
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and

Cheap Using Switching ASICs

Rui Miao
University of Southern California

Hongyi Zeng
Facebook

Changhoon Kim
Barefoot Networks

Jeongkeun Lee
Barefoot Networks

Minlan Yu
Yale University

ABSTRACT
In this paper, we show that up to hundreds of software
load balancer (SLB) servers can be replaced by a single
modern switching ASIC, potentially reducing the cost of load
balancing by over two orders of magnitude. Today, large data
centers typically employ hundreds or thousands of servers to
load-balance incoming tra�c over application servers. These
software load balancers (SLBs) map packets destined to a
service (with a virtual IP address, or VIP), to a pool of servers
tasked with providing the service (with multiple direct IP
addresses, or DIPs). An SLB is stateful, it must always map
a connection to the same server, even if the pool of servers
changes and/or if the load is spread di�erently across the
pool. This property is called per-connection consistency or
PCC. The challenge is that the load balancer must keep track
of millions of connections simultaneously.

Until recently, it was not possible to implement a load
balancer with PCC in a merchant switching ASIC, because
high-performance switching ASICs typically can not maintain
per-connection states with PCC. Newer switching ASICs
provide resources and primitives to enable PCC at a large
scale. In this paper, we explore how to use switching ASICs to
build much faster load balancers than have been built before.
Our system, called SilkRoad, is defined in a 400 line P4
program and when compiled to a state-of-the-art switching
ASIC, we show it can load-balance ten million connections
simultaneously at line rate.

CCS CONCEPTS
• Networks � Programmable networks; Network manage-

ment; Data center networks;

KEYWORDS
Load balancing; Programmable switches

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098824

ACM Reference format:
Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Min-
lan Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing
Fast and Cheap Using Switching ASICs. In Proceedings of SIG-
COMM ’17, Los Angeles, CA, USA, August 21–25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098824

1 INTRODUCTION
Stateful layer-4 (L4) load balancers scale out services hosted
in cloud datacenters by mapping packets destined to a service
with a virtual IP address (VIP) to a pool of servers with
multiple direct IP addresses (DIPs or DIP pool). L4 load
balancing is a critical function for inbound tra�c to the cloud
and tra�c across tenants. A previous study [36] reports that
an average of 44% of cloud tra�c is VIP tra�c and thus
needs load balancing function. Building cloud-scale L4 load
balancing faces two major challenges:
Support full bisection tra�c with low latency: Data centers
have rapid growth in tra�c: doubling every year in Facebook
[11] and growing by 50 times in six years in Google [40].
While the community has made e�orts to scale out L2/L3
virtual switching to match full bisection bandwidth for intra-
datacenter tra�c (or full gateway capacity for inbound tra�c)
[17, 30], one missing piece is scaling L4 load balancers to match

the full bisection bandwidth of the underlying physical network.
Load balancing is also a critical segment for the end-to-end
performance of delay-sensitive applications [23] and for low
latency data centers (e.g., 2-5 µs RTT with RDMA [42]).
Ensure per connection consistency (PCC) during frequent
DIP pool changes: Data center networks are constantly chang-
ing to handle failures, deploy new services, upgrade existing
services, and react to the tra�c increase [24]. Each oper-
ational change can result in many DIP pool changes. For
example, when we upgrade a service, we need to bring down
DIPs and upgrade them one by one to avoid a�ecting the ser-
vice capacity. Such frequent DIP pool updates are observed
from a large web service provider with about a hundred of
data center clusters (§3.1).

During a DIP pool change, it is critical to ensure per

connection consistency (PCC), which means all the packets
of a connection should be delivered to the same DIP. Sending
packets of an ongoing connection to a di�erent DIP breaks
the connection. It often takes subseconds to seconds for
applications to recover from a broken connection (e.g., one
second in Wget), which significantly a�ects user experience.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

Today, L4 load balancing is often implemented in software
servers [20, 36]. The software load balancer (SLB) can easily
support DIP pool updates and ensure PCC, but cannot
provide full bisection bandwidth with low latency and low
cost. This is because processing packets in software incurs
high compute overhead (requiring thousands of servers or
around 3.75% of the data center size [20]), high latency and
jitter (50 µs to 1 ms) [20, 22], and poor performance isolation
(§2.2). In contrast, if we run load balancing in switches, we
can process the same amount of tra�c with about two orders
of magnitude saving in power and capital cost [8, 10].

To improve throughput and latency, o�oading load balanc-
ing to hardware is an appealing option, similar to o�oading
packet checksumming, segmenting and rate limiting to NICs
[29, 33]. One approach to run load balancing at switches is to
leverage ECMP hashing to map a VIP to a DIP pool, but do
not maintain the connection state at switches [22]. However
in this approach, during a DIP pool update, switches need to
redirect all the related tra�c to SLBs to create the connection
state there and ensure PCC. The issue here is that there is
no clean way to decide when to migrate the VIP tra�c back
to switches (§3.2). If we migrate too early, many ongoing
connections that should match the old DIP pool may match
the new DIP pool at switches and violate PCC. If we migrate
too late, the SLBs process most of the tra�c (the ‘slow-path’
problem), losing the throughput/latency benefits of using
switches. If we migrate VIPs back to switches periodically as
used in Duet [22], it leads to either around 1% of connections
broken or up to 70% of tra�c handles in SLBs (§3.2).

Instead, we propose SilkRoad, which uses simple hardware
primitives available in today’s switching ASICs for state-
ful load balancing. SilkRoad aims to provide a direct path
between application tra�c and application servers by elimi-
nating the need for another software layer (SLBs) in-between.
SilkRoad maintains the connection state at the switch, thus
ensuring PCC for all the connections. In addition, every
packet of a VIP connection is forwarded by ASIC, and hence
SilkRoad inherits all the benefits of high-speed commodity
ASICs such as high throughput, low latency and jitter, and
better performance isolation. The key challenge for SilkRoad
is to maintain connection states in the ASIC using hardware
primitives while scaling up to millions of connections as well
as ensuring PCC upon frequent DIP pool updates. SilkRoad
addresses this challenge via the following contributions.
Fitting millions of connections in SRAM: Switching ASICs
have continuously increased memory size (growing by five
times over the past four years as shown in Table 1 in §4.1)
and has just reached a stage where storing all the connection
states and running load balancing at switches become pos-
sible. However, with a naive approach, storing the states of
ten million connections in a match-action table takes a few
hundreds of MB of SRAM.1 This is far more than 50-100

1In the case of IPv6 connection, a connection entry takes 37 bytes
to store 5-tuple as match key, 18 bytes to store new destination ad-
dress plus port number as action data, and a couple bytes of packing
overhead.

MB SRAM size available in the latest generation of switch-
ing ASICs. To reduce the SRAM usage, we looked at what
constitutes each connection entry: match field and action
data. We propose to store a small hash of a connection rather
than the 5-tuple to reduce the match field size, while our
design mitigates the impact of false positives introduced by
the hash. To reduce the action data bits of a connection entry,
we store a DIP pool version rather than the actual DIPs
and intelligently reuse version numbers across a series of DIP
pool updates.
Ensuring PCC during frequent DIP pool updates: Ensuring
PCC is challenging because switches often use the slow soft-
ware (running on a switch management CPU) to insert new
connection entries into the table. Hence, a new connection
entry may not be ready for the subsequent packets in a timely
fashion. We call those connections that arrive before time t
but do not have a connection entry installed in the table at
time t as pending connections. To ensure PCC during DIP
pool updates, SilkRoad remembers pending connections in
an on-chip bloom filter, built on commonly available transac-
tional memory (as counters/meters) in ASICs. We minimize
the size of the bloom filter using a 3-step update process.

Since SilkRoad uses existing features on ASICs today, it
can be implemented by either modifying the logic of existing
fixed function ASICs or using programmable ASICs (e.g.,
Barefoot Tofino [1]). In fact, we built the SilkRoad prototype
on a programmable switching ASIC and confirmed fitting
10M connections is feasible.

We performed an extensive simulation with a variety of
production tra�c and update traces from a large web service
provider. The results show that SilkRoad achieves 40%-95%
SRAM reduction and thus can fit into switch SRAM for
all the clusters we studied. Using the available SRAM in
switches, one SilkRoad can replace up to hundreds of SLBs.
Our design always ensures PCC with a bloom filter of only
256 bytes even under the scenarios with the most frequent
DIP pool updates observed from the network.

2 BACKGROUND ON LOAD BALANCING
In this section, we first give background on the layer 4 load
balancing function. Next, we discuss two existing solutions
for load balancing: 1) software load balancers running on x86
servers [20, 36] and 2) Duet [22] which stores VIP-to-DIP
mappings (not per-connection states) in switching ASICs.

2.1 Layer 4 load balancing function
In this paper, we refer load balancers as layer-4 load balancers
as opposed to layer-7 ones (e.g., Nginx [14]). A load balancer
maintains two tables (Figure 1):
VIPTable: VIPTable maintains the mapping from a VIP
(e.g., a service IP:port tuple 20.0.0.1:80) to a DIP pool (e.g.,
a server pool {10.0.0.1:20, 10.0.0.2:20}). When the first packet
of a connection c1 arrives, the load balancer identifies the DIP
pool for its VIP in VIPTable and runs a hash on the packet
header fields (e.g., 5-tuple) to select a DIP (e.g., 10.0.0.2:20).
Since the hash is performed based on the same packet header

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

miss
VIP DIP

20.0.0.1:80
10.0.0.1:20

10.0.0.2:20

20.0.0.2:80 10.0.1.1:22

��� ���

Connection DIP

1.2.3.4:1234
è20.0.0.1:80
TCP

10.0.0.2:20

��� ���

VIPTableConnTable

Install

hit

1.2.3.4:1234
è20.0.0.1:80

TCP

1.2.3.4:1234
è10.0.0.2:20

TCP

Figure 1: ConnTable and VIPTable in load balancers.

fields, all subsequent packets of the same connection pick the
same DIP as long as the DIP pool remains static.

When the DIP pool changes for server addition or removal,
the packets of the same connection may be hashed to a
di�erent DIP, breaking per-connection consistency (PCC).
Formally, we define a load balancing (LB) function as a
mapping function from packet pi

j

that belongs to connection
c
i

to DIP d
k

. We define PCC as: for a given connection c
i

,

’pi

j

œ c
i

, LB (pi

j

) = LB (pi

0)=d
k

.

ConnTable: To ensure PCC during DIP pool updates, a load
balancer maintains a table that stores per-connection states.
We call it ConnTable. ConnTable maps each connection (e.g.,
5-tuple) to a DIP that is selected by the hash result of VIPT-
able for the first packet of the connection. In Figure 1, when
the first packet of c1 arrives, a match-action rule that maps
c1 to the DIP is inserted into ConnTable (e.g., [1.2.3.4:1234,
20.0.0.1:80, TCP] æ 10.0.0.2:20). All the subsequent pack-
ets of this connection match the rule in ConnTable and get
forwarded to 10.0.0.2:20 consistently.
PCC challenge: Now suppose a new DIP 10.0.0.3:20 is added
to the DIP pool for this given VIP, which requires an update
of the DIP pool members in VIPTable. The challenge here
is, to guarantee PCC, the VIPTable update must be atomic

and synchronous with connection insertions in ConnTable. In
software implementations, the load balancer locks VIPTable
and holds new incoming connections in a bu�er to prevent
them from being processed by VIPTable. Then, the SLB
updates VIPTable to the new DIP pool and then releases
the new connections from the bu�er. This way the SLB
ensures PCC for connections arrived both before and after
the update, but at the cost of slow-path packet processing
by CPU and bu�ering delay. Later we will also show that
this synchronous update between VIPTable and ConnTable
is di�cult to achieve in switching ASICs (§4.3).

2.2 Limitations of software load balancers
Most cloud data centers today run software load balancers
(SLBs) [20, 36] by implementing both ConnTable and VIPT-
able in software. As mentioned in the Duet paper [22], using
software has the following drawbacks:
High cost of server resources: Today’s SLBs typically occupy
a significant number of servers. For example, a typical 40K-
server data center has 15 Tbps tra�c for load balancing [22]
and requires over 15 Tbps / 10 Gbps=1500 SLB servers or
3.75% of total servers even assuming full NIC line rate pro-
cessing. In addition to the NIC speed limit for bit-per-second
throughput, the state-of-the-art SLBs using 8 CPU cores can
only achieve up to 12 Mpps (packet-per-second) throughput

[20], three orders of magnitude slower than modern switching
ASICs that easily process billions of packets per second.

Cloud tra�c volume is rapidly growing (doubling every
year in Facebook clusters [11] or growing by 50 times from
2008 to 2014 observed in Google data centers [40]) and lots
of the cloud tra�c need load balancing (44% of tra�c as
reported in [36]). Thus, we need even more servers for load
balancing, wasting the resources that could otherwise be used
for revenue-generating applications. By contrast, if we run
load balancing on switches, we process the same amount of
tra�c with about two orders of magnitude saving in power
and capital cost [8, 10].
High latency and jitter: SLBs add a high latency of 50 µs to
1 ms for processing packets in batches [20, 22], which is com-
parable to the end-to-end RTT in data centers (median 250
µs in [25]). New techniques such as RDMA enable even lower
RTT of 2-5 µs [42]. Therefore, SLBs become a severe bottle-
neck for many delay-sensitive applications [23, 42]. Moreover,
fulfilling a service request may trigger a chain of requests
for its provider services or third-party services (e.g., storage,
data analytics, etc), traversing SLBs multiple times. The
accumulated latencies with multiple SLB layers in-between
hurt tail latency performance experienced by the application.
Poor performance isolation: When one VIP is under DDoS
attacks or experiences a flash crowd, the other VIP traf-
fic served by the same SLB server instance also experience
increased delays or even packet drops because of poor re-
source/performance isolation in x86-based systems. One may
employ rate-limiting at SLBs, but software rate-limiting tools
(e.g., Linux TC queueing discipline (qdisc)) incur high CPU
overhead. For example, metering 6.5 Gbps tra�c may require
a dedicated 8-core CPU [37]. As a result, we cannot expect
fine-grained and e�cient performance isolation on SLBs.

2.3 Duet: Storing VIPTable in ASICs
To address the limitations of SLBs, one natural idea is to
leverage the high-speed low-cost ASICs that are already
available in data center switches. Duet [22] leverages two
features in the ASIC: (1) Generic hash units: which already
exist in ASICs for functions like ECMP, Link Aggregation
Group (LAG), checksum verifier, etc. (2) Match-action tables:
which match on selected packet header fields for various
actions and are used for ECMP tables, forwarding tables, etc.
Duet uses ECMP hashing and fixed match-action table to
implement VIPTable at switches. Due to the limited ECMP
table size, Duet only uses switches to handle VIPs with high-
volume tra�c and employs a few SLBs (with both ConnTable
and VIPTable) to handle the other VIPs.

Duet can get around the performance limitations of SLBs.
To handle 10 Tbps tra�c, the Duet paper claims it forwards
most tra�c in switches while only needs 230 SLBs to han-
dle around 5% of tra�c in software. Duet can achieve a
median latency of 474 µs [22]. Duet can also achieve better
performance isolation using rate-limiters (meters) at switches.
However, as we will show in the next section, Duet cannot

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

�

��

��

��

��

���

� �� �� �� �� ��� ���

��
��
��
��
��
��
�
��
��
��
��
��

���� �� ������� ��� ���

��� �������� ������� ���
��� �������� ���� ���

������������ ���� ���
������� ���� ���

Figure 2: Frequent DIP pool updates (Y% of
clusters have more than X updates per minute
in the median or 99th percentile minute in a
month.)

�

��

��

��

��

���

�������
���� ��������������

������
���������

��
��
��
��
��
��
�
��

�
��
��
��
���
��
��
��
��
��
� ������������

�������

��� ��� ��� ��� ��� ���

����

��� ��� ��� ��� ���

Figure 3: Distribution of root causes for DIP
additions and removals (in a month).

�

���

���

���

���

�

� �� ��� ���� �����

�
�
�
��
�
��
��
��
��
�

�������� �������� �����

�������
����
�������
�������
������

Figure 4: Distribution of downtime duration
with various root causes. (Provisioning does
not cause downtime)

handle frequent DIP pool updates, which is an important
scenario in data centers today.

3 CHALLENGES OF FREQUENT DIP POOL
UPDATES

From our study of a large web service provider, we observe a
major challenge for load balancing functions: frequent DIP
pool updates. If we store ConnTable only in SLBs, as pro-
posed in recent works [22], during DIP pool updates, we may
incur either a high SLB overhead or many broken connections,
which degrade application performance.

3.1 Frequent DIP pool updates
We study about a hundred clusters from a large web service
provider. There are three types of clusters: PoPs (points of
presence) where user requests first arrive at, Frontends which
serve requests from PoPs, and Backends that run backend
services. All clusters need L4 load balancing functions.
Frequent DIP pool updates in a cluster: We collect the num-
ber of DIP pool update events per minute from the network
operation logs in a month. For each cluster, we identify the
median and 99th percentile minute in the month. We then
draw the distribution across clusters with di�erent update
frequency in Figure 2. For example, overall, there are 32% of
clusters with more than 10 updates per minute in the 99th
percentile minute (which means more than 10 updates per
minute for 432 minutes in a month) and 3% of clusters have
more than 50 updates. Some clusters experience 10 updates
per minute for the median minute (by half of the time).

Backends have more frequent DIP pool updates than
PoPs/Frontends. For example, half of the Backends have
more than 16 updates in the 99th percentile minute. This
indicates a continuous evolution of backend services. But
some PoPs/Frontends have more than 100 updates in the
99th percentile minute because there a DIP is often shared
by most of the VIPs (similar to [20]) and thus one DIP down
or up incurs a burst of updates from all the VIPs.

To understand the burstiness of DIP pool updates across
minutes, we also measure the number of DIP pool updates
every ten minutes (not shown in the figure). In the 99th
percentile ten-minute, 42% of clusters have more than 100
updates and 2% of clusters have more than 500 updates. The

latter indicates an average of 50 updates per minute during
a 10-minute period.
Why are there frequent DIP pool updates? To understand
the sources of frequent DIP pool updates, we analyze service
management logs for all clusters in a month. The logs in-
clude the transition of operational stages (e.g., reserving the
machine, setting up container environment, announcing at
the load balancer, etc.) and DIP downtimes. We only select
events related to DIP additions and removals.

Figure 3 categorizes the distribution of DIP additions and
removals for di�erent root causes. 82.7% of the DIP addi-
tions/removals are from VIP service upgrades in Backends,
where the service owner issues a command to upgrade all the
DIPs of the service to use the latest version of the service
package and associated configurations.

All the other sources of DIP additions/removals account
for less than 13% of the total updates because they a�ect
only a handful of DIPs at a time. For example, testing is a
special case of service upgrade and applied only in Backends,
where the service owner restarts a subset of its DIPs to run
the test version of the service package. Failure (e.g., lost
control, application crash, etc.) or preempting (e.g., mainte-
nance, resource contention, etc.) only triggers the restart or
migration of the specific DIP (or a few DIPs if the physical
machine is failed or preempted). Provisioning or removing is
to add or delete a specific DIP in the DIP pool to adjust the
service capacity according to tra�c changes.
Why cannot we reduce the frequency of DIP pool updates?
As we will discuss in §3.2, frequent DIP pool updates add new
challenges to load balancing. So one question is if operators
can reduce the number of DIP pool updates.

One way is to limit the update rate by delaying the exe-
cution of some updates. This smoothing approach may be
feasible for some planned upgrades, but delaying updates can
badly hurt application performance and reliability [24], espe-
cially for updates that swap out a faulty DIP, install critical
security patches, or roll back a defective service version.

Another way is to reduce the number of updates by merging
multiple DIP updates of the same VIP into a batch. This is
not a good choice for both DIP removals and DIP additions.
For DIP removals in service upgrades and testing, we need
to ensure enough DIPs are up to provide enough service
capacity at any time. Thus, the cluster scheduler typically

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

uses the rolling reboot strategy, which reboots a fixed number
of DIPs in every certain period (e.g., two DIPs every five
minutes). For DIP additions, it takes di�erent times for a
DIP to come back alive (either finish the reboot or migrate to
a new server). For example, for upgrades, the DIP downtime
(from reboot to back alive) is 3 minutes in the median but
100 minutes in the 99th percentile as in Figure 4.

For the updates caused by failures, preemption, or DIP
removal, we can remove all the related DIPs in a batch to
prevent new connections from reaching these DIPs. However,
since it takes a variety of time for these DIPs to come back
(Figure 4), we have to handle DIP additions separately.

3.2 Problems of storing ConnTable in SLBs
To ensure PCC during DIP pool updates, we rely on Con-
nTable to remember which DIP a connection mapped to.
The SLB stores ConnTable at the server software but has
performance limitations (§2.2). Another option as used in
Duet [22] is to maintain VIPTable at switches but still leave
ConnTable at SLBs. Thus, to update the DIP pool of a VIP,
we need to redirect all the tra�c of that VIP to SLBs to build
up a ConnTable there to perform the DIP pool update.2

The main question is when to migrate the VIP from SLBs
back to switches: If we migrate immediately, many remain-
ing old connections (mapping to the old DIP pool) can get
hashed to di�erent DIPs under the new DIP pool at switches
and violate PCC. If we migrate later, we need to handle
more tra�c in SLBs consuming more software resources. In
addition, it is hard to find the right time to migrate all the
VIPs with di�erent DIP pool update timings. Hence, we can
either periodically migrate VIPs to the switches as used in
Duet [22], or wait until all the old connections have finished.

To illustrate the dilemma between PCC violations and
SLB loads, we run a flow-level simulation using one-hour
tra�c traces collected from one PoP cluster with 149 VIPs.
The cluster has an average of 18.7K new connections per
minute per VIP and an average rate of 19.6 Mbps per VIP
per top-of-rack (ToR) switch. We simulate di�erent DIP pool
update frequencies with an average of 1 to 50 updates per
minute (as indicated in Figure 2). We simulate Hadoop tra�c
with a median flow duration of 10 seconds as in [39].

We evaluate three settings of storing ConnTable at SLBs:
(1) Migrate-10min: periodically migrating VIPs back in every
ten minutes as used in Duet; (2) Migrate-1min: migrating
back in every minute; and (3) Migrate-PCC, where we wait
until all the old connections have terminated before migrating
the VIP to switches to ensure PCC.

The default Migrate-10min has a high SLB load. Figure
5a shows that, under 50 updates per minute, Migrate-10min
handles 74.3% of the total tra�c volume in SLBs. Note that,
even coordinating with the service upgrade system does not
help to decide when to migrate VIPs back, because it has to
wait for the old connections to finish. As a result, this load
2Before the update, the SLB has to first wait long enough to ensure
it sees at least one packet from each ongoing connections to have an
entry for them in ConnTable. This is another problem of redirecting
tra�c between switches and SLBs.

�

��

��

��

��

���

� �� �� �� �� ����
��
��
��
��
��
�
��
��
��
��

��
��
��
�
��
��
��

������� ���� �� ������� ��� ���

�����������
�������������
������������

(a) SLB loads.

�

����

���

�

��

� �� �� �� �� ��

��
��
��
��
��
��
�
��
��
��

�
��
�
�
��
��
��
��
�

������� ���� �� ������� ��� ���

������������
�������������
�����������

(b) PCC violations.

Figure 5: The dilemma between SLB loads and PCC violations.

in SLBs a�ects not only during the minute of bursty updates
but also up to ten minutes until next VIP migration event.
Worse still, operators have to provision a large number of
SLBs all the time to handle the burst of updates because it
is hard to instantiate SLBs and announce BGP paths fast
enough to react to the burst. Migrate-10min also has a high
SLB load for VIPs under rolling reboot. For example, a large
VIP with hundreds of DIPs may take a couple of hours to
upgrade all of its DIPs. Besides, the large VIP often has a
large volume of tra�c which leads to a high SLB load.

To reduce SLB overhead, one may use Migrate-1min. In
fact, Migrate-1min reduces the portion of tra�c handled in
SLBs down to 13.2% for 50 updates per minute. However,
Migrate-1min causes more PCC violations than Migrate-
10min. Figure 5b shows that Migrate-1min has 1.4% of con-
nections broken for 50 updates per minute. Even for Migrate-
10min, it has also 0.3% of connections with PCC violation.

PCC violations significantly degrade the tail latency for
cloud services. Di�erent from packet drops that can be recov-
ered by TCP within sub-millisecond, for a broken connection,
it often takes subseconds to seconds for applications to es-
tablish a new connection (e.g., one second in Wget). Broken
connections also violate the service level agreements for users
and a�ect the cloud revenue. Migrate-PCC avoids PCC vi-
olations, but it causes 93.8% tra�c handled in SLBs for 50
updates per minute (Figure 5a).

To be conservative, our experiment is using Hadoop tra�c
with a short flow duration (a median of 10 seconds). For
other tra�c with longer flow durations, the number of PCC
violations is much larger because there are more old connec-

tions when the SLBs migrate VIPs to switches. For example,

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

we also simulate the cache tra�c in [39] with a median flow
duration of 4.5 minutes. Migrate-10min has 53.5% of total
connections with PCC violation for 50 updates per minute.

In summary, the fundamental problem of storing Con-
nTable only in SLBs is that during DIP pool updates, the
connections have to transfer between switches and SLBs. In-
stead, if we store ConnTable in the switches, we can avoid
both the SLB overhead and the broken connections.

4 SILKROAD DESIGN
In this section, we present the SilkRoad design which imple-
ments both ConnTable and VIPTable on switching ASICs.
Given the recent advances on ASICs with larger SRAMs
(§4.1), it is now the right time to make the design choice of
storing ConnTable in switches. Unlike the recent approach
of maintaining VIPTable at switches [22], which still han-
dles some packets of a connection at SLBs during DIP pool
updates, SilkRoad ensures that all the packets of a connec-
tion are always handled at switches. In this way, we always
gain the benefits of high-speed low-cost ASICs such as high
throughput, low latency and jitter, and good performance
isolation, while ensuring PCC.

We address two major challenges in SilkRoad: (1) To store
millions of connections in ConnTable with tens of MB SRAM,
we propose to store a hash digest of a connection rather
than the actual 5-tuple to reduce the match field size, while
eliminating the impact of false positives introduced by the
digests. We also store a DIP pool version rather than the
actual DIPs and allow version reuse to reduce the action field
size. (§4.2) (2) To ensure PCC during frequent DIP updates
we should handle the limitation of slow ConnTable insertion
by a switch CPU. We use a small bloom filter to remember
the new connections arrived during DIP pool updates, thus
providing consistent DIP mappings for those connections in
the hardware ASIC (§4.3).

In this section, for simplicity of presentation, we assume
SilkRoad is deployed only at the top-of-rack (ToR) switches.
We will discuss more flexible deployment scenarios in §5.

4.1 Features in commodity switching ASICs
Modern switching ASICs bring a significant growth in pro-
cessing speed (up to 6.5 Tbps [1]) and also provide resources
and primitives that enable us to implement PCC at large
scale, via a careful co-design of switch data plane and control
plane. Here we describe the notable characteristics of mod-
ern switching ASICs, which serve as enablers and also pose
challenges to our design.
Increasing SRAM sizes: The SRAM size in ASICs has grown
by five times over the past four years and reach 50-100 MB
(Table 1), to meet the growing requirements to store a large
number of L2/L3 forwarding and ACL entries. We later
discuss this trend in more detail (§7). Existing fixed function
ASICs often assign dedicated SRAM (or TCAM) blocks to
each function. Emerging programmable ASICs [1, 5] allow
network operators to flexibly assign memory blocks (from
multiple physical stages) to user-defined match-action tables,

ASIC generation Year SRAM (MB)
<1.6 Tbps [7, 9] 2012 10-20
3.2 Tbps[5, 8] 2014 30-60
6.4+ Tbps [1, 4, 13] 2016 50-100

Table 1: Trend of SRAM size and switching capacity in ASICs.
(SRAM does not include packet bu�er; estimated based on table sizes
claimed in whitepapers.)

which gives enough room to fit many connection states into
on-chip SRAM with careful engineering.
Connection learning and insertion: The key-value mapping
semantics of ConnTable requires an exact matching table,
which is typically implemented as a hash table on SRAM.
Hash table implementations di�er in their ways of handling
hash collisions [34, 35]. Modern switching ASICs often take an
approach known as cuckoo hashing that rearranges existing
entries over a sequence of moves to resolve a collision [19, 35].
The cuckoo hash table provides a high packing ratio and
memory e�ciency but at the cost of running a complex
search algorithm (breadth-first graph traversal) to find an
empty slot. The time/space complexity of the algorithm is
too high to run on switching ASICs at line rate. Hence, the
entry insertion/deletion is the job of the software running on
a switch management CPU.

Unlike routing table entries whose insertions are triggered
by software routing protocols, the entry insertion into Con-
nTable is triggered by hardware: the event for the first packet
of each connection hitting the ASIC. For this, we leverage
the learning filter available in switching ASICs for L2 MAC
learning. The learning filter usually batches a sequence of new
events paired with additional metadata (e.g., mac-address-
to-port mapping) and removes duplicate events. The CPU
reads the arrival events from the filter and runs the cuckoo
algorithm to insert new entries into the hardware table.

The slow connection learning and insertion time via CPU
is not a problem for MAC learning because the frequency of
new mac address or server/VM migration is relatively low.
However, L4 load balancing needs to insert a new entry for
every new L4 connection. This brings a new challenge for
ensuring PCC which we will address in §4.3.
Transactional memory: Switching ASICs maintain an array
of thousands of counters and meters [19] to collect various
statistics and limit tra�c rates. Tharray provides packet
transactional semantics [19, 31]: the update on a counter by
a previous packet can be immediately seen and modified by
the right next packet, i.e., read-check-modify-write is done in
one clock cycle time. P4 [18] exposes the generalized idea of
transactional stateful processing as register arrays. By using
the register primitive, we can implement a simple bloom filter
and ensure PCC during DIP pool updates by remembering
pending connections there.

4.2 Scaling to millions of connections
Motivation: millions of active connections: To understand the
total number of active connections that we need to store in
ConnTable, we take snapshots of ConnTable in all the SLBs
every minute for each cluster. Figure 6 calculates the median

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

�
���
���
���
���
�

�� ��� ���� �� ��� ����

�
�
�
��
��
��
��
��

������ ��� ���� ����������
���� �� ������ ����������� ��� ��� ������

�������� ���
�������� ����

������� ���
������� ����

��� ���
��� ����

Figure 6: Num. of active connections per ToR switch across clusters.

and 99th percentile numbers of active connections normalized
by the number of ToR switches in each cluster and draws the
CDF across clusters. The 99th percentile number shows the
worst-case ConnTable size we need to provision in each ToR
switch if we deploy SilkRoad in the cluster. Among the PoPs
and Backends, the most loaded clusters have around 10M
connections. Frontends have fewer connections than PoPs
because PoPs merge many user-facing TCP connections to a
few persistent connections to Frontends.

It is challenging to store 10M connection states in a switch.
For IPv6 connections, we need to store a 37-byte connection
key (5-tuple) and an 18-byte action data (DIP and port) in
each connection entry. This means we need at least 550 MB
memory for ConnTable, which is far more than 50-100 MB
SRAM available in switches today. Therefore, we use compact
data structures to reduce the memory usage for both the
match key and action data fields of each connection entry.
Compact connection match keys by hash digests: To reduce
the size of the match field of each connection entry, we store
a hash digest instead of the 5-tuple as proposed in [21]. For
example, rather than storing 37 bytes of a 5-tuple of IPv6
connection, we only need a hash digest with 16 bits.

Using hash digests introduces a false positive if two connec-
tions hash to the same digest in the same hash location. When
a new connection falsely hits at ConnTable, the connection
uses the DIP assigned for the collided existing connection.
Thus, it is unable to get its own DIP for the correct VIP due
to the bypass of VIPTable. The good news is that the chance
of false positives is low (0.01% of total connections using a
16-bit digest as shown in §6) and we can resolve them with a
marginal software overhead.

As the first packet of a connection, TCP SYN matching on
an existing entry is a good indication of a false positive. We
redirect such a TCP SYN packet that matches an existing
entry in ConnTable to the switch CPU. The switch software
has complete 5-tuple information for each entry in ConnTable
and thus can identify the existing entry that causes the false
hit for the new connection.

The software resolves the hash collision by leveraging the
multi-stage architecture of a match-action pipeline and re-
locating the existing colliding entry to another stage. In
switching ASICs, a large exact-match table like ConnTable is
instantiated on multiple physical stages, each storing a por-
tion of ConnTable in the SRAM blocks of the stage [19, 27].

We can use a di�erent set of hash functions for each stage.
Hence, when a TCP SYN packet collides with an existing
entry, the switch software migrates the existing entry to an-
other stage. At that stage with a di�erent hash function,
these two connections are hashed to separate entry locations,
resolving the hash collision.

After relocating the existing entry and inserting a new
entry for the SYN packet, the software sends the SYN packet
back to the switch, which then hits on the right entry. This
adds a few milliseconds delay to the redirected TCP SYN
packet. This marginal overhead is well justified by the high
compression ratio (e.g., 2B/37B for IPv6 connections) and
the low collision chance. Note, the SYN packet should trigger
normal connection learning and is sent out immediately by
ASIC if it does not falsely hit on ConnTable.
Compact action data with DIP pool versioning: To reduce
the size of action data part of each connection entry, we map
each connection to a version of DIP pool instead of actual
DIP. When a DIP pool is updated, we actually create a new
DIP pool by applying the change to a copy of the original
DIP pool. We then assign a new version to the new pool
and program VIPTable to map new incoming connections
to the newest DIP pool version. Once a DIP pool is created
and has active connections that still use it, the DIP pool
never changes to provide consistent hashing to the active
connections. A connection ‘uses’ a DIP pool if the connection
arrives when the pool was the newest, and thus VIPTable
maps the connection to the pool.

A DIP pool is destroyed when the connections that use it
are timed-out and deleted from ConnTable. When the pool is
destroyed, the version of the pool is also released and returned
to a ring bu�er so it can be reassigned to a newly created
DIP pool. The switch software tracks the connection-to-pool
mappings and manages DIP pool creation/deletion and as
well as the ring bu�er that stores available version numbers.
From the large web service provider data, we observed 6-
bit version number is big enough to handle many DIP pool
update scenarios. Since most inbound connections are short-
lived, each DIP pool and its version do not need to last for
long. Using a 6-bit version field reduces the action data size
to 1/24 in case the DIPs are IPv6 (16B IP + 2B port).

Since we introduce another level of indirection (pool version
between connections and DIPs), we maintain the version-to-
pool mappings in a new table called DIPPoolTable.3 Fig-
ure 7 shows an example of our DIP selection design with
DIPPoolTable. DIPPoolTable incurs an extra memory con-
sumption to maintain a set of multiple (active) DIP pools
for each VIP. The additional overhead is easily amortized
by the savings from ConnTable when the number of connec-
tions mapped to each DIP pool version is large and they are
short-lived, as observed from the web service provider data
in §6. If the number of active connections is small and they
are long-lived, we fall back to the design that maps each
connection to the actual DIP instead of version.

3DIPPoolTable is similar to an ECMP table that maps ECMP group
ID to a set of ECMP members (routing next hops).

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

Miss
VIP Ver

20.0.0.1:80 V1

20.0.0.2:80 V2

��� ���

Conn Ver

Digest1
(EF1…)

V1

��� ���

VIPTableConnTable Hit
VIP Ver DIP

20.0.0.1:80 V1
10.0.0.1:20

10.0.0.2:20
10.0.0.4:20

V2 10.0.0.1:20

20.0.0.2:80 V1 10.0.1.1:21

��� ���

DIPPoolTable

Figure 7: Using digest and version in DIP selection.

There are a few ways to further reduce the number of
active versions, thus decreasing the size of version bits. One
is modifying an existing DIP pool and reusing it as the
current/newest pool when it is possible, instead of blindly
creating a new DIP pool and assigning a new version. It
is possible when a new DIP is added to substitute a previ-
ously removed DIP in the pool, which is usually the case
of rolling reboot discussed in §3.1. For example, in Figure
7, VIP 20.0.0.1:80 has two DIPs in version V 1. When DIP
10.0.0.2:20 has failed, we remove it from the VIP and cre-
ate another DIP pool version V 2. Existing connections to
10.0.0.1:20 still use V 1 to ensure PCC and new connections
use V 2 to ensure no more new connections towards the failed
DIP 10.0.0.2:20. When we add a new DIP 10.0.0.4:20 to the
VIP, instead of creating a new DIP pool version, we reuse
the old V 1 and replace DIP 10.0.0.2:20 with 10.0.0.4:20. Now
new connections use V 1 to select the new DIP. 4

4.3 Ensuring per-connection consistency
Motivation: many new connections during DIP pool update:
In SilkRoad, for the first packet of each new connection, the
ASIC selects a DIP and sends out the packet immediately. In
the meanwhile, the ASIC notifies software for entry insertion
into ConnTable. Given a short RTT in data centers (250 µs
in the median and 2-5 µs with RDMA), a new connection
can have many packets arrived before the software completes
entry insertion into ConnTable. When overlapped with a DIP
pool update, the subsequent packets of the connection can
be mapped to a di�erent DIP, violating PCC.

To better understand the PCC problem, we define pending

connections at time t as those connections that arrive before t
but have not been inserted in ConnTable. We cannot apply a
DIP pool update when there are pending connections because
the first few packets of these connections already match the
old DIP pool, and if ConnTable is not ready, the follow-up
packets would match the new DIP pool. Therefore, we can

only safely apply a DIP pool update only when there is no

single pending connection. However, this may never happen.
Suppose at time t1, we have a set of pending connections
C

t1 , and the switch software inserts entries for these con-
nections at ConnTable at time t2. Between t1 and t2, other
new connections can arrive, which become new pending con-
nections C

t2 . This can go on forever if there are continuous

4There may have a very rare chance that we use out all the versions
because of a few long-lasting connections. We can move those long-
lived connections to a small table to fall back to connection-to-DIP
mapping.

�
���
���
���
���
�

�� ��� �� ��� ���� �� �������

�
�
�
��
�
��
�

���� ���������� ���� �� ��� �����������
��� ��� �� ���� ���

���
��������
�������

Figure 8: Number of new connections per VIP in one minute.

new connection arrivals. The number of pending connections
during a DIP pool update depends on two factors: the new
connections arrival rate and the time the switch takes to
learn and insert new connection entries in ConnTable. To
quantify the arrival rate of new connections, we measured
the number of new connections per minute per VIP for all
clusters. Figure 8 shows that a VIP can have more than 50M
new connection arrivals in a minute.

The connection learning and insertion time depends on
the ASIC design. As discussed in §4.1, ASICs often batch
new connection events in a learning filter to avoid frequent
interruptions to the switch CPU. The filter also removes du-
plicate events (from multiple packets of the same connection).
The learning filter can store up to thousands of requests and
notifies the switch software when the learning filter is full or
after a timeout. The timeout value can be set by the network
operator, and we expect anywhere between 500 µs to 5 ms.
The switch software then reads the new connection events in
batches, run the cuckoo hashing algorithm to select empty
slots, and inserts the entries in ConnTable.

Suppose there are consistent arrivals of 1M new connection
every minute for a VIP at one switch. Whenever we want to
update the DIP pool for the VIP, there is always around 8
new connections in the learning filter with 500 µs timeout
setting, leaving no time window to perform the DIP pool
update with PCC.
3-step PCC update with TransitTable: To be able to update
a DIP pool without violating PCC, we need to ensure the
switching ASIC can handle the pending connections correctly.
We introduce a TransitTable that remembers the set of pend-
ing connections that should be mapped to an old DIP pool
version when VIPTable updates its DIP pool version. In this
way, no pending connection is left out: it is either pinned in
ConnTable or marked in TransitTable.

We use the transactional memory primitive in switching
ASIC (§4.1) to implement TransitTable as a bloom filter.
Bloom filter indices are addressed by a number of hashes,
and unlike a cuckoo-based exact matching table, the hash
collision between di�erent connections is allowed. Hence,
bloom filter does not need CPU to run a complex cuckoo
algorithm and can do read-check-modify-write in one cycle
time, providing the packet transactional semantics. Collisions
in all hash indices lead to a false positive, which is kept
negligible as long as the filter size is large enough to handle
the number of connections. Thus, the main challenge is the

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

treq(u) texec(u) tfinish(u)
c_a
c_b

c_c
c_d

c_e
c_f

tstart(c)
tinst(c)

(a) Timeline of connections. (c_c and c_d are pending
connections at t

exec

(u))

miss
VIP Version

VIP1 old_ver

Conn Version

c_a old_ver

c_b old_ver

VIPTableConnTable
hit

TransitTable Conn

c_c, c_d

Install (c_c, c_d)

insert

(b) Step 1: between t

req

(u) and t

exec

(u)

miss
VIP Version

VIP1 new_ver

Conn Version

c_a old_ver

c_b old_ver

VIPTableConnTable
hit

TransitTable Conn

c_c, c_d

Install (c_c, c_d, c_e, c_f)

hit
old_ver

missnew_ver

lookup

(c) Step 2: between t

exec

(u) and t

finish

(u)

Figure 9: TransitTable to ensure PCC during DIP pool updates (c_a-c_f are connection digests).

size of bloom filter (TransitTable), which can grow as large
as ConnTable if designed poorly.

A naive design is to always store every new connection
sent to each VIP upon its arrival in TransitTable and keep
a record of both the connection and its selected DIP pool
version. This allows immediate execution of DIP pool updates
for any VIP but requires TransitTable to be large enough to
remember all new connection states.

To reduce the memory usage, we only consider the con-
nections to the VIP currently under DIP pool update and
only store the pending connections that are mapped to the
old DIP pool. The key insight is that there are just two ver-
sions of DIP pool involved during an update for a given VIP:
the old version before the update and the new version after
the update. Thus, we reduce a key-value store problem (the
connection to DIP version mapping) to a simple membership
set problem. TransitTable only needs to remember the set
of connections that are mapped to the old version, where a
binary Bloom filter can do in a memory-e�cient way.

We take the following 3-step update process to ensure PCC
as in Figure 9a, where t

start

(c) and t
inst

(c) indicate the time
of connection arrival and the time of insertion into ConnTable
respectively. Step 1: In Figure 9b, when the switch receives a
request of DIP pool update (t

req

(u)), we start to remember
all the new connections in TransitTable bloom filter. Step
2: When all the connections that arrive before t

req

(u) get
inserted in ConnTable, we stop updating the bloom filter
and execute the update(t

exec

(u)) on VIPTable. After the
update, all the packets that miss ConnTable retrieve both
old and new versions from VIPTable and then are checked
by TransitTable to see if the packets hit the bloom filter. If
hit, they use the old version; if miss they use the new version.
Note that the bloom filter is read-only in this step while it
was write-only in the first step (Figure 9c). Step 3: Once all
the connections in TransitTable get inserted in ConnTable,
we clear TransitTable and finish the process (t

finish

(u)).
Note that using a Bloom filter for TransitTable can

cause false positives when a new connection arrives between
t
exec

(u) and t
finish

(u) (i.e., Step 2 in Figure 9c) falsely
matches on TransitTable and take the old version. The
chance of false positives is low (with 256-byte bloom filter,
no false positive observed in one hour under most frequent
updates as shown in §6). To handle it, the ASIC redirects
any TCP SYN packet matching on TransitTable at Step 2

ConnTable
(Digest	à Version)

VIPTable
(VIP	à Version)

TransitTable
(Cache	pending	conn)

DIPPoolTable
(VIP,	Version	à DIP)miss

hit

Switch	APISoftware

Hardware

VIP in update

no update

LearningInsertion

LearnTable

Match action tables

Transactional memory
miss

hit (use old version)

(use new version)

Learning	
filter

Figure 10: System architecture.

to the switch software similar to the solution to the digest
collisions problem in ConnTable.

Figure 10 shows an overall architecture of SilkRoad, depict-
ing the control flow between the various tables. A simple table
(LearnTable) is added to trigger new connection learnings to
the switch software.

5 IMPLEMENTATION AND DEPLOYMENT
In this section, we talk about the details of implementing
the SilkRoad prototype on a programmable ASIC. We then
discuss the prototype performance and evaluate its implemen-
tation overhead in terms of hardware resource consumption
and software overhead. We also discuss using SilkRoad in a
network-wide setting.

5.1 Prototype implementation on high-speed
commodity ASICs

We built a P4 prototype of SilkRoad on top of a base-
line switch.p4 and compiled on a programmable switch-
ing ASIC [1]. The baseline switch.p4 implements various
networking features needed for typical cloud data centers
(L2/L3/ACL/QoS/. . .) in about 5000 lines of P4 code. A
simplified version of the baseline switch.p4 is open-sourced
at [16]. We added ~400 lines of P4 code that implements all
the tables and metadata needed for SilkRoad (Figure 10).
More details of our prototype are demonstrated in [32].

We implement all the tables as exact-match tables, except
for TransitTable as a bloom filter on transactional memory.
ASICs often support word packing which allows e�ciently
matching against multiple words in the SRAM block at a
time [19]. We carefully design word packing to maximize the
memory e�ciency while minimizing false positives [27].

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

We also implement a control plane in switch software
that handles new connection events from learning filter and
connection expiration events from ConnTable. The software
runs the cuckoo hash algorithm to insert or delete connection
entries in ConnTable. Besides, the control plane performs
3-step PCC update for DIP pool updates. The event and
update handler is written in about 1000 lines of C code while
entry insertion/deletion is part of switch driver software.

5.2 Prototype performance and overhead
Performance: Our prototype shows that SilkRoad achieves
full line-rate load balancing with sub-microsecond processing
latency. Note that in a pipeline architecture of most switching
ASICs today, adding any new logic into the pipeline does
not really change the bit/packet processing throughput of
a switch as long as the logic fits into the pipeline resource
constraints. Switch pipeline latency may slightly increase by
up to tens of nanoseconds, which is negligible in end-to-end
datacenter latency and three to five orders of magnitude
smaller than SLB processing latency [20, 22].

In addition, SilkRoad achieves tighter performance isola-
tion than that in SLBs because it handles all tra�c completely
in hardware. To throttle a VIP under DDoS attacks or flash
crowds, SilkRoad associates a meter (rate-limiter) to a VIP to
detect and drop excessive tra�c. A meter is marking packets
to one of the three colors defined by two rate thresholds [6].
To measure metering accuracy, we generated 10 Gbps tra�c
to a VIP and measured color marking accuracy with various
rate thresholds and burst size settings, and observed less than
1% average error. Creating 40K meter instances consumes
1% of the entire SRAM in the ASIC, providing performance
isolations for many VIPs.
ASIC resource consumption: We evaluate the additional re-
sources that SilkRoad needs on top of the baseline switch.p4
mentioned before. Table 2 shows the additional hardware re-
sources used by SilkRoad while storing 1M connections (with
16-bit digest and 6-bit version) compared to the switch.p4.
We see that the additional resource usage is less than 50%
for all types of hardware resources. The exact-match tables
together increase the usage of SRAM and match crossbars,
while ConnTable is the major consumer. The VLIW (very
long instruction word) actions are used for packet modifica-
tions [19]. The hash operations in the exact matching tables
and the multi-way hash addressing of bloom filter consume
additional hash bits. The bloom filter implementation uses
stateful ALUs to perform transactional read-check-update,
as meters/counters do in the baseline switch.p4. Our P4
prototype defines a few metadata fields to carry DIP pool
version and other information between the tables (Figure 10).
The metadata fields consume a negligible amount of PHV
(Packet Header Vector) bits [19]. We have also evaluated that
up to 10M connections can fit in the on-chip SRAM in our
SilkRoad prototype.
Software overhead: The switch employs a standard embedded
x86 CPU that connects to the switching ASIC via PCI-E
interface. For each new connection, the switch software sends

Resource Additional usage
Match Crossbar 37.53%
SRAM 27.92%
TCAM 0%
VLIW Actions 18.89%
Hash Bits 34.17%
Stateful ALUs 44.44%
Packet Header Vector 0.98%

Table 2: Additional H/W resources used by SilkRoad with 1M con-
nection entries, normalized by the usage of the baseline switch.p4.

A1

T1

A2

T2

A3

T3

A4

T4

C1 C2 C3 C4

VIP1

VIP2

ToR

Agg

Core

Figure 11: Network-wide VIP assignment to di�erent layers.

a sequence of moves to the ASIC to make an empty slot
for the new entry in ConnTable. The switching ASIC makes
sure the execution of these moves does not a�ect the ongoing
tra�c matching ConnTable.

We measure the connection insertion rate to understand
the switch software overhead in managing SilkRoad. In our
software prototype using single-core, we found the bottleneck
is on the CPU, not the PCI-E interface. Hash computations
for cuckoo hashing and connection digest take most of the
CPU time while cuckoo search algorithm took the second
largest but relatively small time. The CPU overhead increases
as ConnTable utilization approaches close to 100%. We expect
SilkRoad can achieve ConnTable insertion throughput of
200K connections per second by employing 1) better software
library for hash computation and 2) multiple cores to handle
insertions into di�erent physical pipes.

5.3 Network-wide deployment
A simple deployment scenario is to deploy SilkRoad at all
the ToR switches and core switches. Each switch announces
routes for all the VIPs with itself as the next hop. In this
way, all inbound and intra-DC tra�c gets the load balancing
function at its first hop switch into the data center network.
Intra-DC tra�c reaches the load balancing function at the
ToR switch where the tra�c is originated. Inbound internet
tra�c gets split to multiple core switches via ECMP and gets
load balanced there. In this design, we can easily scale the
load balancing function with the size of the data centers.

However, this design is unable to e�ciently handle network-
wide load imbalance. And the network operator may want to
limit the SRAM budget for load balancing function at specific
switches. To address this, rather than blindly serving a VIP
tra�c at the first hop switch in the network, we can decide
which layer (e.g., ToR, aggregation, and core) to handle a
specific VIP and thus split tra�c across multiple switches.

Figure 11 shows a simple example. If inbound tra�c to
VIP1 cannot meet SRAM budget at core switch C2, we then

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

�
���
���
���
���
�

� �� �� �� �� �� ��

�
�
�
��
��
��
��
��

������ ����� ����

���
��������
�������

Figure 12: SRAM usage in SilkRoad deployed
on ToR switches across clusters.

�
���
���
���
���
�

� �� ��� ��� ��� ��� ���

�
�
�
��
��
��
��
��

���������������

���
��������
�������

Figure 13: The ratio of #SLBs and #SilkRoad
to support load balancing across clusters.

�
���
���
���
���
�

� �� �� �� �� ���

�
�
�
��
��
��
��
��

������������� �� ������ ������

���
��������
�������

Figure 14: Memory saving for SilkRoad de-
ployed on ToR switches across clusters .

migrate VIP1 from all core switches (only show C2 here)
to ToR switches. The tra�c is balanced via ECMP to the
switches at ToR layer, where these switches together have
enough memory to handle a large number of connections.
Similarly, if a ToR switch T3 experiences a burst of intra-DC
tra�c for V IP2 from its rack servers, SilkRoad can migrate
V IP2 to the multiple core switches.

The adaptive VIP assignment problem can be formulated
as a bin-packing problem. The input includes network topol-
ogy, the list of VIPs, and the tra�c for each VIP. The tra�c
consists of tra�c volume and number of active connections.
The objective is to find the VIP-to-layer assignment that
minimizes the maximum SRAM utilization across switches
while not exceeding the forwarding capacity and SRAM bud-
get at each switch. This can also preserve SRAM headroom
for operators to expand service capacity or handle failures.

We can extend our design to do incremental deployment:
where the operator may deploy SilkRoad on a subset of
switches or add some new SilkRoad-enabled switches to the
network. Our bin-packing algorithm still works to assign VIPs
to di�erent layers so as to fit in all switches’ memory. The
only di�erence is the tra�c for a VIP is then split to only
SilkRoad-enabled switches in the assigned layer instead of all
switches in that layer.

6 EVALUATION
We build a flow-level simulator to evaluate the memory usage
and PCC guarantee of SilkRoad using real tra�c traces from
the large web service provider we studied. We simulate the
SilkRoad on all ToR switches in each cluster. We show that
our design achieves 40%-95% SRAM reduction and thus
can fit into switch SRAM to support tra�c for all clusters.
Using the available SRAM in switches, one SilkRoad can
replace up to hundreds of SLBs. We show that processing the
same amount of tra�c in SilkRoad has about two orders of
magnitude saving in power and capital cost compared with
SLBs. Our design ensures PCC with only a 256-byte bloom
filter even under most frequent DIP pool updates observed
from the network.

6.1 Scalability
We first evaluate how SilkRoad can scale to cloud-scale tra�c
using the tra�c traces from each of PoPs, Frontends, and
Backends during its peak hour of a day. We replay the tra�c

�
��
���
���
���
���
���
���

� �� ��� ��� ��� ��� ��� ����
��
��
��
��
��
��
��
��
��
��

���� �� ������� ��� ���
�� ���������� ���� ������

��� ������� �����
�� ������� �����

Figure 15: Benefit of version reuse.

traces to measure the memory usage on each ToR switch.
Most Backends use IPv6 addresses while most PoPs and
Frontends use IPv4 addresses. Throughout the simulations,
we consider the SRAM word of 112 bits as used in [19]. We
configure ConnTable entry as 28 bits with a 16-bit digest, a
6-bit version number, and a 6-bit overhead.5 In this way, we
exactly pack four ConnTable entries in each SRAM word.
SilkRoad can fit millions of connections into the switch
SRAM: Figure 12 shows the switch memory usage of
SilkRoad for each cluster. In PoPs, the SilkRoad uses 14
MB in a median cluster and 32 MB in a peak cluster. The
SilkRoad in Backends has a median of 15 MB and a peak
of 58 MB memory usage. Backends have larger SRAM
consumption in the peak cluster than PoPs because the
peak Backend cluster has more connections (up to 15M)
than PoP (up to 11M). SilkRoad in Frontends consumes less
than 2 MB SRAM because Frontends has a small number of
connections (see Figure 6). Therefore, SilkRoad can fit into
ASIC SRAM with 50-100 MB (Table 1).

We investigate the breakdown of ConnTable and DIP-
PoolTable usage. Take the peak Backend cluster as an ex-
ample. ConnTable consumes 91.7% of total 58MB memory
usage to store up to 15M connections. The DIPPoolTable
takes the rest to host 64 versions of 4187 IPv6 DIPs.
SilkRoad can significantly reduce the number of SLBs: The
key benefit of SilkRoad is that we can reduce the number
SLBs by providing high throughput and low latency load
balancing. SilkRoad requires memory resources to store con-
nections at switches while SLBs require CPU resources to
process packets at hosts. To understand the tradeo�, we take
the peak throughput and the peak number of connections
5The overhead bits include an instruction address and a next table
address.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

�

�

����

����

����

����

����

� �� �� �� �� ����
��
��
��
��
��
�
��
��
��
��
���
��

�
��
�
�
��
��
��
��
�

���� � �� ������� ��� ���

����
�������� ��� ������������

��������

Figure 16: E�ectiveness of ensuring PCC with
various update frequencies.

�
���
�
��
���
����
�����
������

� �� �� �� �� �� ��

�
��
��
��
��
��
��
���
��

�
��
�
�
��
��
��
��
�
��
�
�
��

���� �� ��� ����������� ��� ���

����
�������� ��� ������������

��������

Figure 17: Impact of new connection arrival
rates (10 updates per minute, SilkRoad Tran-
sitTable=256B).

�
��
��
��
��
��
��
��
��

� � � �� ���

�
��
��
��
��
��
��
���
��

�
��
�
�
��
��
��
��
�
��
�
�
��

������������ ���� ������

����������� ��
��������� ��
��������� ��

Figure 18: TransitTable size (10 updates per
minute).

of a day in each cluster and estimate the number of SLBs
and SilkRoad switches we need to support load balancing
function. We assume that each SilkRoad can handle 10M
connections. For SLB we use the state-of-the-art performance
12 Mpps for 52-byte packets using 8 cores reported by Google
[20]. The results are shown in Figure 13. For PoPs where most
tra�c is short user-facing connections, we need 2-3 times
more SLBs compared to SilkRoad. Frontends can replace 11
SLBs with one SilkRoad in the median because Frontends
receive a small number of persistent connections with large
volume from PoPs. In Backends, one SilkRoad can replace
3 SLBs in the median cluster and 277 SLBs in the peak
cluster. The need for a large number of SLBs in some peak
Backends is because connections there are typically volume-
centric tra�c across services (e.g., storage) and the prevalent
use of persistent connections for low latency. Generally, it is
more suitable to deploy SilkRoad in those clusters with more
volume-centric tra�c.

SilkRoad saves the cost and power for running load balanc-
ing as well. To support the state-of-the-art performance of 12
Mpps for 52-byte packets, a typical SLB with Intel Xeon Pro-
cessor E5-2660 costs around 200 Watt and 3K USD [10, 20].
By contrast, SilkRoad with 6.4Tbps ASIC can achieve about
10 Gpps with 52-byte packets, consuming around 300 Watt
and 10K USD [8]. So processing the same amount of tra�c
in ASIC consumes about 1/500 of the power and 1/250 of
the capital cost compared to SLBs.
Using digest and version save memory: SilkRoad reduces the
memory usage of ConnTable by using digest for the key field
and DIP pool versions for the value field. Figure 14 quantifies
the memory savings of this design. All the clusters have more
than 40% of memory reduction through using digest with or
without version. PoPs have a consistent memory reduction by
around 85% from using both digest and version. Frontends
have around 50% memory saving from only using digest.
Backends receive 60%-95% of memory saving.
Version reuse: To quantify the benefit of reusing the versions
(see §4.2), we consider all the VIPs in Backends. For each
ten-minute time window, we count the number of DIP pool
versions before and after version reuse mechanism. Here, we
choose ten minutes as time window to cover the lifetime for
most of the connections [39]. Figure 15 shows that a VIP can
have up to 330 DIP pool updates in ten minutes and thus

need 330 versions and 9 version bits. With version reuse, we
only need to use 6 version bits to handle up to 51 DIP pool
versions. Consider a cluster with 10M connections and 4K
DIPs, reducing the number of bits for versions can reduce
ConnTable by 7.5 MB and the DIPPoolTable by 4.5 MB,
with a total of 74.6% memory reduction.
Tradeo�s of digest sizes and false positives: To understand
the false positives, we evaluate the memory and false positives
for one PoP cluster with 2.77M new connections per minute
per ToR switch. If we use 32 MB SRAM with 16-bit digest,
there are an average of 270 (0.01%) false positives per minute.
If we use 42.8 MB SRAM with 24-bit digest, we have 1.1
(0.00004%) false positives per minute. All false positives are
resolved via switch software with no PCC violation (§4.2).

6.2 Ensuring PCC
Now we evaluate the e�ectiveness and overhead to ensure
PCC across di�erent solutions. We conduct experiments on
following scenarios: (1) Duet: Duet design which migrates
VIPs back to switches every ten minutes; (2) SilkRoad without

TransitTable: SilkRoad without using TransitTable to ensure
PCC; (3) SilkRoad: SilkRoad with 3-step PCC update process
using TransitTable.

We use a one-hour tra�c trace from one PoP cluster as
introduced in §3.2. The trace consists of 149 VIPs and has a
peak of 2.77M new connections per minute per ToR switch.
We generate tra�c and updates independently because we
intend to evaluate the range of changes, instead of a specific
combination in our dataset. By default, we use learning filter
size of 2K insertions with 1 ms timeout and TransitTable
size of 256 bytes. The software insertion rate is set to 200K
entries per second as we discussed in §5.2.
SilkRoad ensures PCC for various DIP pool update frequen-
cies: Figure 16 shows SilkRoad always ensures PCC with
256-byte TransitTable even under the most frequent updates.
For 10 updates per minute, Duet incurs PCC violations in
0.08% of total connections and SilkRoad without Transit-
Table breaks 0.00005% of total connections. SilkRoad with-
out TransitTable has about three orders of magnitude fewer
PCC violations than Duet because the DIP pool update in
SilkRoad a�ects only new connections during their insertion

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

period (a few milliseconds). In contrast, Duet a�ects exist-
ing connections (running for seconds to minutes) when it
migrates VIPs back to switches.
SilkRoad ensures PCC for various new connection arrival
rates: We now vary the arrival rate of the number of new
connections by scaling the tra�c of 2.77M new connections
per minutes by a factor of 0.1 to 2. Figure 17 shows the
average number of connections with PCC violation per
minute across tra�c intensities. SilkRoad with 256-byte
TansitTable has no PCC violation. With the connection
arrival rate increases, SilkRoad without TansitTable has
more PCC violations because there are an increasing
number of pending connections in the learning filter. Duet
also has increasing PCC violations because with more
new connections arrive, there are more old connections at
SLBs when we migrate the VIP back to switches. SilkRoad
ensures PCC using small TransitTable: Figure 18 shows that
SilkRoad requires a small size of TransitTable to ensure
PCC during a DIP pool update. For example, during the
simulation period of one hour, TransitTable with only 8 bytes
prevents PCC violation for learning filter timeout within 1
ms. With a larger timeout of 5ms, there are 20 connections
with PCC violations with just 8-byte TransitTable and
no violations with 256-byte TransitTable. This should be
easily supported because today’s ASICs already have the
transactional memory for thousands of counters.

7 DISCUSSION
How much memory in ASICs can we use for load balancing?
We expect in the future the SRAM size in switching ASICs
will continue to grow. This is because there is a strong re-
quirement of a large memory for building various functions
for diverse markets, such as storing 100Ks of Internet IP
prefixes in ISP edge routers, maintaining a large MAC table
and a large access control list (ACL) in enterprise switches,
and storing MPLS labels in backbone switches. However, the
memory requirements for data center switches are relatively
small compared to other markets [22]. This is because data
centers use simple ECMP-based routing and push access
control rules to host hypervisors. We expect a fair amount of
memory in switching ASICs available for the load balancing
function or for o�oading other connection-tracking function-
alities hosted in traditional middleboxes or hypervisor.

In addition, traditional fixed function ASICs often waste
memory space because they have dedicated tables for each
function. Emerging programmable switching ASICs [1, 5]
allow network operators to use memory flexibly, which leaves
more room for load balancing functions. Moreover, we can use
the feature of multiple stages in the pipeline to further opti-
mize the tradeo�s between memory usage and false positives.
For example, we can use di�erent digest sizes in di�erent
stages to reduce the overall false positives. When there is
a small number of connections, we insert new connections
to stages with larger digest sizes (i.e., low false positives).

When the number of connections increases, we use stages
with smaller digest sizes to scale up.
Handle DIP failures: To detect DIP failures, each SilkRoad
can perform the health check on DIPs. Today’s switches al-
ready have health check for BGP sessions. Many switches
today o�er an ability to o�oad BFD (Bidirectional For-
warding Detection) [2]. This mechanism can be leveraged to
perform a fast health check. To perform the health check
for 10K DIPs in every 10 seconds with 100-byte packets [12],
switches only need around 800 Kbps bandwidth.

After we find a DIP failed or unreachable, SilkRoad switch
quickly removes the DIP from the DIP pool. To reduce the
number of DIP pool versions, we can continue to use the same
DIP pool version and use resilient hashing [3] to maintain
existing connections to other DIPs. This is an alternative
way for version reuse.
Handle switch failures: If a SilkRoad switch fails, the existing
connections on this switch get redirected to other switches via
ECMP and get load balanced there because all the switches
use the same latest VIPTable. Thus if a connection was using
the latest version of VIPTable at the failed switch, it would
get the same VIPTable at the new switch and thus ensure
PCC. However, since we lose the ConnTable at the failed
switch, those connections that used an old DIP pool version
may break PCC. This is the same issue with an SLB failure
in the software load balancing case.
Combine with SLB solutions: We propose SilkRoad as a
new primitive to implement load balancing in switches for
better performance. In practice, operators can choose to use
SilkRoad only or combine it with SLBs to best meet their
tra�c scenarios. For example, when ConnTable in SilkRoad
is full, SilkRoad can redirect extra connections to either
the switch software or SLBs (basically treating SilkRoad
ConnTable as a cache of connections). Or we can use SilkRoad
to handle VIPs with high tra�c volume and use SLBs to
handle those VIPs with a large number of connections. We
can enable this hybrid setting by withdrawing those VIPs
from switches and announcing them from SLBs via BGP.
Di�erent from Duet [22], we do not need to migrate VIPs
during DIP pool updates and always ensure PCC.

8 RELATED WORK
Load balancing: Beyond SLBs [15, 20, 30, 36] and Duet
[22], there are other works [26, 28, 41] which use OpenFlow
switches to implement load balancing. They either leverage
the controller to install flow rules based on incoming packets
which are too slow due to the slow switch-controller channel,
or pre-install wildcard rules that are hard to change during
tra�c dynamics. Instead, SilkRoad supports line-rate packet
processing during tra�c dynamics and DIP pool updates.
Consistent updates: The paper [38] introduced per-packet
and per-flow consistency abstractions for updates on a net-
work of switches. These inconsistency problems are caused by
di�erent rule update rates across switches. The recent load
balancer paper [20] leverages consistent hashing to ensure
that all SLBs select DIPs in the same way when DIP pool

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA R. Miao et al.

changes and ECMP rehashing happen at the same time. In-
stead, SilkRoad focuses on per-connection consistency (PCC)
for updating VIPTable and ConnTable inside a single switch.
PCC problem is caused by the slow insertion time of switch
software. Thus, we introduce a TransitTable that stores pend-
ing connections to ensure PCC.
Programmable ASICs: Recently, due to more control require-
ments of switch internals from major cloud providers (e.g.,
[11, 40]), switch vendors (e.g., Cavium [5], Barefoot [1], Intel
[9]) start to expose low-level hardware primitives of high-
speed low-cost ASICs to customers. Recent research works
such as reconfigurable match-action tables (RMT) [19] and
Protocol-Independent Switch Architecture (PISA) [18, 27]
are built on those primitives. SilkRoad focuses on the load
balancing function, which is critical for data centers, and
leverages existing features of ASICs. Thus SilkRoad can be
either implemented with either small modifications of fixed
function ASICs or built directly on top of programmable
ASICs in the market.

9 CONCLUSION
L4 load balancing is a critical function for data centers but
becomes increasingly challenging to build with the growth of
tra�c and the constantly changing data centers. To address
these challenges, SilkRoad leverages the increasing SRAM
sizes in today’s ASICs and stores per-connection states at
ASICs. In this way, SilkRoad inherits all the benefits of high-
speed low-cost ASICs such as high throughput, low latency
and jitter, and better performance isolation, while ensur-
ing per-connection consistency during DIP pool changes, as
demonstrated by our extensive simulations and a P4 proto-
type on a programmable ASIC.

ACKNOWLEDGMENTS
We thank our shepherd Teemu Koponen, the anonymous
SIGCOMM reviewers, Patrick Bosshart, Remy Chang, Ed
Doe, Blake Matheny, Vincent Maugé, Nick McKeown, Xuehai
Qian, Dileep Rao, and Nikita Shirokov for their valuable feed-
backs. This research is partially supported by CNS-1712674,
CNS-1701923, CNS-1413978, and Facebook.

REFERENCES
[1] Barefoot Tofino: programmable switch series up to 6.5Tbps.

https://barefootnetworks.com/media/white_papers/Barefoot-
Worlds-Fastest-Most-Programmable-Networks.pdf

[2] Bidirectional Forwarding Detection (BFD). https://tools.ietf.org/
html/rfc5880

[3] Broadcom Smart-Hash technology. https://goo.gl/LXtq16
[4] The Broadcom StrataXGS BCM56970 Tomahawk II Switch Series.

https://goo.gl/a9vCgo
[5] Cavium XPliant™ Ethernet Switch Product Family. http://www.

cavium.com/XPliant-Ethernet-Switch-Product-Family.html
[6] A Di�erentiated Service Two-Rate, Three-Color Marker with

E�cient Handling of in-Profile Tra�c. https://tools.ietf.org/
html/rfc4115

[7] High Capacity StrataXGS®Trident II Ethernet Switch Series.
https://www.broadcom.com/products/ethernet-connectivity/
switch-fabric/bcm56850/

[8] High-Density 25/100 Gigabit Ethernet StrataXGS Tomahawk
Ethernet Switch Series. https://www.broadcom.com/products/
ethernet-connectivity/switch-fabric/bcm56960

[9] Intel FlexPipe. https://goo.gl/kUqpU7
[10] Intel Product Specifications. http://ark.intel.com/
[11] Introducing data center fabric, the next-generation Facebook data

center network. https://goo.gl/makVDo
[12] Load-Balancer-as-a-Service configuration options. https://docs.

openstack.org/ocata/config-reference/networking/lbaas.html
[13] Mellanox Spectrum™ Ethernet Switch. https://goo.gl/SsVXcM
[14] Nginx. https://nginx.org/en/
[15] NSX Distributed Load Balancing. https://goo.gl/GWcJMT
[16] Open-source P4 implementation of features typical of an advanced

L2/L3 switch. https://github.com/p4lang/switch
[17] M. Alizadeh, et al. 2013. pFabric: Minimal Near-optimal Data-

center Transport. In ACM SIGCOMM ’13.
[18] P. Bosshart, et al. 2014. P4: Programming protocol-independent

packet processors. ACM SIGCOMM Computer Communication
Review (2014).

[19] P. Bosshart, et al. 2013. Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN. In ACM
SIGCOMM Computer Communication Review.

[20] D. E. Eisenbud, et al. 2016. Maglev: A Fast and Reliable Software
Network Load Balancer. In NSDI.

[21] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher.
Cuckoo Filter: Practically Better Than Bloom. In ACM CoNEXT
2014.

[22] R. Gandhi, et al. Duet: Cloud scale load balancing with hardware
and software. In Proceedings of the 2014 ACM conference on
SIGCOMM.

[23] P. X. Gao, et al. 2016. Network Requirements for Resource
Disaggregation. In USENIX OSDI.

[24] R. Govindan, et al. Evolve or Die: High-Availability Design
Principles Drawn from Googles Network Infrastructure. In ACM
SIGCOMM 2016.

[25] C. Guo, et al. 2015. Pingmesh: A large-scale system for data center
network latency measurement and analysis. ACM SIGCOMM
Computer Communication Review (2015).

[26] N. Handigol, et al. 2009. Plug-n-Serve: Load-balancing web tra�c
using OpenFlow. ACM SIGCOMM Demo (2009).

[27] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling packet
programs to reconfigurable switches. In NSDI 15.

[28] N. Kang, et al. 2015. E�cient Tra�c Splitting on Commodity
Switches. In ACM CoNEXT.

[29] A. Kaufmann, et al. 2016. High performance packet processing
with flexnic. In ACM SIGPLAN Notices. ACM.

[30] T. Koponen, et al. 2014. Network Virtualization in Multi-tenant
Datacenters.. In NSDI.

[31] L. Lamport. 1985. Interprocess Communication. Technical
Report. DTIC Document.

[32] J. Lee, et al. 2017. Stateful Layer-4 Load Balancing in Switching
ASICs. In ACM SIGCOMM demo.

[33] B. Li, et al. 2016. Clicknp: Highly flexible and high-performance
network processing with reconfigurable hardware. In Proceedings
of the 2016 conference on ACM SIGCOMM 2016 Conference.
ACM.

[34] M. Mitzenmacher. 2001. The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and Distributed
Systems (2001).

[35] R. Pagh and F. F. Rodler. 2004. Cuckoo hashing. Journal of
Algorithms (2004).

[36] P. Patel, et al. 2013. Ananta: Cloud scale load balancing. In ACM
SIGCOMM Computer Communication Review.

[37] S. Radhakrishnan, et al. 2014. SENIC: scalable NIC for end-
host rate limiting. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14).

[38] M. Reitblatt, et al. Abstractions for network update (SIGCOMM
’12). ACM.

[39] A. Roy, et al. Inside the Social Network’s (Datacenter) Network
(SIGCOMM ’15). ACM.

[40] A. Singh, et al. 2015. Jupiter Rising: A Decade of Clos Topologies
and Centralized Control in Google’s Datacenter Network. In ACM
SIGCOMM ’15.

[41] R. Wang, D. Butnariu, and J. Rexford. 2011. OpenFlow-based
server load balancing gone wild. Hot-ICE.

[42] Y. Zhu, et al. 2015. Congestion control for large-scale RDMA
deployments. In ACM SIGCOMM Computer Communication
Review.

