
Research Statement
Ennan Zhai

Computer systems nowadays play a critical role in our daily lives: they provide heterogeneous Internet services, process
business transactions, and store personal and enterprise-scale information. In case of failure or compromise of any of
these systems, catastrophic consequences would follow. Nevertheless, we are faced with an ever greater challenge to
guarantee the security and reliability of computer systems, given the fact that they continue to increase in scale and
complexity, which makes the systems fragile and vulnerable, and complicates fault prevention and diagnosis.

My research aims to tackle the challenge of building secure and reliable systems, by integrating the usage of a variety
of techniques in areas including distributed systems, programming languages, verification and cryptography. Specifically,
my research approach is to first identify important security and reliability problems, then design suitable solutions in
principle, and finally build and refine practical systems based on the principle. I focus on targeting high-impact problems,
with the goal of developing solutions that are both practical and effective.

Using this approach, I have designed, developed, and evaluated a number of new systems, including a cloud structural
reliability auditing system (INDaaS [OSDI’14]), a language framework for cloud auditing (RepAudit [OOPSLA’17a]), a
tracking-resistant anonymous reputation system (AnonRep [NSDI’16]), software configuration verification systems (Con-
figC [CAV’16] and ConfigV [OOPSLA’17b]), a framework for automatic repair of firewalls (FireMason [FMCAD’17]),
and a spam-resistant meta-data system (SRaaS [VLDB’17]). The application-specific focus of my approach has brought
about fruitful collaborations with researchers from multiple fields, including systems, networking, programming lan-
guages, verification, cryptography, and database. Moreover, my research efforts have been recognized for their practical
significance and impact; for example, AnonRep has been deployed by blockchain companies (Katalysis and Oxchains),
and INDaaS has been reported in The Register [News’16].

In the following sections, I will discuss three pieces of my recent work in the areas of system reliability (§1), security
and privacy (§2), as well as verifications (§3), respectively. In the final section (§4), I will outline my future research
directions on topics, including programming languages, cybersecurity and system reliability.

1 Preventing Correlated Failures in Cloud-Scale Systems

Correlated failures in the cloud. Distributed systems today pervasively rely on redundancy techniques, e.g., replicating
important states and functionality across multiple servers, to ensure availability and reliability. In complex multi-layered
hardware/software stacks, however—especially in the clouds where many independent businesses deploy interacting
services on common infrastructure—seemingly independent systems may share deep, hidden dependencies such as
network infrastructure and software components. The failure of these unexpected common dependencies can lead to a
correlated failure—i.e., the simultaneous unavailability of multiple end-hosts—which in turn causes service downtime,
undermining redundancy efforts.

The state-of-the-art efforts on handling correlated failures focused on diagnosing root causes after service outages
occur. However, these post-failure forensics (e.g., accountability, provenance, and troubleshooting systems) not only
require prolonged failure recovery time in the face of structurally complex services, but also fail to prevent expensive
service downtime: the average cost of a datacenter outage in 2016 was $740,357.
Independence-as-a-Service (or INDaaS) [OSDI’14]. Disease prevention is better than diagnosis. I proposed and
developed Independence-as-a-Service (or INDaaS), an architecture to audit the independence of redundant systems
proactively, thus preventing correlated failures at the early stage. For a given redundant system, R, INDaaS first utilizes
pluggable dependency acquisition modules to automatically collect the structural dependency information (including
network and software dependencies) from a variety of sources underlying R. With this information, INDaaS then models
the structure reliability of R using fault graph, which is a special data structure representing a system as a directed acyclic
graph with logical gates. Finally, INDaaS analyzes the generated fault graph, not only quantifying R’s independence, but
also identifying dependencies potentially resulting in correlated failures.

However, correlated failures can be caused not only by dependencies within one single cloud provider, but also by
dependencies across multiple different cloud providers. Recent years, increasingly more application providers (e.g.,

www.cs.yale.edu/homes/zhai-ennan/ 1/4

iCloud and Zynga) redundantly rent different cloud providers (e.g., Amazon S3 and Microsoft Azure storage); however,
these cloud providers may share vulnerable third-party dependencies, such as buggy software libraries, DNS services,
and IXP routers. Application providers cannot readily know how independent the lower-level cloud providers they build
on redundantly really are. This is because the relevant common dependencies are often proprietary internal information,
which cloud providers do not normally share. INDaaS employs a private set intersection cardinality protocol to evaluate
the independence of all the alternative inter-cloud replication adoptions for application providers, while preserving the
business privacy of cloud providers. With the help of INDaaS, an application provider can select the most independent
inter-cloud replication deployment for her application, preventing correlated failure risks at th best efforts.
RepAudit [OOPSLA’17a]. For the single-cloud auditing case, INDaaS has three limitations. First, due to the lack of
language support, it is difficult for the operators to express auditing tasks for diverse purposes. Second, the fault graph
analysis approach in INDaaS is not scalable to the large cloud system with tens or hundreds of thousands of components.
Finally, once the operators notice any correlated failures risks, asking them to manually improve the current deployment
can be difficult and error-prone. I designed and developed a new system, named RepAudit, that is able to address the
above three limitations. First, RepAudit offers a declarative domain-specific auditing language, RAL, for the operators
to write auditing programs easily expressing diverse auditing tasks. Second, RepAudit presents a high-performance
auditing engine that not only parses the input RAL-program, but also calls the corresponding auditing primitives that in
principle transform fault graphs into Boolean formulas, and then solve the formulas by tweaking and leveraging various
verification tools, such as the MinCostSAT solver and model counter. Such a design enables RepAudit to offer 100%
accurate auditing results and 300× faster than INDaaS system. Finally, I equip RepAudit with a repair engine that accepts
reliability goals specified by the operators and then automatically generates improvement plans meeting those goals, e.g.,
for lower failure probability.

2 Tracking-Resistant Anonymous Reputation

User activity tracking in reputation systems. Online services (e.g., eBay, Yelp, and Stack Overflow) employ reputation
systems to help users evaluate information quality and incentivize civilized behavior, often by tallying feedback from
other users (e.g., “likes” or votes) and linking these scores to a user’s long-term identity. User reputations increase or
decrease based on this feedback, and reputation affects how widely a user’s future posts are viewed. This long-term
identity linkage between user behaviors and reputation, however, enables user tracking and appears at odds with strong
privacy or anonymity. For example, attackers have successfully revealed eBay users’ sensitive purchase histories by
analyzing only pseudonyms’ transactions and feedback. As privacy has become a major concern for online users, I aim at
answering the question: is it possible to build a practical anonymous reputation system that combines the benefits of
reputation with the privacy afforded by fully anonymous, unlinkable messaging? Achieving this goal is very challenging,
since the requirement to associate users with their historical activities seems to preclude anonymity—i.e., establishing
reputation while maintaining unlinkability of activities appears to be a paradox.

Prior efforts have been proposed to address this problem, but none have yet proven practical or sufficiently general
for realistic deployment. Specifically, the state-of-the-art efforts either rely on a centralized party that behaves honestly
(e.g., blind signature-based anonymous reputation), or fail to support negative feedback for confiscating reputations from
misbehaving users.
AnonRep [NSDI’16]. I designed, developed and evaluated AnonRep, the first practical anonymous reputation system
offering the benefits of reputation without enabling long-term tracking. AnonRep employs a small set of individual
servers that run verifiable shuffle protocol to assign one-time pseudonyms to clients in different messaging rounds. With
the one-time pseudonym, the clients can anonymously post messages, and can verifiably tag with their reputation scores
without revealing their long-term identities. On the other hand, AnonRep adapts linkable ring signature primitive to
reliably tally other users’ feedback (e.g., likes or votes) without knowing voters’ identities, while maintaining security
against score tampering or duplicate feedback. A working open-source prototype of AnonRep has been developed and my
experiments demonstrate that AnonRep scales linearly with the number of participating users. My AnonRep prototype
has been used by several blockchain startup companies, such as Katalysis and Oxchains.

www.cs.yale.edu/homes/zhai-ennan/ 2/4

3 Software/Network Configuration Correctness Reasoning

Software misconfiguration. System failures resulting from misconfiguration are one of the major reasons for the
compromised reliability of software systems today. The state-of-the-art efforts either diagnose configuration errors after
failures occur, or prevent simple configuration errors by analyzing both system code and configuration files. Verifying the
correctness of system configurations via machine-checkable proof is challenging, because 1) software configurations are
typically written in poorly structured and untyped “languages”, and 2) specifying rules for configuration verification is
difficult in practice.
ConfigV [OOPSLA’17b]. ConfigV is the first automatic framework for software configuration verification. ConfigV
works in the following three steps. First, ConfigV parses a training set containing many configuration files (not necessarily
all correct) into our proposed well-structured and probabilistically-typed intermediate representation. Second, based
on the association rule learning algorithm, ConfigV learns, derives and refines rules (i.e., specifications) from these
intermediate representations. These rules describe which properties correct configuration files need to satisfy, for example:
the configuration ordering, the configuration correlation, the configuration type, and the configuration pairing—none of
the state-of-the-art efforts can detect or specify these errors. Finally, given a configuration of interest, C, ConfigV can
verify whether C meets our learned rules. ConfigV was evaluated by verifying public configuration files on GitHub, and
our results show that ConfigV successfully detected many configuration errors in systems on GitHub.
Misconfigured enterprise-scale firewalls. Firewalls are widely deployed to manage the enterprise networks. Because
the enterprise-scale firewalls contain hundreds or thousands of rules, ensuring the correctness of firewalls—i.e., the
configuration rules meet the specifications of the operators—is an important but challenging problem. Although existing
firewall diagnosis can identify potentially faulty rules, they offer the operators little or no help with automatically fixing
these faulty rules. Fixing faulty rules in enterprise-scale firewalls is non-trivial, because: 1) it is difficult for the operators
to easily specify the errors, and 2) a simple repair may introduce new problems in somewhere else.
FireMason [FMCAD’17]. FireMason is the first practical effort that offers automated repair by example for firewalls.
Once a network operator observes undesired behavior in her network, she can provide input/output examples that
comply with the intended behaviors, under the assumption that examples are much easier specified by the operator than
conventional specifications (e.g., written in the first-order logic). Based on the input/output examples, FireMason can
automatically synthesize new firewall rules for the original firewall. This newly generated firewall rules correctly handle
packets specified by the examples, while maintaining the rest of the behaviors of the original firewall (i.e., without
side-effect). Through a conversion of the firewalls to SMT formulas, we offer formal guarantees that the change (i.e.,
repair) is correct. We evaluated FireMason based on real-world case studies from firewall repair questions on the Stack
Overflow, and the results showed that FireMason can efficiently and accurately find correct repairs.

4 Future Research Plans
As computer systems become a greater part of our society, they will operate in a wider variety of networks and interact
with more complex environments. Therefore, future computer systems will be faced with more security and reliability
challenges. To meet these challenges, my future research targets three general directions: programming languages,
cybersecurity and system reliability.
Direction 1 - Programming languages: New languages for security and reliability. Correctly developing secure and
reliable systems is challenging, because the building blocks used to guarantee system security and reliability—e.g.,
information flow control, advanced cryptographic protocols, and fault tolerance—have been designed too complex to be
implemented correctly in practice. This challenge has led to a rise of developers who are writing buggy or vulnerable code
in their systems. One of the ways to addressing this fundamental issue is to offer simple, expressive, and domain-specific
languages (or abstractions) that alleviate the burden of writing complex systems, and allow focus on the problems at hand
rather than tooling and language quirks. In addition to ease of use in the targeted problem domains, such abstractions and
languages allow for verification of accurate specification implementation and guarantees of certain security properties. I
am interested in constructing new abstractions and language frameworks that enable developers to implement and verify
complex systems with ease and accuracy. My success of RepAudit is encouraging me to pursue this direction.

www.cs.yale.edu/homes/zhai-ennan/ 3/4

In addition, given the fact that misconfiguration has become one of the major root causes for system outages, the
language support for easily writing configurations is important. However, compared to writing the system code, there are
few language for configurations. A good configuration language should make configuration writing become easier and
reliable, as well as make the configuration verifiable. I am interested in exploring new language abstractions for software
and network configurations. Besides the language for the configuration, I am also interested in proposing configuration
verification and repair tools. These tools can work together for the operators not only to easily write correct configuration,
but also to verify and fix system configuration errors. My past experience in developing ConfigV and ConfigC indicates
promise in the further exploration of such tooling.
Direction 2 - Cybersecurity: Securing Internet services via blockchain. Important Internet services for identity and
data management are being faced with many threats. For example, attackers can construct man-in-the-middle (MITM)
attacks to get the Certificated Authority (CA) to provide Internet users with forged public keys and decrypt private
information. Distributed Denial of Service (DDoS) attacks have also crippled DNS providers, e.g., Dyn, as recently
as in 2016. The fundamental root causes of the above issues are either due to the inability to publicly perform system
audits or because of single-point-failures. I am interested in addressing the above cybersecurity problems by leveraging
blockchain technology to design such systems to be decentralized and publicly auditable, while maintaining user privacy.
For example, in the MITM-attack case, a blockchain approach can make the CA system’s ledger publicly auditable. Such
a solution allows users to put their public keys in published blocks distributed over the participating nodes in a network,
meaning that keys become immutable and easier for fake keys to be detected. Additionally, in the DDoS example above,
a decentralized blockchain model makes it difficult for attackers to simultaneously overload all nodes in a distributed
network. For applications in which user data is sensitive, I aim to utilize my experience in security area to design new
cryptographic protocols that allow for privacy and anonymity preservation in the blockchain setting.
Direction 3 - System reliability: Predicating catastrophic failures caused in system runtime. Catastrophic failures—
i.e., service failures that affect all or the majority of users—resulting from errors introduced in system runtime have
accounted for the largest proportion of real-world cloud outages. For example, new software bugs introduced by system
updates can lead to correlated failures across global redundant instances, while misoperations of the datacenter operators
can also result in cloud-scale outages. The state-of-the-art efforts are focused on either diagnosing root causes after
outages occur, or proactively checking potential issues through static analysis. Bugs and misoperations introduced in
system runtime are challenging to predicate ahead of time, because many of such issues can be triggered or observed
only when the systems are actually run in the real environment. In other words, existing checking approaches are too
“static” to capture these failure sources. I am interested in predicating catastrophic-failure sources by 1) emulating
failure-inducing updates and operations based on tracing and log information, and 2) extracting potential failure sources
based on the similarity between emulated updates and actual system executions. I am also interested in constructing
runtime verification approaches to proactively alert the operators to potential catastrophic failure risks.

References
[OOPSLA’17a] Ennan Zhai, Ruzica Piskac, Ronghui Gu, Xun Lao, and Xi Wang. An auditing language for preventing correlated failures in the cloud.

In 32th ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Oct. 2017.
[OOPSLA’17b] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac Synthesizing configuration file specifications

with association rule learning. In 32th ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Oct. 2017.

[FMCAD’17] William Hallahan, Ennan Zhai, and Ruzica Piskac. Automated analysis and repair by example for firewalls. In 17th Formal Methods in
Computer-Aided Design (FMCAD), Oct. 2017.

[VLDB’17] Ennan Zhai, Zhenhua Li, Zhenyu Li, Fan Wu, and Guihai Chen. Resisting tag spam by leveraging implicit user behaviors. In 43th
International Conference on Very Large Data Bases (VLDB), Aug. 2017.

[CAV’16] Mark Santolucito, Ennan Zhai, and Ruzica Piskac Probabilistic automated language learning for configuration files. In 28th Computer
Aided Verification (CAV), Jul. 2016.

[News’16] The bigger they get, the harder we fall: Thinking our way out of cloud crash. Available at: http://www.theregister.co.uk/
2016/07/29/bryan_ford_bigger_icebergs/.

[NSDI’16] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, and Bryan Ford. AnonRep: Towards tracking-resistant
anonymous reputation. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Mar. 2016.

[OSDI’14] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading off correlated failures through Independence-as-a-Service.
In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Oct. 2014.

www.cs.yale.edu/homes/zhai-ennan/ 4/4

http://www.theregister.co.uk/2016/07/29/bryan_ford_bigger_icebergs/
http://www.theregister.co.uk/2016/07/29/bryan_ford_bigger_icebergs/

	Preventing Correlated Failures in Cloud-Scale Systems
	Tracking-Resistant Anonymous Reputation
	Software/Network Configuration Correctness Reasoning
	Future Research Plans

