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System failures resulting from configuration errors are one of the major reasons for the compromised

reliability of today’s software systems. Although many techniques have been proposed for configuration error

detection, these approaches can generally only be applied after an error has occurred. Proactively verifying

configuration files is a challenging problem, because 1) software configurations are typically written in poorly

structured and untyped “languages”, and 2) specifying rules for configuration verification is challenging in

practice. This paper presents ConfigV, a verification framework for general software configurations. Our

framework works as follows: in the pre-processing stage, we first automatically derive a specification. Once we

have a specification, we check if a given configuration file adheres to that specification. The process of learning

a specification works through three steps. First, ConfigV parses a training set of configuration files (not

necessarily all correct) into a well-structured and probabilistically-typed intermediate representation. Second,

based on the association rule learning algorithm, ConfigV learns rules from these intermediate representations.

These rules establish relationships between the keywords appearing in the files. Finally, ConfigV employs

rule graph analysis to refine the resulting rules. ConfigV is capable of detecting various configuration errors,

including ordering errors, integer correlation errors, type errors, and missing entry errors. We evaluated

ConfigV by verifying public configuration files on GitHub, and we show that ConfigV can detect known

configuration errors in these files.
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1 INTRODUCTION
Configuration errors (also known as misconfigurations) have become one of the major causes of

system failures, resulting in security vulnerabilities, application outages, and incorrect program

executions [Xu et al. 2015, 2013; Xu and Zhou 2015]. In a recent highly visible case [Ryall 2015],

Facebook and Instagram became inaccessible and a Facebook spokeswoman reported that this was

caused by a change to the site’s configuration systems. In another case, a system configuration

change caused an outage of AT&T’s 911 service for five hours. During this time, 12,600 unique

callers were not able to reach the 911 emergency line [Breland 2017]. These critical system failures

are not rare – a software system failures study [Yin et al. 2011], reports that about 31% of system

failures were caused by configuration errors. This is even higher than the percentage of failures

resulting from program bugs (20%).

The systems research community has recognized this as an important problem and many efforts

have been proposed to check, troubleshoot, and diagnose configuration errors [Attariyan and Flinn

2010; Su et al. 2007; Whitaker et al. 2004; Xu et al. 2016]. However, these tools rely on analyzing

the source code of the target systems or need to run the system multiple times to understand the

source of the errors. The support for a static analysis style verification for configuration files is still

not on the level of automated verification tools used for regular program verification [Bobot et al.

2015; Leino 2010; Piskac et al. 2014] that can preemptively detect errors.

There have been several prior efforts that attempt to proactively verify configuration files [Huang

et al. 2015; Santolucito et al. 2016; Xu et al. 2016; Zhang et al. 2014]. However, state-of-the-art

efforts have limitations that are impractical to meet in practice. In general, these efforts fall into

two categories with respect to their limitations.

• Tools that can detect sophisticated configuration errors, e.g., ConfigC [Santolucito et al.

2016], but at the cost of scalability. However, ConfigC requires a training set of 100% correct

configuration files to extract configuration rules. Such an assumption is too strong to be

impractical, because existing investigation studies [Wang et al. 2004; Yin et al. 2011] have

demonstrated determining or obtaining 100% correct configuration files to drive rules is

almost impossible in reality.

• Tools that do not rely on any strong assumptions e.g., EnCore [Zhang et al. 2014], PCheck [Xu
et al. 2016] and ConfValley [Huang et al. 2015], but cannot handle as sophisticated errors.

These tools have benefit that they do not require 100% correct training sets. In particular, these

efforts cannot detect more complex configuration errors, such as ordering errors, fine-grain

correlations, missing entry errors.

In this paper, we propose a framework, ConfigV, for automated verification of configuration

files, which mimics standard automated verification techniques: for a given configuration file, we

checked if it adheres to a specification, and if there are issues we report them to the user. Our

framework surmounts both of the aforementioned shortcomings present in existing tools.

There are two main obstacles to directly applying existing automatic program verification

techniques to configuration files. First, a lack of specifications on the properties of configuration files

makes the verification task poorly defined. There are surprisingly few rules specifying constraints

on entries, even written in plain English. Since asking users to write an entire specification for

configuration files is impractical and error-prone, we instead take a specification generation

approach. Second, the flat structure of configuration files is only a sequence of entries assigning

some value to system variables (called keywords) and provides little structural information. In

particular, the keywords in configuration files are often untyped, a useful property to leverage in

program verification.
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Our main task was to first derive a specification for configuration files. We first process a training

set of 256 industrial configuration files. This training set of files is available online [Xu 2017]. As

these files have been deployed in industry, they contain relatively few errors. This yields a mostly

correct training set.

In order to learn a specification from this large set of configuration files, the first step is to

translate the training set into a more structured typed representation. We then apply our learning

process to learn an abundant set of rules specifying various properties that hold on the given

training set. The learning process is a more expressive form of association rule learning [Agrawal

et al. 1993], which is used to learn predicate relations between multiple keywords in a configuration

file. The rules, in general, specify properties such as, pairwise keyword ordering (one keyword

must appear before another), or numerical value inequalities (the value of one keyword should

always be greater than another). This set of learned rules constitutes a specification for a correct

configuration file, which are then used to efficiently check the correctness of a user’s configuration

files and detect potential errors. The learning process is language-agnostic and works for any kind

of configuration files, though all of the files in the training set need to be of the same language

(such as MySQL or HTTPD configuration files).

ConfigV detects errors that may cause total system failures, but can also find more insidious

errors, such as configurations that will slow down the system only when the server load increases

beyond a certain threshold. Since these runtime errors may only be triggered after some time in a

deployment environment, the standard debugging techniques [Zeller 2005] of starting a system

multiple times with different configuration settings will not help detect these misconfigurations.

ConfigV works by analyzing a training set of partially correct files. A file in the training set

might contain several different errors, but errors only appear in a small percentage of files. We first

translate those files into an intermediary typed language. ConfigV then learns rules based on the

inferred types of the keywords from the training set. However, since the files might also contain

errors we take this into account when learning correct rules. All learned rules are annotated with

the probability of correctness. To ensure the learned rules are correct enough, ConfigV employs a

graph analysis to refine the set of learned rules. It analyzes the rule graph to rank the importance

and relevance of the learned rules.

We implemented ConfigV in Haskell and evaluated it on almost 1000 real-world configuration

files from GitHub. We demonstrate that we are able to detect known errors, based on StackOverflow

posts, in this data set. Furthermore, we find compelling evidence that our optimizations are effective.

For example, we introduce a probabilistic type inference system that removes 1043 false positives

errors reports to reduce the total fine grained relation errors to 325. The rule graph analysis

drastically improves the ranking of importance of the error reports, which allows users to more

quickly correct the most critical misconfigurations. Additionally, ConfigV scales linearly, whereas a

previous tool [Santolucito et al. 2016] showed exponential slow downs on the same benchmark set.

In summary, we make the following contributions:

• We propose the automated configuration verification framework, ConfigV, that can learn

specifications from a training set of configuration files, and then use the specifications to

verify configuration files of interest.

• We describe the logical foundation of using association rule learning to build a probabilistic

specification for configuration files.

• We analyze the learned rules to further refine the generated specification and we empirically

show the usefulness of this approach.

• We implement a ConfigV prototype and evaluate it by detecting sophisticated configuration

errors from real-world dataset.
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2 MOTIVATING EXAMPLES
In this section we illustrate capabilities of ConfigV by using several real-world misconfiguration

examples. These examples are sophisticated configuration errors that were reported on StackOver-

flow [sta 2017], a popular forum for programmers and administrators.

Example 1: Missing Entry Errors. Many critical system outages result from the fact that an

important entry was missing from the configuration file. We call such a problem a missing entry
error. In a public misconfiguration dataset [Xu 2017], many misconfiguration issues were reported

exactly to be missing entry errors. Below is a real-world missing entry error example [mis 2017c]:

when a user configures her PHP and PostgreSQL, she needs to use both pgsql.so and curl.so

in the /etc/php5/conf.d/curl.ini configuration file. This is usually achieved by the following

entries in the curl configuration file:

extension=pgsql.so

extension=curl.so

...

However, in this example the user accidentally left out the extension=pgsql.so entry, as done

by many users [mis 2017c; Yin et al. 2011], causing a segmentation fault. If the user would run

ConfigV on her file, our tool returns:

MISSING ENTRY ERROR: Expected "extension=pgsql.so"

in the same file: "extension=curl.so"

Example 2: Fine-grained Integer Correlation Errors. Our second misconfiguration exam-

ple [cor 2017] comes from a discussion on StackOverflow. The user has configured her MySQL as

follows:

max_connections = 64

thread_cache_size = 8

thread_concurrency = 8

key_buffer_size = 4G

max_heap_table_size = 128M

join_buffer_size = 32M

sort_buffer_size = 32M

The user then complains that her MySQL load was very high, causing the website’s response

speed to be very slow. The accepted answer to the post reveals that the value key_buffer_size

is used by all the threads cooperatively, while join_buffer and sort_buffer are created by each

thread for private use. By further consulting the MySQL manual, we are instructed that when

setting key_buffer_size we should consider the memory requirement of other storage engines.

In a very indirect manner, we have learned that there is a correlation between key_buffer_size

and other buffer sizes of the system. ConfigV learns the specific constraint that key_buffer_size

should not be greater than sort_buffer_size * max_connections. If we run ConfigV on the above

configuration file, ConfigV will give an explicit answer:

FINE GRAINED ERROR: Expected

"max_connections" * "sort_buffer_size" > "key_buffer_size"

We call these errors fine-grained integer correlations. ConfigV can also detect simpler integer

correlation: one entry’s value should have a certain correlation with another entry’s value. For

instance, in MySQL, the value of key_buffer should be larger than max_allowed_packet. While

several existing tools [Santolucito et al. 2016; Zhang et al. 2014] can detect simple integer correlation
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Fig. 1. ConfigV’s workflow. The dashed box is the specification learning module. The yellow components are
key modules of ConfigV.

errors, ConfigV is, to the best of our knowledge, the first system capable of detecting such complex

fine-grained integer correlation errors.

Example 3: Type Errors. Many system availability problems are caused by assigning incorrect

values of an incorrect type to a keyword. Consider the following misconfiguration file from

github [typ 2017d]: a user tries to install MySQL and she needs to initiate the path of the log

information generated by MySQL. This user puts the following entry assignment in her MySQL

configuration file:

slow-query-log = /var/log/mysql/slow.log

This misconfiguration will lead to MySQL fails to start [que 2017]. With ConfigV, this user can

get the following result:

TYPE ERROR: Expected an integer type for "slow-query-log"

This was indeed the error, since in MySQL there is another entry named “slow-query-log-file” used

to specify the log path.

Example 4: Ordering Errors. Ordering errors in software configurations were first reported by

Yin et al. [Yin et al. 2011], but not many existing tools can detect them. The following example

contains an ordering error in a MySQL configuration file that causes the system to crash [inn 2017].

innodb_data_file_path = ibdata1:10M:autoextend

innodb_data_home_dir = /var/lib/mysql

innodb_flush_log_at_trx_commit = 1

innodb_lock_wait_timeout = 50

By invoking ConfigV the user receives a correct report that innodb_home_dir should appear

before innodb_data_file_path, as shown below:

ORDERING ERROR: Expected "innodb_data_home_dir[mysqld]" BEFORE

"innodb_data_file_path[mysqld]"

3 THE CONFIGV FRAMEWORK OVERVIEW
Fig. 1 gives an overview of the ConfigV framework. The main part is dedicated to learning and

inferring the specification for configuration files. This process is done offline, before the user even

starts to use ConfigV. There are three main steps in the process: translation, learning, and rule

refinement.

Translator. The translator module first parses the input training set of configuration files and

transforms them into a typed intermediate representation. Entries in a configuration file follow
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a key-value pattern, where some environmental variable (“key”) is assigned a value. However, it

is not always possible to fully determine the type of the key by inspecting the value at a single

entry [Xu et al. 2015]. We address this problem by introducing probabilistic types. Rather than
giving a variable a single type, we assign several types over a probability distribution that can later

be resolved to type upon which we will learn rules.

Learning. The learner converts the intermediate representation from the translator to a set of

rules. It employs a variation on the association rule algorithm [Agrawal et al. 1993], to generate

this list of rules, which describe properties of a correct configuration file. This is a probabilistic

verification approach that learns a specification for a correct file over an unlabeled training set of

both correct and incorrect configurations files. The learning algorithm uses various instances of a

rule interface to learn different classes of rules, such as ordering or integer relations. These rules

are then considered necessary for any correct configuration files, and can be used for verification.

Rule Graph Analysis. Finally, the logically structured representation of learned rules allows for

a further rule graph analysis. The purpose of this module is to refine the learned rules. To this

end, we introduce the concept of a rule graph that can be built from the output of the modified

association rule learning algorithm. We analyze the properties of this graph to construct a ranking

of rules by their importance, as well as to produce a measure of complexity for any configuration

of the target system. While the metrics in used in ConfigV are effective, they are not intended to be

exhaustive. The information contained in the structured representation of the learned rules is a

unique benefit of the learning algorithm, that has potential to be leveraged in many new ways.

4 TRANSLATOR
The translator takes as input a training set of configuration files and transforms it into a typed and

well-structured intermediate representation. The translator can be seen as a parser used to generate

an intermediate representation for the learner module (cf. Sec. 5). Parsing a file for translation is

application dependent since each configuration language (MySQL, Apache, PHP) uses a different

grammar. ConfigV allows users to provide extra help to the translator for their specific system

configurations.

The translator converts each key-value assignment k = v in the configuration file to a triple

(k,v,τ ), where τ is the type of v . There are two major challenges in this step. First is that configu-

ration files’ keywords are not necessarily unique and may have some additional context (modules

or conditionals). To solve this, we rely on the fact that keywords in a configuration file must be

unique within their context, and rename all keywords with their context. The set of unique keys,

K , for the sample training set in Fig. 2 would then be ["foo[server]",“bar[client]”].

Listing 1. file1.cnf

[server]

foo = ON

[client]

bar = 1

Listing 2. file2.cnf

[server]

foo = ON

[client]

bar = ON

Listing 3. file3.cnf

[server]

foo = OFF

[client]

bar = OFF

Fig. 2. A sample training set of configuration files
Probabilistic Types. An additional challenge is that it is not always possible to fully determine

the type of key based on a single example value. For this reason, we introduce probabilistic types,
as contrasted with basic types. In ConfigV, the finite set of basic types contains strings, file paths,

integers, sizes, and Booleans. Taking the configuration 1, we can assume foo is a Boolean type by

the grammar of MySQL, but the keyword bar could be many types. If we choose the type based on
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cint = |{∀C ∈ T R . ∀(k,v ) ∈ C . v ∈ Z}|
cbool = |{∀C ∈ T R . ∀(k,v ) ∈ C . v ∈ {0, 1,ON ,OFF }}|

k : τ̃ [int = cint ,bool = cbool ]
ptype

k : τ̃ pint (τ̃ )

k :: int
int

k : τ̃ pbool (τ̃ )

k :: bool
bool

k1 :: τ k2 :: τ

eq(k1,k2) :: Rule
eq

k1,k2 ∈ C k1 , k2

ord (k1,k2) :: Rule
order

Fig. 3. Type judgments for a probabilistic type system with T = {bool , int } and an equality and ordering rule

the first example, bar will be a integer type. If we choose a type that fits all examples, bar will be

a string. However the correct classification needed is a Boolean type. For illustrative purposes, let

us assume that there is an important rule we must learn about this configuration language, where

two Boolean keywords should always have the same values, e.g. eq(foo,bar). If we take bar:: int ,
we do not learn the above rule, nor do we learn this rule with bar:: strinд - only with bar:: bool
is the rule is valid. To resolve this ambiguity, and choose the best type, the translator assigns a

distribution of types to a keyword based on examples from the training set of configuration files

(denoted T R = {C}).
A probabilistic type is a set of counts over a set T of basic types. Formally, we define a space

of probabilistic types
˜T , where τ̃ ∈ ˜T has the form τ̃ = {(τ1, c1), . . . , (τn , cn )}, such that τi ∈ T ,

ci ∈ Z. Fig. 3 provides a calculus for probabilistic types over an example subset of basic types. This

allows us to give a clear definition of the set of possible (i.e.well-typed) equality rules. In a general

sense, probabilistic types can be seen as discrete probability distributions over basic types weighted

by occurrence.

Every unique keyword k ∈ T R has a probabilistic type, expressed k : τ̃ , as opposed to the basic

type notation k :: τ . The count for (τi , ci ) ∈ τ̃ should be equal to the number of times a key in T R

has a potential match to type τi . The judgment PTYPE counts, over all files C ∈ T R, the times the

value of a key matches a user defined set of acceptable values for each type τi ∈ τ̃ . We use the

notation τ̃ [τi = N ] to create a probabilistic type with the count of N for τi ∈ τ̃ .

In the BOOL judgment, a keyword with a probabilistic type k : τ̃ ∈ ˜T can be resolved to the

basic type bool when the τ̃ satisfies the resolution predicate pbool , i.e. the probabilistic type has
sufficient evidence. The definition of sufficient evidence must be empirically determined by the

user depending on the quality of the training set.

In order to define resolution predicates, we use the notation |τi τ̃ | to select ci from a τ̃ ∈ ˜T . As an

example, for the sample training set provided in Fig. 2, we might choose to set pbool (τ̃ ) = |boolτ̃ | ≥
3 ∧ |intτ̃ | ≤ 1 and pint (τ̃ ) = |intτ̃ | ≥ 3. We then can run inference on that sample training set to

derive a probabilistic type bar: [bool = 3, int = 1]. This is then resolved, as required in our earlier

example, to bar:: bool .
Note that a user may pick predicates for probabilistic type resolution that result in overlapping

inference rules. For example, if a user instead picked pint (τ̃ ) = |intτ̃ | ≥ 1, this predicate would

overlap with the pbool predicate. This means that basic types are not unique in this system: k ::

τ ∧ k :: τ ′ ⇏ τ = τ ′.
In the case that there is not enough evidence to resolve a probabilistic type to a basic type, no

type-dependent rules may be learned over that keyword. However, we are still able to learn rules

such as ORDER, which do not require any resolved type.
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5 LEARNER
The goal of the learner is to derive rules from the intermediate representation of the training set

generated by the translator. We describe an interface to define the different classes of rules that

should be learned. Each instance of the interface corresponds to a different class of configuration

errors, as described in Sec. 2.

To learn rules over sets of configuration files, we use a generalization of association rule learn-
ing [Agrawal et al. 1993], a technique very briefly summarized as inductive machine learning.

Association rule learning is used to learn how frequently items of a set appear together. For exam-

ple, by examining a list of food store receipts, we might learn that when a customer buys bread and

peanut butter, the set of purchased items is also likely to include jelly. Since configuration files have

multiple complex relations, we extend these association relationships to generalized predicates.

In traditional association rule learning, rules take the form of an implication:

r = {S0, ..., S |S | } ∈ valid ⇒ {T0, ...,T |T | } ∈ valid

where S and T are source and target sets of words. This rule states that if the set of words S appear

in some valid (i.e. non-rule breaking) file, the words T must also appear in that file. We generalize

this relation so that a rule, r , instead takes the following form:

r = [S0, ..., S |S |] ∈ Cvalid ⇒ Cvalid ⊢ p ([S0, ..., S |S |], [T0, ...,T |T |])

This rule relates the keywords Si ,Tj ⊆ K for 0 ≤ i ≤ |S |, 0 ≤ j ≤ |T | with a predicate p. Whenever

the set of keywords S is present in some valid configuration file, Cvalid , the predicate p must hold

over S andT given the context of Cvalid . In keeping with vocabulary from association rule learning,

we refer to Sr and Tr as the source and target keyword lists of rule r respectively. A rule states that

if the source list of keyword appears in a valid configuration file, the given predicate must hold

between the source and target lists. For clarity in notation, we define all predicates to have arity 2

by separating the source and target keywords into lists of length |S | and |T | respectively, but these
can be equivalently thought of as predicates of arity |S | + |T | as notated in Fig. 3.

Taking the food store example, our learned rule would be:

[bread,butter ] ∈ valid ⇒ valid ⊢ assoc ([bread,butter ], [jelly])

where the assoc predicate denotes that the words must all appear in a file. In this way, our formalism

is more expressive than the classic association rule learning problem.

The setK is the set of unique keys from the training set (denoted T R) and the predicate p is one

of the classes of configuration errors. The task of the learning algorithm is to transform a training

set to a set of rules, weighted with support and confidence. The set of rules learned from training

set T R constitutes a specification for a configuration file to be considered correct.

The two metrics, support and confidence, are used in association rule learning, as well as other

rule based machine learning techniques [Han et al. 2007; Langley and Simon 1995]. We use slightly

modified definitions of these, stated below, to handle arbitrary predicates as rules. During the

learning process, each rule is assigned a support and confidence to measure the amount and quality

of evidence for the rule.

support(r) =
|{C ∈ T R | Sr ∪Tr ⊆ C}|

|T R|

confidence(r) =
|{C ∈ T R | C ⊢ pr (Sr ,Tr )}|

support (r ) ∗ |T R|

Support is the frequency that the set of keywords in the proposed rule, S ∪T , have been seen

in the configuration files C in the training set T R. Confidence is the percentage of times the rule

predicate has held true over the given keywords. In the learning process, each class of rule is
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k1 :: bool

isbool ([k1], [k1]) :: Rule
bool

k1 :: int

isint ([k1], [k1]) :: Rule
int

missinд([k1], [k2]) :: Rule
missing

k1,k2 :: int

compare ([k1], [k2]) :: Rule
coarse_grain

k1,k2,k3 :: int

compare ([k1,k2], [k3]) :: Rule
fine_grain

k1,k3 :: size k2 :: int

compare ([k1,k2], [k3]) :: Rule
fine_grain

Fig. 4. An expanded set of typing judgements for valid rules

manually assigned a support and confidence threshold, ts and tc respectively, below which a rule

will be rejected for lack of evidence. We denote the set rules that are learned and included as part

of the final specification are as follows:

Learn(T R ) = {r | support (r ) > ts ∧

confidence(r) > tc ∧ (1)

S, T ⊆ K }

5.1 Error Classes
Each class of error forms a rule with a predicate p, and choices of |S | and |T |, the sizes of the source
and target keyword lists. Ordering errors require |S | = 1, |T | = 1 and use the predicate order which
means if both keywords S0,T0 appear in a file, S0 must come before T0. For example, the ordering

error given in Sec. 2 is expressed:

[innodb_data_home_dir] ∈ Cvalid ⇒

Cvalid ⊢ order ([innoddb_data_home_dir], [innodb_data_file_path])

Missing keyword entry errors require |S |, |T | = 1 and use the predicate missinд to mean the

keyword T0 must appear, in any location, in the same file as the keyword S0 in any configuration

file. The type rule is a set of rules over multiple predicates, where |S | = 1, |T | = 1. These type

rules take the form S0 ∈ Cvalid ⇒ Cvalid ⊢ is_([S0], [S0]) where _ (underscore) matches all the

basic types (bool, int, size, etc), as shown in Fig. 4. In this case, the source and target are the same

keyword, since a type constraint is only on a single keyword.

ConfigV also supports two types of integer correlation rules, coarse-grained and fine-grained.

Both integer correlation rules are set of rules over the set, compare , of predicates {<,=, >}. Coarse
grain rules require |S |, |T | = 1, and the predicates have the typical interpretation. Fine-grained rules

use |S | = 2, |T | = 1, and interpret the predicates such that for k1, k2 ∈ S, k1 ∗ k2 must have the

predicate relation toT0. The integer correlation rules also use probabilistic types to prune the search

space. To avoid learning too many false positives, we restrict this rule to either size ∗ int = size , or
int ∗ int = int , as shown in Fig. 4. Without probabilistic typing, we would also learn rules which

do not have a valid semantic interpretation, for example a relation between three size keywords

(k1,k2,k3 :: size) of the form k1 ∗ k2 > k3.
We chose the predicates in Fig. 4 based on our own experience, as well as prior issues identified

in [Xu et al. 2015; Yin et al. 2011]. Other predicates might also be interesting for other configuration

languages, for example comparing IP subnets. Predicates are not language dependent and we have

defined the core predicates that should be needed for most configuration languages here. If a user

requires other predicates for their particular use case, they may be added following the same format

as above.
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5.2 Checker
With the rules generated by the learner module, ConfigV checks whether any entry in a target

configuration file violates the learned rules and constraints. ConfigV parses a single verification

target configuration file with the translator from Sec. 4 to obtain a set of key-value pairs, C, for that

file. Then, the checker applies the learner from Eq. 1 with Learn(C), to build the set of relations

observed in the file, with the thresholds ts , tc = 100%. The checker will then report the following

set of errors:

Errors(C) = {r | Sr ∪Tr ∈ C ∧

r ∈ Learn(T R ) ∧

r < Learn(C)

For any relation from the verification target that violates a known rule, the checker will report

the predicate and keyword sets associated with that rule as an error. Since this is a probabilistic

approach, in our tool ConfigV, we provide the user with the support and confidence values as well

to help the user determine if the rule must be satisfied in their particular system. For instance, the

key_buffer misconfiguration from Sec. 2 will only be noticeable if the system experiences a

heavy traffic load, so the user may choose to ignore this error if they are confident this will not be

an issue.

6 RULE GRAPH ANALYSIS
The learner outputs a set of rules learned from the training set as described in Sec. 5. Recall that

a rule is an implication relationship of the basic form r = Sr ∈ Cvalid ⇒ Cvalid ⊢ p (Sr ,Tr ). This
data is necessary to perform the core verification task, but can also be used for further analysis.

By interpreting the rules as a graph (which we call the rule graph), we can use tools from graph

theory to extract information about the configuration space that can improve the quality of the

learned model. We inspect properties of this rule graph to sort reported errors by those most likely

to be valid. To demonstrate the additional value of the rule graph, we also use it to estimate the

complexity of a configuration file.

Accessibility of the rule graph is a useful property of the association rule learning technique

applied by ConfigV. While it is possible to analyze the models from other machine learning

techniques, such as neural networks [Lei et al. 2016] and conditional random fields [Raychev et al.

2015], these analyses require a deep knowledge of the applied techniques. In contrast, the rule graph

is a relatively simple, yet information rich, representation of the learned model. The following

section provides a precise definition of the rule graph and demonstrates useful metrics we derive

for the purposes of ranking reported errors and complexity analysis.

6.1 Rule Ordering
We define the rule graph as a directed hypergraph H = (V ,E), with vertices V = {keywords} and
labeled, weighted edges E = {(Vs ,Vt , l ,w )}. The set of edges is constructed from the learned rules,

using the source and target keyword sets as sources and targets respectively, the predicates as

labels, and the confidence as weights:

∀r ∈ Learn(T R ). ∃e ∈ E.

Vs = Sr ∧Vt = Tr ∧ l = pr ∧w = confidence(r)
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typeI NT ({k1}, {k1})

missinд ({k1}, {k2})

order ({k2}, {k3})

f ine дrain≥ ({k1,k3}, {k2})

D (k1) = 0.9 + 0.9 + 0.8 + 0.6

k1 k2k2

k3

typeI NT
conf. = .9

missinд
conf. = .8

order
conf. = .7

f ine дrain≥
conf. = .6

Fig. 5. A rule graph constructed from the example rules over keywords k1, k2, k3 on the left. Dashed lines
indicate the source and target vertex sets for each rule. The rules typeI NT ,missinд, and f ine дrain≥ are in
the slice sets used to calculate the degree of k1.

We will also denote EV1,V2
⊂ E as the slice set of E overV1,V2. We can think of EV1,V2

as the subset

of edges in E such that each source set Vs shares a vertex with V1 and each target set Vt shares a
vertex with V2. Formally:

EV1,V2
= {(Vs ,Vt , l ,w ) ∈ E | ∃v1 ∈ V1 ∧v1 ∈ Vs ∧

∃v2 ∈ V2 ∧v2 ∈ Vt }

We denote a standalone vertex v in our subscripts as notational convenience for the singleton

set containing that vertex v .
The size of an edge set, |E |, is the sum of all weights in that set. The use of the support and

confidence thresholds ts and tc in the learner ensure that all weights in the rule graph are positive.

We then define a measure of degree,D (v ), for each vertexv as the sum of in-degree and out-degree.

|E | =
∑

(S,T ,l,w )∈E

w

D (v ) =
∑
v ′∈V

|Ev,v ′ | +
∑
v ′∈V

|Ev ′,v |

As an example of the rule graph construction and degree calculation, consider the rules presented

in Fig.5. We assume that those rules are the result of learning over some training set, and have

confidence values as notated in the graph. We can then construct the rule graph as demonstrated

on the right of Fig. 5. The rule graph is then used to calculate the degree of the keywords, which

indicate the estimated importance of each keyword.

We may now use this measure to rank our errors. The more rules of high confidence are extracted

for a keyword by the learner, the higher the D (v ) of the corresponding vertex in the rule graph.

In our final analysis, we use this classification of rules to order the reported errors by estimated

importance.

Keywords (specifically their corresponding vertices) of low D (v ) may be rarer configuration

parameters where rules learned are more likely to be governed by technical necessity, rather than

industry convention. As such, errors reported involving low-degree keywords are more likely to be

errors of high significance and should be presented with high importance to users of ConfigV.

Specifically, for an error reported by ConfigV on a rule r involving keywords K , we rank the

errors by:
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RANK(r) =
∑

k ∈K D (k )

|K |
The results from ranking errors in this way are presented in Sec. 7.

6.2 Complexity Measure
We may also use the rule graph to advance our general knowledge of the configuration space,

outside the strict confines of a verification system. As an example, we present a heuristic for

configuration file complexity based on the topology of the rule graph. This measure of complexity

could be used by software organizations to manage configuration files in much the same way as

Kolomogrov complexity [Kolmogorov 1965] is used to manage code - identifying potentially brittle

configurations for targeted refactoring.

For a configuration file with a set of keywords K and a rule graph H = (V ,E), we define our
complexity measure:

C (K ,H ) =
∑
k ∈K




1 ∗ (1 −
|Ek,K |
|Ek,V |

) if |Ek,V | > 0

1 otherwise

(2)

The complexity measure, C, can be thought of as an extension of the naïve line-counting measure

of complexity.When a keyword in the configuration file is present in the rule graph, wemay consider

the set Ek,K to be all learned rules involving keyword k that are relevant to the configuration file

being examined. The set Ek,V denotes all learned rules involving k . Given these sets, we may think

of
|Ek,K |
|Ek,V |

as representing the amount that k is constrained in the current configuration file relative

to how much it could be constrained in the global configuration space. The more constrained

a configuration keyword in a particular configuration file, the less it should contribute to the

complexity (hence 1∗ (1−
|Ek,K |
|Ek,V |

)). If a keyword is not constrained at all in the current configuration

file or is not present in the rule graph, we revert to the standard counting metric of complexity.

While an in-depth evaluation of the complexity metric presented here is out of scope for this

paper, we use this measure to demonstrate the flexibility of the rule graph, and potential for further

applications.

7 IMPLEMENTATION AND EVALUATION
We have implemented a tool, ConfigV, and evaluated it based on real-world configuration files

taken from GitHub. ConfigV is written in Haskell and is available open source at https://github.

com/santolucito/configV. Thanks to Haskell’s powerful type system, the implementation can easily

be extended with new rule classes or applied to different configuration languages with minimal

change to the rest of the code base. When adapting ConfigV to a new language, the key components

that must be provided are a parser into our intermediate representation and a training set of

configuration files in the new language. In some cases, a user may also require new types or

predicates to learn over. In this case, a user only needs to provide the functions for the rule interface

(a typeclass in Haskell) to 1) learn relations from a single file 2) merge two sets of rules and 3) check

a file given some set of rules.

7.1 Evaluation
To evaluate our ConfigV prototype, we require a separate training set and test set. For the training

set, T R , we use a preexisting set of 256 industrial MySQL configuration files collected in previous

configuration analysis work [Xu 2017]. This is an unlabeled training set, though most of the files

have some errors. For the test set, we randomly sampled 1000 MySQL configuration files from
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GitHub, and filtered the incorrectly formatted files out for a final total of 973 files. While our

tool can detect incorrectly formatted files, we exclude them here as they do not add any useful

information to the training set. The focus of our evaluation are MySQL files for comparability of

results, but ConfigV can handle any configuration language (that can be parsed to the intermediate

representation from Sec. 4).

We report the number of rules learned from the training set and the number of errors detected

in the test set in Table 1. One interesting note is that without probabilistic types we learned 327

fine grained rules and detected 1368 fine grained errors. By introducing probabilistic types, we

remove 224 incorrect rules and thereby remove 1043 false positives. We are guaranteed these are all

false positives since there cannot be a correct rule of an incoherent type. For example, comparing

the types size ∗ size and size is not meaningful, and thus cannot be a correct rule, because of the

semantic interpretation of the size units as memory.

We also provide the support and confidence thresholds, ts , tc , used in this evaluation. These

thresholds can be adjusted by the user to control the level of assurance that their file is correct. The

ideal setting will depend on both the user preference and training set quality. In our evaluation, we

adjust the support and confidence values such that when ConfigV is run on a file with no more

than 3 known errors, ConfigV reports those errors and no others. Following common practice from

association rule learning, initial values for support are confidence are generally in the range of 10%

and 90% respectively.

We record the histogram of errors across the test set in Fig. 6. This is intuitively an expected result

from randomly sampling GitHub – most repositories will have few errors, with an increasingly

small number of repositories having many errors. When sampling repositories from GitHub, we

searched for any files with the common MySQL extension ‘.cnf’. To ensure the files we found

were really configurations for MySQL we searched specifically for files that contained keywords

common to MySQL such as ‘mysql’ and ‘size’ and ‘innodb’. The repository sampling had a wide

variety of sizes and contributors. The average number of contributors per repository was 5.85 with

a standard deviation of 9.73. The average number of commits per repository was 2767.04 with a

standard deviation of 10362.57. These numbers indicate the wide range of repositories sampled.
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Fig. 6. Histogram of errors

The errors reported over the GitHub files may have varying impacts on the system, ranging from

failing to start, runtime crash, or performance degradation. However, since ConfigV is a probabilistic

system, it is also possible that some errors are false positives - that is, a violation of the rule has no

effect on the system. Note that in contrast to program verification, we do not have an oracle for
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Table 1. Results of ConfigV

Class of Error # Rules Learned # Errors Detected Support Confidence
Order 12 63 6 % 94 %

Missing 53 55 2 % 71%

Type 94 345 12 % 70%

Fine-Grain 103 325 24 % 91%

Coarse-Grain 97 237 10 % 96%

determining if a reported error is a true error or a false positive. While we can run a program to

determine the effect a specification has on the success of compiling/running the program, no such

test exists for configuration files. Because configurations are dependent on the rest of the system

(i.e., the available hardware, the network speed, and the usage patterns), we cannot simulate all the

conditions to determine if a reported error will cause system failure. As evidenced by Example 2,

some misconfigurations will only cause greater than expected performance degradation, and only

under particular traffic loads. In light of this, the definition of a true error is necessarily imprecise.

7.2 Issue Reporting Back to Users
As one metric to help evaluate the usefulness of our tool, we submitted GitHub issue reports for

these bugs. Too avoid unnecessary burden on these users, we reported only at most the top three

issues for each configuration file. Additionally, we submitted at most one report per user, so that

users with multiple configuration files that we tested would receive a single message. Applying

these filters resulted in a total of 215 issue reports submitted to open source repositories – the

issues can be found at through the GitHub search at https://goo.gl/KNFuuz. At the time of writing

this paper, we have received feedback on 21 of these issues. Because of the variety of feedback, we

present a selection of the responses from users.

An interesting point is two users had opposite reactions to the same error. The error Expected

query-cache-type[mysqld] <= max-allowed-packet[mysqld]was reported to two different users.

While one user was appreciative and interested, replying with the message “Wow, thanks guys”,

the other user responded in colorful language that he does not believe that these two values should

even be compared. A number of users responded that they could not provide feedback because

the repository was outdated or not maintained and they were not sure of the effect such an error

might have on the system.

We also received feedback that helped us discover some limitations of our training set and pointed

us towards future improvements. For example, when we reported the error Expected "key-buffer

[isamchk]" in the same file as "[isamchk]", the user commented that key-buffer is a de-

preciated keyword that has been replaced with key-buffer-size. In this case, our training set of

files had been used to configuration an earlier version of MySQL than the target verification file of

the user. The error in this case is in fact a true positive for earlier versions of MySQL, but in later

versions, key-buffer-size is preferred instead.

While this use case highlighted a limitation of our training set, it also provides further motivation

that such a tool is important. As configuration specifications are constantly changed, maintaining

a manually written set of specification is an increasingly impractical task. We have learned from

this case study that, in practice, it will be important to ensure the training set of is using the same,

or similar, system version as the verification target.
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Table 2. Sampled misconfiguration files for error detection evaluation.

Errors URLs None RG PT RG∧ PT

ORDERING ERROR: Expected “innodb_data_home_dir” BEFORE

“innodb_data_file_path”

[ord 2017c] 12/12 3/12 5/5 3/5

[ord 2017a] 11/11 2/11 3/3 3/3

[ord 2017b] 9/9 3/9 4/4 3/4

MISSING ERROR: Expected “key_buffer” WITH [isamchk]

[mis 2017d] 6/10 2/10 2/4 2/4

[mis 2017a] 2/3 3/3 2/3 3/3

[mis 2017b] 2/3 3/3 2/2 3/3

TYPE ERROR: Expected bool for “thread_cache_size”

[typ 2017c] 1/12 1/12 1/4 1/4

[typ 2017a] 1/9 1/9 1/1 1/1

[typ 2017b] 1/8 1/8 1/3 1/3

FINE GRAINED ERROR: Expected

“max_connections” * “sort_buffer_size” > “key_buffer_size”

[fin 2017a] 30/34 18/34 6/7 3/7

[fin 2017c] 23/25 9/25 8/9 3/9

[fin 2017b] 20/23 14/23 6/7 5/7

INTEGER CORRELATION ERROR: Expected

“max_allowed_packet” < “innodb_buffer_pool_size”

[int 2017c] 29/32 8/32 11/14 4/14

[int 2017a] 22/23 2/23 9/10 2/10

[int 2017b] 10/12 4/12 4/4 2/4

7.3 Sorting Error Reports
Although we cannot identify false positives, we can identify true positives by examining online

forums, like StackOverflow. On these forums we find reports that particular configuration settings

have caused problems on real-world systems. Furthermore, any error for which we can find evidence

online is likely to be more problematic than errors that do not have an online record, using the

reasoning that this error has caused enough problems for people to seek help online. Given that some

errors are more severe than others, we would like ConfigV to sort the errors by their importance

or potential severity. To achieve this sorting we use the rule graph analysis metric described in

Sec. 6.1.

To estimate the impact of this metric, we track the rank of known true positives with, and

without, the augmented rule ordering in Table 2. For this table, we picked the known true positive

rules, listed in the Errors column, and pick configuration files in the test set that have these errors.

We picked 3 files for each true positive by choosing the files with the highest number of total

reported errors in order to clearly observe the effects of our optimizations. Although this gives a

more clear picture of the effect of our optimizations, it results in a slightly inflated false positive

rate.

We test the following conditions; just rule graph analysis (RG) to sort the errors, just probabilistic

types to filter the rules (PT), and both optimizations at the same time (RG ∧ PT). For each entry we

list X/Y, where X is the rank of the known true positive, and Y is the total number of errors found

in that file.

7.4 False Positive Rate
Because ConfigV detects complex and subtle misconfigurations that, for example, may cause

performance degradation in a high traffic load, false positives are system and use-case dependent

and therefore ill-defined. However, we report an estimation of the false positive rate for comparison

to other tools. To estimate a false positive rate, we asked two industry experts, one from MongoDB

and one from Microsoft, to independently classify all errors from Table 2. For each unique error

reported in Table 2 (a total of 70 unique errors), the expert was asked to classify the error as:

definitely false positive, potential true positive, or definitely true positive. The MongoDB expert

rated 13/70 errors as definitely false positives. The Microsoft expert rated 8/70 errors as definitely
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Table 3. Time for training over various training set sizes

# of Files for Training ConfigC (sec) ConfigV (sec)
0 0.051 0.051

50 1.815 1.638

100 13.331 4.119

150 95.547 10.232

200 192.882 12.271

256 766.904 15.627

false positives. The similarity between experts is suggestive that these are approximately correct

classifications.

The resulting false positive rate is then estimated to be 11%-18%. This is within the range of the

false positive rate in existing work. For example in the EnCore tool, which had a false positive rate

of 13%, 21%, 32% for MySQL, Apache, and PHP respectively [Zhang et al. 2014]. We note again that

as opposed to a tool like EnCore, which is used mainly to detect initialization errors, thanks to

the complex relations that can be learned, ConfigV also learns misconfigurations causing runtime

performance degradation. This means ConfigV generates a larger rule set, and false positives cannot

be guaranteed, i.e. there may be some environment conditions that will cause a “false” positive to

become a true positive.

In contrast, a true positive can be confirmed as such based on evidence of unwanted system

behavior. The errors listed in Table 2 are confirmed true positives, evidenced by posts on help

forums. ConfigV detected and reports these errors in the 15 code repositories listed in the URL

column of Table 2. These are real-world configuration files that contain errors that may be unknown

to the maintainers of the repositories.

7.5 Runtime Performance
We also evaluate the speed of ConfigV. Generally, once a set of rules has been learned, it is not

necessary to rerun the learner. However, using ConfigV on a new language does require rerunning

the learner. We have only used ConfigV to build rules for MySQL here, but any configuration

language might be analyzed with ConfigV given a parser and training set. Additionally, in an

industrial setting, the available training set may be much larger than ours, so it is important that

the learning process scales. We see in Table 3 that ConfigV scales roughly linearly.

We compare ConfigV to our prior work in configuration verification, ConfigC [Santolucito et al.

2016]. Although ConfigC does not support as advanced features as ConfigV, such as fine-grained

correlations, probabilistic types, or rule graph ordering, we report training times here for both tools

over the same training set on configuration files. ConfigC scales exponentially because the learning

algorithm assumes a completely correct training set, and learns every derivable relation. With

ConfigV, we instead only process rules that meet the required support and confidence, reducing

the cost of resolving to a consistent set of rules. The times reported in Table 3 were run on four

cores of a Kaby Lake Intel Core i7-7500U CPU @ 2.70GHz on 16GB RAM and Fedora 25. Even with

support for the more advanced features, ConfigV still far outperforms ConfigC.

8 RELATEDWORK
Configuration verification has been considered a promising way to tackle misconfiguration prob-

lems [Xu and Zhou 2015]. Nevertheless, a practical and automatic configuration verification ap-

proach still remains an open problem.
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Language-support misconfiguration checking. There have been several language-support

efforts proposed for preventing configuration errors introduced by fundamental deficiencies in

either untyped or low-level languages. For example, in the network configuration management area,

administrators often produce configuration errors in their routing configuration files. PRESTO [Enck

et al. 2007] automates the generation of device-native configurations with configlets in a template

language. Loo et al. [Loo et al. 2005] adopt Datalog to reason about routing protocols in a declarative

fashion. COOLAID [Chen et al. 2010] constructs a language to describe domain knowledge about

devices and services for convenient network reasoning and management. Compared with the

above efforts, ConfigV mainly focuses on software systems, e.g., MySQL and Apache, while our

main purpose is to automate configuration verification rather than proposing new languages to

convenient configuration-file writing.

The closest effort to ConfigV is ConfigC [Santolucito et al. 2016], which aims to learn configuration-

checking rules from a given training set. Compared with ConfigV, ConfigC has the following disad-

vantages. First, ConfigC requires the configuration files in the training set must be correct, which

is impractical because it is very difficult to determine a correct configuration set in reality. On the

contrary, since ConfigV does not rely on the quality of configuration files in training sets, ConfigV

is much more practical than ConfigC. Second, ConfigC covers fewer types of misconfigurations

than ConfigV. For example, ConfigC cannot detect fine-grained integer correlation errors. Finally,

the training time of ConfigC is much longer than ConfigV (as shown in Table 3). Furthermore,

ConfigC was originally presented only as a tool, and did not provide the theoretical framework that

would allow it to be used in other applications. This paper has provided an succinct explanation

additionally both for ConfigV as well as giving ConfigC a theoretical context to more accurately

compare against ConfigV.

Misconfiguration detection. Misconfiguration detection techniques aim at checking configura-

tion efforts before system outages occur. Most existing detection approaches check the configuration

files against a set of predefined correctness rules, named constraints, and then report errors if the

checked configuration files do not satisfy these rules. Huang et al. [Huang et al. 2015], for example,

proposed a language, ConfValley, to validate whether given configuration files meet administra-

tors’ specifications. Different from ConfigV, ConfValley does not have inherent misconfiguration

checking capability, since it only offers a language representation and requires administrators to

manually write specifications, which is an error-prone process. On the contrary, ConfigV does not

need users to manually write anything.

Several machine learning-based misconfiguration detection efforts also have been proposed [Xu

et al. 2016; Yuan et al. 2011; Zhang et al. 2014]. EnCore [Zhang et al. 2014] introduces a template-

based learning approach to improve the accuracy of their learning results. The learning process

is guided by a set of predefined rule templates that enforce learning to focus on patterns of

interest. In this way, EnCore filters out irrelevant information and reduces false positives; moreover,

the templates are able to express system environment information that other machine learning

techniques cannot handle. Compared with EnCore, ConfigV has the following advantages. First,

ConfigV does not rely on any template. Second, EnCore cannot detect missing entry errors, type

errors, ordering errors and fine-grained integer correlation errors, but ConfigV can detect all of them.

Finally, ConfigV is a very automatic system, but EnCore needs significant human interventions,

e.g., system parameters and templates.

PCheck [Xu et al. 2016] aims to add configuration checking code to the system source code

by emulating potential commands and behaviors of the system. This emulation is a “white-box”

approach and requires access to the system’s source code. One drawback to this approach is that for

some systems (e.g., ZooKeeper) whose behavior is hard to emulate, PCheck cannot automatically

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 64. Publication date: October 2017.



64:18 Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac

generate the corresponding checking code. Due to the emulation based testing strategy, PCheck’s

scope is limited to reliability problems caused by misconfiguration parameters. In contrast, ConfigV

is a “black-box” approach and only requires a training set of configuration files to learn rules. By

using a rule learning strategy of examples, ConfigV is able to detect general misconfiguration issues

that are outside the scope of emulation testing (e.g.memory or thread usage settings), including

performance, security, availability and reliability.

Misconfiguration diagnosis. Misconfiguration diagnosis approaches have been proposed to

address configuration problems post-mortem. For example, ConfAid [Attariyan and Flinn 2010] and

X-ray [Attariyan et al. 2012] use dynamic information flow tracking to find possible configuration

errors that may have resulted in failures or performance problems. AutoBash [Su et al. 2007]

tracks causality and automatically fixes misconfigurations. Unlike ConfigV, most misconfiguration

diagnosis efforts aim at finding errors after system failures occur, which leads to prolonged recovery

time.

Association Rule Learning. The approach we have presented not only generalizes association

rule learning, but also another learning strategy called sequential pattern mining [Mabroukeh and

Ezeife 2010]. Ordering rules are similar to the patterns learned in sequential patternmining, although

we restrict our ordering rules to |S |, |T | = 1 since these are the most common misconfigurations

we encounter in practice. While a major limitation to sequential pattern mining is the scalability

of the problem [Ayres et al. 2002], we escape this issue with |S |, |T | = 1 and the fact that a single

configuration file tends to be less a few thousand lines. There has been other work in these same

classes of algorithms [Han et al. 2007; Langley and Simon 1995] for various applications and

variations on the core problem. A future direction for this work is to integrate advances in these

domains into the configuration file verification problem.

9 CONCLUSION
In this paper, we introduce ConfigV, a highly modular framework that allows automatic verification

of configuration files. The main problem for verification of configuration files is their lack of

specification, so they are not a traditional target area for formal methods. Inspired by the association

rule learning algorithm, ConfigV learns a set of rules which describe properties and relations

between keywords appearing in configuration files. These rules corresponding to the specification.

Our evaluation, based on real-world examples, shows that ConfigV is able to correctly detect and

report configuration errors including ordering, missing entry, integer correlation, and type errors.
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