However, we also

found in experiments that this estimator was not so accurate. For

both variants of the estimator, we can derive unbiased estimators

of Var(X̂k,t ), �ese can be used to establish con�dence intervals

for the estimates. Due to space limitations we omit further details

on all the results summarized in this paragraph.

4 OPTIMIZATIONS

4.1 Deferred Update

For each i , qi,t is computed as the minimum over s ofWi,s/zs . As it

stands, this is more complex that the corresponding computation in

Priority Sampling for �xed weightsWi , whereWi/z
∗
t is computed

once for each arrival. By comparison, it appears that in principle,

we must update qi,t for all i ∈ Kt at each t ∈ T 0
. We now establish

that for each key k , qk,t needs only be updated when an item with

key k arrival, i.e.., at t for which kt = k . Updates for times t inT 0
for

which kt , kt can be deferred until the �rst time t ′ > t for which

kt ′ = k , or whenever an estimate of X̂k,t needs to be computed.

�is property is due to the constancy of the �xed weights between

updates and the monotonicity of the sequence z∗t . For t ∈ T 0
let

z∗t = maxs ∈[0,t ]
0 {zs }.

Let dt denote the key that is discarded from K̂ ′t−1
at time t ∈

T 0
, i.e., {dt } = K̂ ′t−1

\ K̂t . When t ∈ T 0
and i ∈ K̂t de�ne q∗k,t

recursively by

q∗i,t = min{q∗i,τt ,Wi,t /z
∗
t } (9)

unless kt = i in which case q∗i,t = min{1,Wi,t /z
∗
t }. �e proof of

the following result is detailed in Section 8.

Theorem 4.1. (i) t ∈ T implies z∗t = zt .
(ii) qi,t = q

∗
i,t for all t where these are de�ned..

�eorem 4.1 enables computational speedup as compared with

updating each key probability at each t ∈ T 0
. Since z∗t is monotonic

in t , we only need to update the probabilities qi,t for links i whose

weight increases a�er admi�ing a key at time t . Likewise, we per-

form a �nal update at the end of the stream, or at any intermediate

time when an estimate is required.

4.2 Pre-aggregation

Pre-aggregation entails summing weights over consecutive instances

of the same key before passing to PBA. Pre-aggregation saves on

computational complexity of updating priorities, instead of updat-

ing a single counter. �is also results in an unbiased estimator

whose variance at least as large as PBA.

4.3 Priority-Based Adaptive Sample and Hold

Sample and Hold [19] with a �xed parameter is a simple method

to preferentially accumulate large aggregates. However, in this

form, Sample and Hold cannot adapt to variable load or a �xed

bu�er. Adaptive Sample and Hold (ASH) [19, 27] using resamples

to selectively discard from the reservoir. We propose to retain the

advantages of Sample and Hold within an adaptive framework by

using it as a front end to PBA, with its sampling parameters adapted

directly from the time-varying threshold of PBA.

We call this coupled system Priority-Based Adaptive Sample

and Hold (PBASH). When an arriving item (k,x ) �nds its key k is

not in the current sample K̂t , the item is sampled with probability

pt (x ) = min{1,w/z∗t } where the current threshold z∗t provides scale

that takes into account the current retention probabilities for items

in the reservoir. In order to preserve unbiasedness, the weight of any

such item is normalized to x/pt (x ) = max{x , z∗t }. Subsequent items

in the aggregate that �nd their key already stored are selected with

probability 1 and their sizes passed to PBA without any such initial

normalization. Unbiasedness of the �nal estimate then follows from

the chain rule for condition expectations (see e.g [40]) since PBA

provides an unbiased estimate of the unbiased estimate produced

by the ASH stage. We note that ASH pre-sampler uses the PBA

data structure to determine whether a key is in storage. All key

insertion and deletions are handled by PBA component. We specify

PBASH formally in Algorithm 2 of Section 5



Abbrev. Description Reference

PBA Priority-Based Aggregation Alg. 1

PBA-EF PBA w/ Error Filtering Alg. 1

PBASH Priority-Based Adaptive Sample & Hold Alg. 2

PBASH-EF PBASH w/ Error Filtering Alg. 2

ASH Adaptive Sample & Hold [9, 27]

SH Sample & Hold (Non-Adaptive) [19]

Table 1: Nomenclature for Algorithms

4.4 Trading Bias for MSE: Error Filtering

Unbiased estimation of aggregates is e�ective for larger aggre-

gates since averaging over estimated contributions to the aggregate

reduces error. Smaller aggregates do not enjoy this property, mo-

tivating supplementary approaches to reduce error. A strawman

approach is to count the number of estimates terms in the aggre-

gate, and use this value as a criterion to adjust or exclude small

aggregates. Another strawman approach �lters based on estimated

variance, excluding aggregates with a high estimated relative vari-

ance. �e disadvantage of these approaches is that they require

another counter. Instead, we are drawn to �nd mechanisms to

accomplish this goal that do not require extra storage.

Our approach is quite simple: we ignore the contribution of

the �rst item of every newly instantiated aggregate to its estimate,

although in all other respects, sampling proceeds as before. �us,

while the renormalized item weight does not contribute to the

aggregate estimator X̂k , the unnormalized item weight does con-

tribute toWk used in �eorem 3.1. �e resulting estimator is clearly

biased since it underestimates the true aggregate on average, but

reduces as the experiments reported in Section 6 will show.

5 ALGORITHMS AND IMPLEMENTATION

5.1 Algorithm Details

�e family of PBA algorithms using true weights is described in

Algorithm 1. (Our nomenclature for the Algorithms in given in

Table 1). Pre-aggregation over consecutive items bearing the same

key (see Section 4.2) takes place in lines 2–8. �e pre-aggregates

are passed to the main loop in line 9. In the main loop, deferred

update (Section 4.1 takes place before aggregation to an existing

key in lines 15–16. Otherwise, a new key entry is instantiated in

lines 18–20. With error �ltering (Section 4.4), the �rst update of

the estimate is omi�ed at line 19. When a new key arrives at the

full reservoir, selection of a key for discard takes place in lines 23-

25. In our implementation, we break this step down further. �e

aggregates are maintained in a priority queue implemented as a

heap. An incoming new key is rejected if its priority is less than

the current minimum priority; see Section 5.3. A�er the stream

has been processed, remaining deferred updates to the estimates

occur in lines 10–11. �is step could also be performed for any or

all aggregates in response to a query. Algorithm 2 describes the

modi�cations to the main loop for PBASH. A new pre-aggregate

key is instantiated only if it passes the Sample and Hold admission

test at line (7).

Algorithm 1: PBA: Priority-Based Aggregation w/ Optional

Error Filtering

Input :Stream of keyed weights (k,x )
Output :Estimated keyed weights {(k,a(k )) : k ∈ K }

1 Procedure PBA(m)
2 K = ∅; z∗ = 0; k

old
= �rst key k

3 while (new keyed weight (knew,xnew)) do
4 if (knew = kold

) then
5 xtot += xnew

6 else

7 mainloop(k
old
,xtot)

8 k
old
= knew; xtot = xnew

9 mainloop(knew,xtot)
10 foreach (k ′ ∈ K ) do
11 update(k ′, z∗)

12 end

13 Procedure mainloop(k,x)
14 if (k ∈ K) then
15 update(k, z∗)
16 a(k ) += x ; w (k ) += x
17 break

18 K = K ∪ {k }; w (k ) = x ; q(k ) = 1

19 a(k ) = x ; // Omit if Error Filter
20 generate u (k ) uniformly in (0, 1]

21 if (|K | ≤ m) then
22 break

23 k∗ = arg mink ′∈K {w (k ′)/u (k ′)}
24 z∗ = max{z∗,w (k∗)/u (k∗)}
25 K = K \ {k∗};
26 Delete a(k∗), u (k∗), q(k∗), w (k∗)

27 Procedure update( ˜k, z̃)
28 a( ˜k ) = a( ˜k ) ∗ q( ˜k )

29 q( ˜k ) = min{q( ˜k ),w ( ˜k )/z̃}

30 a( ˜k ) = a( ˜k )/q( ˜k )

Algorithm 2: Priority-Based Adaptive Sample and Hold

PBASH w/ Optional Error Filtering; mainloop only

1 Procedure mainloop(k,x)
2 if (k ∈ K) then
3 update(k, z∗)
4 a(k ) += x ; w (k ) += x
5 break

6 Generate r uniformly in (0, 1]

7 if r < min(1,x/z∗) then
8 K = K ∪ {k }
9 a(k ) = max(x , z∗) // Omit if Error Filter

10 w (k ) = x
11 q(k ) = 1

12 generate u (k ) uniformly in (0, 1]

13 if (|K | ≤ m) then
14 break

15 k∗ = arg mink ′∈K {w (k ′)/u (k ′)}
16 z∗ = max{z∗,w (k∗)/u (k∗)}
17 K = K \ {k∗};
18 Delete a(k∗), u (k∗), q(k∗), w (k∗)



Figure 1: Weighted relative error over all keys as a function

of distinct key count in reservoir sizem = 1, 000.

Figure 2: Scatter plot of estimated vs. true aggregates for 10
4

distinct keys sampled into reservoir sizem = 500.

5.2 Data Management & Implementation

Details

In common with other stream aggregation schemes for (key, value)

pairs, PBA requires e�cient access to the aggregate corresponding

to the incoming key k . Hash-tables provide an e�cient means to

achieve this, with the hash h(k ) of the key k referencing a loca-

tion where the aggregate, or in general its unbiased estimator is

maintained. PBA also maintains priorities as a priority queue. We

implement this as a heap. �e question then arises of to e�ciently

combine the heap and hash aspects of the aggregate store.

We manage this with a combined structure called a HashHeap.

�is comprises two components. �e �rst is a hash table that maps

a key k to a pointer π (k ) into the second component. �e second

component is a min-heap that maintains an entry (k,w,a,q) for

each aggregate in storage, where k is the key, u is the uniform

random variable associated with k , w the current incremented

weight since last admission, a the current unbiased estimate, and

q the current sampling probability. �e heap is ordered by the

priority r = w/u which is computed as required, with u generated

by hashing on the key. �e heap is implemented in an array so that

parent and child o�sets can be computed from the current o�set of

a key in the standard way.

Collision Resolution. In our design, keys are maintained in the

heap, not in the hash. Collision identi�cation and resolution is

performed by following a key k to its position π (k ) in the heap. We

illustrate for key insertion using linear probing, which has been

found to be extremely e�cient for suitable hash functions [35].

Let h denote the hash function. Suppose key k is to be accessed.

To �nd the o�set of key k in the heap we probe the pointer hash

table from h(k ) until we �nd the pointer π whose image in the

hash table is k . Probing to a vacant slot in the hash table indicates

the key is not in the heap. For insertion, the o�set of the required

location in the heap is stored in the vacant slot in the hash table.

Our approach is similar to one in [32], the di�erence being that

in that work they key is maintained in the hash table, while each

heap entry maintains a pointer back to is a corresponding hash

entry. Our approach avoids storage for this second pointer, instead

of computing it as needed from the key maintained in the heap.

5.3 Computational and Storage Costs

Aggregation to an existing key is O (1) average. All aggrega-

tion operations for a key k are increasing its weight w and hence

also for its priority. Aggregation requires realignment of the heap,

which is performed by bubbling down. i.e. swapping an element

with its smallest priority child until it no longer has a larger priority

than the child. �e pointer o�sets of the children are computed

from the key k as outlined above. �e average cost for aggregation

operation is O (1). For simplicity, we assume a perfectly balanced

tree of depth h and that the key to be aggregated is uniformly dis-

tributed in the heap. �en the average bubble down cost is no worse

than

∑h
`=0

2
`−h (h − `) ≤ 2.

Rejection of New Keys is O (1) worst case. When an arriving

item (k,x ) is not present in reservoir, its priority is computed and

compared with the lowest priority item in the heap. Access to this

item is O (1). If arriving item has lower priority it is discarded. �e

estimates of the remaining items must be updated, but as established

in Section 4.1, each update for a given key can be deferred until the

next arrival bearing that key.

Insertion/eviction for New Key is O (logm) worst case. If the

arriving item has higher priority than the root item, the later is

discarded, the new item inserted at the root, then bubble down to

its correct position in the heap. �is has worst case cost O (logm)
for a reservoir of sizem.



Retrieval isO (1) per aggregate. Any aggregate must undergo a

�nal deferred update prior to retrieval, incurring an O (1) cost.

Storage Costs. Final Storage. PBA, PBASH and ASH all have

the same �nal storage cost, requiring a (key, estimate) pair for all

stored aggregated. Working Storage: PBA and PBASH are most

costly for working storage, requiring additional space per item for

q,w and the HashHeap pointer. �e quasirandom number u can

be computed on demand by hashing. �ese are maintained during

stream aggregation, but discarded at the end.

6 EVALUATION

�is section comprises a performance evaluation for PBA and

PBASH for accuracy and space and time complexity. We used

both synthetic trace with features mimicking observed statistical

behavior of network tra�c, and real-word network traces from mea-

sured network denial of service a�acks. �ese traces are chosen

to represent dynamic network tra�c, and serve to stress-test the

summarization algorithms in their ability to adapt to dynamic con-

ditions. �e evaluation represents measurement of network tra�c

over short time scales (at the time scale of seconds or shorter) that

are if increasing interest for use in �ne-scale tra�c management in

data center networks [28].

6.1 Traces and Evaluation Metrics

Trace Data and Platform. �e simulations ran on a 64-bit desk-

top equipped with an Intel® Core™ i7-4790 Processor with 4 cores

running at 3.6 GHz, each trial taking several seconds to tens of

seconds.

Trace 1: Synthetic Trace. �is trace was generated �rst by specifying

a key set ranging in size from 6 × 10
3

to 2 × 10
4
, and then for each

key generating a set of unit weighted items whose number is drawn

independently from a Pareto distribution with parameter 1.2. �e

items are presented in random order. �is trace is motivated by the

observed heavy-tailed distribution of packets per �ow aggregate in

network tra�c [20].

Trace 2: Network Trace with Distributed Denial of Service A�ack
(DDoS). �is trace is used to emulate the e�ect of network �ooding

with small packets �e traces is a 1-second CAIDA trace with

4.7 × 10
5

packets and 62299 distinct tuples (srcIP, dstIP, srcPort,

dstPort, protocol) randomly mixed by 1-second DDoS traces [7]

with packet sending rate from 1.6 × 10
4

to 6.0 × 10
6

packets per

second and distinct tuples from 6.4 × 10
3

to 4.5 × 10
5
. �e average

size of one packet in the CAIDA trace is 495.5 Bytes and that of the

DDoS trace is 65.5 Bytes.

Trace 3: Dynamic Network Trace. �e trace adds noise to a 15-second

CAIDA trace. For each second, let the total byte volume be V , we

generate a random probabilityp ∈ (0, 1), andpV noise from another

CAIDA trace is added to the original 1-second trace.

Evaluation Metrics. �e following metrics are measured against

reservoir size, set as an independent variable, averaged over 100

trials. For each trial, we randomize the order of the items in the

traces. In addition, we randomly regenerate Trace 1 for each trial.

Execution time: �is is the average time per packet over a trace

Subpopulation Accuracy: Our accuracy metric is the Weighted Rel-

ative Error (WRE), which we apply in two forms. �e �rst is the

average

∑
k |X̂k − Xk |/

∑
k Xk where the sum runs over all distinct

keys k . To evaluate accuracy for subpopulation queries we use a

similar metric

∑
S |X̂ (S ) −X (S ) |/

∑
S XS where X (S ) =

∑
k ∈S xk is

the subset sum over a keyset S , and the sum runs over randomly

chosen keysets S ⊂ K of a given size t .
Ranking Accuracy: We compute accuracy for top-R dense rank

queries. In dense ranking, items with the same value receive the

same rank, and ranks are consecutive. �is avoids permutation

noise of equal value; we also round estimates so as to reduce sta-

tistical noise. Let N̂ (R) (respectively) and N (R) denote the set of

keys with true (respectively estimated) dense rank ≤ R. �en for a

top-R rank query, the precision and recall are

Prec(R) =
|N (R) ∩ N̂ (R) |

N̂ (R)
and Rec(R) =

|N (R) ∩ N̂ (R) |

N (R)
(10)

6.2 Accuracy Comparisons

Figure 1 illustrates error metrics for PBA, PBASH, and ASH in a

reservoir of size m = 1, 000 processing items from the synthetic

Trace 1. �e number of distinct keys varies from 6,000 to 20,000,

representing a key sampling rate ranging from 17% down to 5%,

WRE was reduced, relative to ASH, by about 40% for PBA and

PBASH, by 53–57% for PBA-EF, and by 58–65% for PBASH-EF. As

shown, PBASH and PBASH-EF are able to achieve lower WRE

than a best-case (non-adaptive) Sample and Hold (SH) in which the

sampling rate is chosen so as minimize WRE.

To be�er understand the di�erence in error between PBA, PBA-

EF and ASH, we drill down within an individual experiment. Fig-

ure 2 is a sca�er plot of estimated vs. true aggregate for the two

methods for a synthetic trace containing 10
4

distinct keys sampled

into a reservoir of size 500, i.e., a key sampling rate of 5%. �e �gure

shows how PBA improves estimation accuracy for smaller weight

keys, ASH having a larger additive error (note the logarithmic verti-

cal axis). As expected, PBA-EF further reduces the estimation error

for small aggregates, typically underestimating the true value.

Rank Estimation. We evaluate rank estimation performance,

focusing on algorithms involving Error Filtering since rankings

should be less sensitive to bias than variability. Figure 3 shows a

sca�er plot of estimates vs. actual dense ranks at 5% sampling for

PBASH-EF and ASH. Although both perform well for low ranks

(larger aggregates), we observe increasing rank noise for ASH in

mid to low ranks. �e horizontal clusters in each case correspond

to aggregates not sampled; there are noticeably more of these of

lower true rank for ASH than PBA-EF. Figure 4 shows precision

and recall for top-R rank queries. Precision is noticeably be�er for

PBASH-EF, particularly for middle ranks.

Subpopulation Weight Estimation. Figure 5 shows WRE for

subpopulations over 100 random selected subpopulations as a func-

tion of subpopulation size. For small subpopulations up to size 100,

PBA and derived methods provide up to about a 60% reduction in

WRE relative to ASH. �e WREs of the unbiased methods (PBA,

PBASH, ASH) behave similarly for larger subpopulation sizes due

to averaging, while the bias of the error �ltering methods persist.

Network dynamics. We study the e�ect in accuracy on an emu-

lated DDoS a�ack with Trace 2. Figure 6 shows the e�ect on WRE

as the DDoS tra�c rate increases, in a reservoir of size 5,000. �e



Figure 3: Scatter of Estimated, Actual dense ranks, PBASH

and ASH. 5% sampling; data as Figure 2.

Figure 4: Scatter of Prec(R), Recall(R) for dense ranks, rank

R on colormap. 5% sampling; data as Figure 2.

Figure 5: WRE as a function of subpopulation size over

100 trials for 10
4
distinct keys sampled into reservoir size

m = 500.

Figure 6: WRE formixedDDos traces at varying packet send-

ing rates, and reservoir size 5, 000.

number of distinct keys increases in proportion to the a�ack tra�c

rate, with legitimate tra�c representing a smaller proportion of the

total. PBA and PBASH achieve lower error than ASH, even as er-

rors for all methods increase, and PBASH-EF (not shown) achieves

60% reduction in error compared with ASH. Figure 7 shows a time

series of WRE for the dynamic tra�c of Trace 3, with samples

taken over successive 250ms windows in a reservoir size 5,000. PBA

and PBASH have smaller �uctuations in WRE in response to the

dynamics than ASH achieving similar reduction as before.

6.3 Computational Complexity

Figure 8 shows the processing time per packet of PBA, PBASH and

ASH. No optimizations of ASH were used beyond the speci�cation

in [9]. With this proviso, the O (m) cost for key eviction from

reservoir size m for ASH appears evident through the initial linear

growth of the time per packet. �e noticeably lower growth for

PBA and PBASH are expected due to itsO (logm) time for inserting

a new key a�er eviction of a current key. Since insertion/eviction is

the most costly part for all algorithms we display the experimental



Figure 7: �e impact of tra�c dynamics by adding random

noise when the reservoir size is 5, 000.

Figure 8: �e time complexity compared to ASH with vary-

ing reservoir sizes and 10
4
distinct keys.

Figure 9: �e number of insertions when the reservoir size

is from 100 to 1, 000.

number of these for each algorithm in Figure 9. PBASH has about

half the insertions of ASH, another factor in its smaller per packet

time. PBASH also has a smaller number of insertions than PBA.

�is is to be expected, since the PBASH pre-sampling stages causes

fewer keys to be admi�ed to the reservoir.

7 CONCLUSIONS

Weighted sample-based algorithms are a �exible approach to stream

summarization, whose outputs can be readily utilized by down-

stream applications for queries on ranks and subpopulations. �is

paper provides a new set of algorithms, Priority-Based Aggregation

and its variants) of this type. PBA is designed around a single ran-

dom variable per key aggregate, allowing considerable speed-up

in a �xed cache, and it also improves accuracy for a given sample

size, compared with state-of-the-art methods.

8 PROOFS OF THE THEOREMS

Proof of Theorem 3.1. For each k we proceed by induction on

t ≥ sk = min{s : ks = k } and establish that

E[X̂k,t |X̂k,t−1
,C] − Xk,t = X̂k,t−1

− Xk,t−1
(11)

for all membersC of a covering partition (i.e., a set of disjoint events

whose union is identically true). Since X̂k,sk−1
= Xk,sk−1

= 0 we

conclude that E[X̂k,t ] = Xk,t .

For sk ≤ s ≤ s ′ letAk (s ) = {k < K̂s−1} (noteAk (sk ) is identically

true), let Bk (s, s
′) denote the event {k ∈ K̂s . . . , K̂s ′ }, i.e., that k is

in sample at all times in [s, s ′] . �en for each t ≥ sk the collection

of events formed by {Ak (s )Bk (s, t − 1) : s ∈ [sk , t − 1]}, and Ak (t )
is a covering partition.

(i) Conditioning on Ak (t ) On Ak (t ), kt , k implies X̂k,t =

X̂k,t−1
= 0 = Xk,t − Xk,t−1

. On the other hand kt = k implies

t ∈ T 0
. Further conditioning on zk,t = minj ∈K̂j,t−1

Wj,t−1/uj then

(8) tells us that

P[k ∈ K̂t |Ak (t ), zk,t ] = P[Wk,t /uk ≤ zk,t ] = qk,t (12)

and hence regardless of zk,t we have

E[X̂k,t |Xk,t−1
,Ak (t ), zk,t ] = X̂k,t−1

+ Xk,t − Xk,t−1
(13)

(ii) Conditioning on Ak (s )Bk (s, t − 1) any s ∈ [sk , t − 1]. Under

this condition k ∈ K̂t−1 and if furthermore kt ∈ K̂t−1 then t < T 0

and the �rst line in (8) holds. Suppose instead kt < Kt−1 so that

t ∈ T 0
. LetZk (t , s ) = {zk,r : r ∈ [s, t]0}. Observing that

P[Bk (t , s ) |Ak (s ),Zk (t , s )] = P[∩r ∈[s,t ]
0 {zk,r ≤

Wk,r

uk
}] = qk,t

then

P[k ∈ K̂t |Bk (t − 1, s )Ak (s ),Zk (t , s )] (14)

=
P[Bk (t , s ) |Ak (s ),Zk (t , s )]

P[Bk (t − 1, s ) |Ak (s ),Zk (t − 1, s )]
=

qk,t
qk,τt

= Qk,t



and hence

E[X̂k,t |X̂k,t−1
,Ak (s ),Zk (t , s )] = X̂k,t−1

(15)

independently of the conditions on the LHS of (15). AS noted above,

k ∈ K̂t−1 on B (t − 1, s ) hence Xk,t = Xk,t−1
and we recover (11).

Since we now established (11) over all members C of a covering

partition, the proof is complete. �

Proof of Theorem 4.1. t ∈ T means the arriving kt , dt is

admi�ed to the reservoir and hence

zt =
Wdt ,t

udt
≥
Wdt ,s

udt
≥ zs (16)

for all s ∈ [τdt ,t , t]
0
. �e �rst inequality follows because Wdt ,s

is nondecreasing on the interval [τdt ,t , t]
0
. �e second inequality

follows because the key dt survives selection throughout [τdt ,t , t]
0

and hence its priority cannot be lower than the threshold zs for any

s in that interval. Since dt was admi�ed at τdt ,t , then dτdt ,t , dt
and hence we apply the argument back recursively to the �rst

sampling timem + 1. �is establishes zt ≥ z∗t and hence zt = z∗t .

(ii) i is admi�ed to K̂t if t ∈ T with i = kt , dt and hence by

(i), qi,t = min{1,Wi,t /zt } = min{1,wi,i/z
∗
t } = q∗i,t . We establish

the general case by induction. Assume t ∈ T 0
and qi,s = q∗i,s for

all s ∈ [τi,t ,τt ]
0
, and consider �rst the case that zt > z∗τt t . �en

z∗t = zt hence q∗i,t = qi,t . If instead zt ≤ z∗τt then z∗τt = z∗t and

Wi,t

zt
≥
Wi,t

z∗t
≥
Wi,τt
z∗t
=
Wi,τt
z∗t

(17)

�us we can replace zt by z∗t but use of either leaves the iter-

ated value unchanged, since by the induction hypothesis, both are

greater than qi,τt ≤Wi,τt /z
∗
i,τt �
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