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Abstract. Interactive/Reactive computational model is known to be
proper abstraction of many pervasively used systems, such as client-
side web-based applications. The critical task of information flow con-
trol mechanisms aims to determine whether the interactive program can
guarantee the confidentiality of secret data. We propose an efficient and
flow-sensitive static analysis to enforce information flow policy on pro-
gram with interactive I/Os. A reachability analysis is performed on the
abstract model after a form of transformation, called multi-composition,
to check the conformance with the policy. In the multi-composition we
develop a store-match pattern to avoid duplicating the I/O channels in
the model, and use the principle of secure multi-execution to generalize
the security lattice model which is supported by other approaches based
on automated verification. We also extend our approach to support a
stronger version of termination-insensitive noninterference. The results
of preliminary experiments show that our approach is more precise than
existing flow-sensitive analysis and the cost of verification is reduced
through the store-match pattern.

Keywords: Information flow security, pushdown system, interactive
model, security policy, program analysis.

1 Introduction

Security-sensitive resources in computing system need to be protected from un-
trusted applications. Enforcing the information flow policies focuses on protect-
ing confidentiality of these resources and ensures that attackers cannot learn any
secret by observing the public behavior of multiple runs of program. Language-
based techniques have been widely used for a long time in the studies on in-
formation flow security, surveyed in [16]. Goguen and Meseguer [9] introduce
noninterference as the baseline confidential requirement to formalize the condi-
tion which enables secret system input to avoid being inferred by untrusted users
of that system. Intuitively speaking, noninterference requires that the system be-
haviors should be indistinguishable from a perspective of attacker regardless of
the confidential inputs to the system.
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There has been great progress on tracking information flow in languages with
increasing complexity. Recently the community has paid increasing attention to
the information flow security problem for languages with interactive I/Os, esp.
through some forms of input/output channels [10,18,8,3,15,5,7]. In contrast to
batch-job model which takes input before execution and generates output at
termination, the computational model with interactive I/Os involves ongoing
communications with external environment. It is a proper abstraction of various
client-side web-based applications. Generally speaking, the interactivity can be
characterized differently. In some existing efforts [15,5], the intermediate inputs
can be decided by the previous outputs and this dependency is formally defined,
e.g., through the user strategy [15], while in other models [18,8,7], the intermedi-
ate inputs can be considered simply as indefinite or abstracted as security levels.
It means that compared with the first type of interactivity, the second type of
interactivity can be preestablished and even totally indefinite throughout the
execution. We mainly focus on programs with the second type of interactivity.

From a perspective of enforcement mechanisms, the approaches involving pro-
gram with interactive I/Os can be either dynamic [10,7] or static based on type
system [18,15,5] or abstract interpretation [8]. Automated verification has been
used to check conformance with noninterference property on batch-job models
[4,23,14]. This category of approach is flow-sensitive and commonly considered
more precise than type system [4]. Because noninterference is not a safety prop-
erty [23], it relies on program transformation, more specifically, some form of
self-composition [4], to reduce noninterference on original model to a safety prop-
erty on the model after transformation. With a requirement on duplicating the
inputs and outputs, this approach will largely increase the state space of model
and the cost of verification when it is adopted on interactive models. Automated
verification is also restricted to support the simple security level lattice L � H .
Although in [23] the authors suggested to partition the memory stores multiple
times to adopt more general lattices, there is no specific approach and it is still
not clear how I/O channels leverage this category of partitioning approach.

In this work, we propose a novel approach using algorithmic verification tech-
nique to analyze information flow security on language with interactive I/Os.
We utilize our previous idea to incorporate self-composition with reachability
analysis [20] to check the conformance with noninterference property, and adopt
our store-match pattern [21] to avoid duplicating I/O channels. Moreover, we
adopt the idea of secure multi-execution proposed by Devriese et al. [7] to deal
with complex lattice models. With secure multi-execution, the program is exe-
cuted once on each security level. The outputs to channels with different security
levels are handled respectively by each execution on the level. The high inputs
of low execution are replaced by default value, while the low inputs of high
execution are dependent on whether they have been obtained in the low exe-
cution. The secure multi-execution of noninterferent/secure program preserves
the semantic soundness w.r.t. the normal execution. For interferent/insecure
program, the multi-execution changes the semantics of original program by re-
placing interferent behaviors with noninterferent behaviors. This variation makes
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P L1 L2 H
input(x,I1);

while(x > 0){
output(1,O2);
input(x,IH);

}

x := I1[p1],sig(p1),
r1 :=++p1;
while(x > 0){

skip;
x := vdefault;

}

if r1 ≤ p1 wait;

else x := I1[p1];

while(x > 0){
O2[q2] := 1; q2++;
x := vdefault;

}

if r1 ≤ p1 wait;

else x := I1[p1];

while(x > 0){
skip;
x := IH [pH ],sig(pH),
rH :=++pH ;

}

Fig. 1. Multi-Execution of Motivating Example

. . .
x := I1[p1], p1++;
while(x > 0){
O2[q2] := 1, q2++;
x := ⊥;

}

reset(p, q);
x := I1[p1], p1++;
while(x > 0){

skip;
x := ⊥;

}

reset(p);
x := I1[p1], p1++;
while(x > 0){
O2[q2] := 1, q2++; (∗)
x := ⊥;

} . . .

Fig. 2. Result of Composition

the normal execution and the multi-execution different from a perspective of ob-
server on public output channels. That means when the normal execution and
multi-execution behave diversely on public output channels, we can infer that
the program violates noninterference. Our transformation composes the model
w.r.t. normal execution with the model w.r.t. a serialized multi-execution using
schedular selectlowprio [7, Sec.II.D], which stipulates that lowest security execu-
tion runs first.

1.1 Motivating Example

When we use reachability analysis instead of deduction on partial correctness
judgements to check noninterference of program, e.g. l := h, the program can be
transformed to

l′ := l; l := h; l′ := h′; if l′ �= l then goto error ;
Here the self-composition is evolved into three phases: basic self-composition,
auxiliary interleaving assignments between initial low variables, and illegal-flow
state construction. Consider program P in Fig.1 with a security lattice L1 �
L2 � H , the outputs to channel O2 are dependent on the inputs from I1 and
IH . This program is interferent because the inputs from IH flow implicitly to
O2 when the first input from I1 is greater than zero. In the multi-execution
given in Fig.1, the outputs to O2 have turned to depend on default value, which
we models as indefinite value. sig(p1) allows the thread L2 and H to proceed
after waiting for thread L1 to obtain input from I1. Because thread H becomes
noninterferent to the low outputs, from a perspective of low observer, we only
need to serially model the low threads and compose the result with the model of
normal execution. With a lowest-first scheduler, the input side-effect mentioned
in [7] can be achieved by resetting the index of low channels and reusing the
inputs each time a higher level execution starts, instead of using the sig/wait
signal. The result of composition is given in Fig.2. The low inputs are used
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e ::= v | x | e⊕ e′

c ::= skip | x := e | c; c′ | if e then c else c′ | while e do c | input(x, Ii) | output(e,Oi)

Fig. 3. Program Syntax

(μ, I,O, p, q, skip; c)→ (μ, I,O, p, q, c)

μ(e) = v

(μ, I,O, p, q, x := e; c)→ (μ[x 	→ v], I,O, p, q, c)

μ(e) = b

(μ, I,O, p, q, if e then ctrue else cfalse)→ (μ, I,O, p, q, cb)

μ(e) = true

(μ, I,O, p, q, while e do c)→ (μ,I,O, p, q, c;while e do c)

μ(e) = false

(μ, I,O, p, q, while e do c)→ (μ,I,O, p, q, skip)

Ii[pi] = v p′
i = pi + 1

(μ,I,O, p, q, input(x,Ii); c)→ (μ[x 	→ v], I,O, p′, q, c)

μ(e) = O′
i[qi] q′

i = qi + 1

(μ,I,O, p, q, output(e,Oi); c)→ (μ,I,O′
, p, q

′
, c)

(μ,I,O, p, q, c1)→ (μ′, I′,O′, p′, q′, c′1)

(μ,I,O, p, q, c1; c2)→ (μ
′
, I′,O′

, p
′
, q

′
, c

′
1; c2)

Fig. 4. Operational Semantics

multiple times to avoid the initial interleaving assignment, while the low output
channels need to be duplicated, e.g. O in Fig.2, to construct the illegal-flow state
later. In order to avoid this duplication on low output channels, we match the
low outputs generated in the serialized multi-execution with what generated and
stored in the normal execution. For example we can substitute the command (∗)
in Fig.2 with

if O2[q2] �= 1 then goto error ; else q2++;

The state error is the target state of reachability analysis. This variation reduces
the state space of model. If the program is secure, e.g. substituting input(x, IH)
with input(x, I2) in program P , the state error will be unreachable. The ap-
proach also captures the flow from channel on L2 to channel on L1 within the
same model, therefore it is different from a memory-partitioning approach.

The structure of the paper is as follows. Section 2 presents the program model
and the information flow security property for program with interactive I/Os. In
Section 3 we describe the reachability analysis based on the multi-composition
and extend the approach to a stronger termination-insensitive noninterference.
Section 4 shows the experimental studies for evaluating precision and perfor-
mance improvement. We conclude in Section 5.

2 Program Model and Security Property

The presentation language is deterministic and the syntax is given in Fig.3.
I and O are respectively the set of input and output channels. I maps each
channel identifier i to a linear list, denoted by Ii, and O is defined similarly.
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The command input(x, Ii) indicates the sink of input from Ii is x, and
output(e,Oi) stores the value of expression e in the correct position of Oi. The
small-step operational semantics of the presentation language are given in Fig.4.
Here we assume the evaluation of expression is atomic and unambiguous. A con-
figuration is a tuple (μ, I,O, p, q, c), where μ : V ar �→ N is a memory store
mapping variables to values and c is the command to be executed. p and q are
set of indices. pi denotes the index of next element to be input from Ii, and qi

is the index of location of Oi where the next value is stored. The elements of p
and q are explicitly increased by the computation of inputs and outputs.

Although the confidential data of high inputs may be related to previous low
outputs according to the specification of environment, it cannot be exposed in
any form during the execution of program, especially through the subsequent low
outputs. In order to define the security condition for noninterference property,
we assume σ : I ∪O �→ D maps the I/O channels to security levels of the lattice
D. We suppose initial values of variables in μ are irrelevant to the definition
of noninterference and initialized to indefinite. This is different from batch-job
model which attaches security level on each variable and uses equivalence relation
on low part of memory stores to semantically specify noninterference. We can
specify certain variable with input from a special channel to obtain the flexibility
of security level of variables. The indistinguishability relation on I and O w.r.t.
certain security level � is given as below.

Definition 1 (�-indistinguishability). For security level �(� ∈ D), The �-
indistinguishability relation, denoted by ∼�, is defined respectively on input and
output channels of a program:

1. I ∼� I ′, iff ∀i : σ(Ii) � � ⇒ Ii ∼� I ′i
2. O ∼� O′, iff ∀i : σ(Oi) � � ⇒ Oi ∼� O′i
where Ii ∼� Ij iff (σ(Ii) = σ(Ij) � �) ∧ (pi = pj ∧ ∀0 ≤ k < pi : Ii[k] = Ij [k]),
and Oi ∼� Oj iff (σ(Oi) = σ(Oj) � �) ∧ (qi = qj ∧ ∀0 ≤ k < qi : Oi[k] = Oj [k]).

For the two channels with same security level, the linear lists should have the
same length and identical content. The content of channels with �′(�′ � �) is un-
observable and irrelevant to the �-indistinguishability as well as noninterference
specification.

Then we specify the multi-execution of program with the simple lowest-first
scheduler selectlowprio. This deterministic scheduler depends on a total order of
the security lattice D. If D is not a totally ordered lattice, because D is finite (the
number of I/O channels is finite), a totally ordered extension D̂ of D always exists
(see linear extension, 1.29,[6]). The extension can bring in additional legitimate
channel for information leakage, e.g., if the example P in Sec.1.1 has a lattice
{L1 � L2, L1 � H, L2 � �, H � �} (H and L2 are incomparable), P is judged
secure under the extension L1 � H � L2 � �. To close this kind of channel
from H to L2, we require that each time we extend the lattice with �i � �j ,
there should be ∃Ix ∈ I.σ(Ix) = �j ∨ ∀Ix ∈ I.σ(Ix) �= �i. That means �j

should be attached to an input channel otherwise there are only outputs on
�i. With the lowest-first scheduler, the secure multi-execution will be serialized
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(D̂, μ, I, O, p, q, skip; c) � (D̂, μ, I,O, p, q, c)

μ(e) = v

(D̂, μ, I,O, p, q, x := e; c) � (D̂, μ[x �→ v],I, O, p, q, c)

μ(e) = b

(D̂, μ, I, O, p, q, if e then ctrue else cfalse) � (D̂, μ, I, O, p, q, cb)

μ(e) = true

(D̂, μ,I, O, p, q, while e do c) � (D̂, μ, I, O, p, q, c;while e do c)

μ(e) = false

(D̂, μ, I, O, p, q, while e do c) � (D̂, μ, I, O, p, q, skip)

(D̂, μ,I, O, p, q, c1) � (D̂′
, μ

′
,I′

, O′
, p

′
, q

′
, c

′
1)

(D̂, μ, I, O, p, q, c1; c2) � (D̂′
, μ

′
,I′

, O′
, p

′
, q

′
, c

′
1; c2)

σ(Oi) �= D̂⊥
(D̂, μ, I, O, p, q, output(e, Oi); c) � (D̂, μ, I, O, p, q, c)

σ(Oi) = D̂⊥ μ(e) = O′
i[qi] q

′
i = qi + 1

(D̂, μ,I, O, p, q, output(e, Oi); c) � (D̂, μ, I,O′
, p, q

′
, c)

D̂⊥ ≺ σ(Ii)

(D̂, μ, I, O, p, q, input(x,Ii); c) � (D̂, μ[x �→ ⊥],I, O, p, q, c)

σ(Ii) � D̂⊥ Ii[pi] = v p
′
i = pi + 1

(D̂, μ, I, O, p, q, input(x, Ii); c) � (D̂, μ[x �→ v],I, O, p
′
, q, c)

D̂ �= {D̂⊥} D̂′
= D̂ \ {D̂⊥} ∀i : p

′
i = 0

(D̂, μ, I, O, p, q, skip) � (D̂′
, μ, I, O, p

′
, q, P ) ({D̂⊥}, μ, I,O, p, q, skip) � (∅, μ,I, O, p, q, skip)

Fig. 5. Semantics of Serialized SME with selectlowprio

in that an execution on higher level should start after the executions on lower
levels finished. For this special case we do not need to emit any signal between
executions as a general scheduler does in [7], because the value should have been
read by the execution on σ(Ii) when the execution on � wants to read a value
from Ii where σ(Ii) � �, otherwise the execution will be stuck and we do not
need to weak up the waiting queue since it is always empty.

The formal semantics of the serialized secure multi-execution is given in Fig.5.
Here � represents the secure multi-execution relation. Each configuration is
extended with the total order lattice D̂. D̂⊥ is the lower bound of D̂. D̂ shrinks
during the execution. Each time an execution on D̂⊥ is finished and D̂⊥ is not
the upper bound of the current D̂, D̂⊥ is excluded from D̂ and an execution on a
higher level is launched, otherwise D̂ reduces to ∅ and the execution terminates,
see the last two rules of Fig.5 for details. The most obvious difference with
common secure multi-execution [7] is the absence of global input pointer r. This
will influence the manner of inputs from channel Ii on security level � where
σ(Ii) ≺ �. For the common secure multi-execution, when the input from a lower-
level channel is allowed, the local input pointer does not need to be increased
because the boundary of current input is held by r(i) and this input is modeled
as shared use. But in our semantics the reuse of these inputs is achieved by
resetting the index of next element for each input channel. Another difference
is the termination behavior of execution. The common secure multi-execution
permits some execution to be divergent (then the final Lf won’t be ∅) while our
serialized version requires that each execution terminates to launch the execution
on a higher level. Based on this requirement, the noninterference property we
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enforce is termination-insensitive. Let D̂� be the sublattice of D̂ consisting of all
security levels lower or equal to �. Noninterference is defined as follows.

Definition 2 (Noninterference). Let (μ, I,O, p, q, P ) →∗ (μf , I,Of , pf , qf ,

skip) be any normal execution on inputs I, and (D̂�, μ′, I ′,O′, p′, q′, P ) �∗
(∅, μ′f , I ′,O′f , p′f , q′f , skip) be any multi-execution on inputs I ′. Program P is
noninterferent w.r.t. security level �, if for any I and I′, we have ∀�′ � �.I ∼�′ I ′
implies Of ∼�′ O′f .

This definition is more specific than the normal noninterference in [7] since we
specify that the two correlative executions are taken firstly as normal execution
and secondly as multi-execution. Because for terminating runs of noninterferent
program, the secure multi-execution produces the same low observable outputs
with normal execution, when the low inputs are indistinguishable, we can iden-
tify the interferent program by observing whether the outputs are different. We
do not concentrate on whether the outputs generated by multi-execution of inter-
ferent program are meaningful, but just use the technique as a judgement on the
conformance of program with security property. The enforcement is static, based
on reachability analysis of pushdown model derived by a multi-compositional
transformation, which is introduced in detail below.

3 Multi-compositional Enforcement

Self-composition is a model transformation technique composing program and
its variable-renamed copy in order to reduce noninterference to a safety property
on finite computations of program after composition. The multi-compositional
approach does not compose program with a variable-renamed copy, but composes
it with a sequential program serially modeling the multi-execution on the low
security levels. We adapt the store-match pattern [21] to the multi-compositional
approach. With this technique, only low channels need to be modeled and no
channel needs to be duplicated in the model after multi-composition.

3.1 Model Construction

The abstract model we use is symbolic pushdown system. A pushdown system
is a stack-based state transition system whose stack contained in each state
can be of unbounded length. It is a natural model for sequential program with
procedures. Symbolic pushdown system is a compact representation of pushdown
system encoding the variables and computations symbolically.

Definition 3 (Symbolic Pushdown System). Symbolic Pushdown System is
a triple P = (G, Γ×L, Δ). G and L are respectively the domain of global variables
and local variables. Γ is the stack alphabet. Δ is the set of symbolic pushdown
rules {〈γ〉 ↪→ 〈γ1 · · · γn〉(R) | γ, γ1, · · · , γn ∈ Γ ∧R ⊆ (G×L)×(G×Ln)∧n ≤ 2}.
The relation R specifies the variation of abstract variables before and after a sin-
gle step of symbolic execution directed by the pushdown rule. The stack symbols
denote the flow graph nodes of program.
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Table 1. Normal Model Construction

c Φ(c, γj , γk)

skip {〈γj〉 ↪→ 〈γk〉 rt(μ, · · · )}
x := e {〈γj〉 ↪→ 〈γk〉 (x′ = e) ∧ rt(μ \ {x}, · · · )}

IF {〈γj〉 ↪→ 〈γt〉 rt(μ, · · · ) ∧ e} ∪ Φ(ctrue, γt, γk)∪
{〈γj〉 ↪→ 〈γf〉 rt(μ, · · · ) ∧ ¬e} ∪ Φ(cfalse, γf, γk)

WHILE {〈γj〉 ↪→ 〈γt〉 rt(μ, · · · ) ∧ e} ∪ Φ(cbody, γt, γj)∪
{〈γj〉 ↪→ 〈γk〉 rt(μ, · · · ) ∧ ¬e}

c1; c2 Φ(c1, γj , γmid) ∪ Φ(c2, γmid, γk)

The model construction of the commands other than I/O operations in Fig.3
is similar to the one in our previous work [19]. The abstract variable context with
respect to certain stack symbol maps the abstract global and local variables to
the value in G and L. The model construction adds constraints to regulate each R
of pushdown rule. The constraint is expressed with logical operation on abstract
variables. The construction function Φ is presented in Table 1. Here rt means
retainment on value of global variables and on value of local variables of the
procedure locating the pushdown rule.

Then we explain how to construct the model for I/O operations. In our ap-
proach all channels are global. Because no variable can rely on an element of
input channel except through an input command, we can simply omit the con-
fidential channel Ii (σ(Ii) � �) and model input(x, Ii) as

〈γj〉 ↪→ 〈γk〉 (x′ = ⊥) ∧ rt(I�,O�, p�, q�, · · · )
where I�,O�, p�, q� are set of channels or indices with security level �′(�′ � �).
For input(x, Ii) where σ(Ii) � �, we need to model Ii explicitly and repeatedly
use it in the model of multi-execution at level �′ where σ(Ii) � �′ � �:

〈γj〉 i
↪−→ 〈γk〉 (x′ = Ii[pi]) ∧ (p′i = pi + 1) ∧ rt(I�,O�, p� \ {pi}, q�)

Because there may be a certain thread in multi-execution with level �′′ ≺ σ(Ii)
and we also want to identify the leakage to this lower level, we record the channel
identifier i to distinguish different low threads in the multi-composition.

The output to confidential channel Oi with σ(Oi) � � can be substitute with
a rule for skip since the confidential outputs do neither interfere with low part
of subsequent states in normal execution nor interfere with the low threads in
multi-execution. But for the public outputs on channel Oi with σ(Oi) � �, the
command output(e,Oi) is modeled by the following pushdown rules

〈γj〉 i
↪−→ 〈outeγk〉 (tmp′ = e) ∧ rt(I�,O�, p�, q�) ∧ rt2(· · · )

〈outx〉 ↪→ 〈ε〉 rt(I�,O�, p�, q�)

Here tmp is a global variable. oute and outx are respectively the entry and exit
node of flow graph of procedure output. rt2 denotes retainment on value of local
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variables of the caller of procedure f in 〈γj〉 ↪→ 〈fentryγk〉. The channel identifier
is also explicitly recorded when entering procedure output. The body of model of
procedure output is vacuous and will be constructed with pushdown rules acting
a store-match pattern by the following model transformation.

3.2 Model Transformation

We perform the model transformation, i.e. multi-composition, on pushdown sys-
tem constructed in the last section. The result has two parts. The first part is
the pushdown rules w.r.t. the normal execution, which are actually the result of
model construction except for the body of procedure output. The second part
is the pushdown rules w.r.t. the multi-execution on low security levels. Accord-
ing to Definition 2, the input sequences used on certain low channel by normal
execution and multi-execution should be identical as the precondition of propo-
sition. Moreover, according to the semantics of serialized secure multi-execution
(see Fig.5), the indices of input channels should be reset at the beginning of
each thread. Therefore on each level of multi-execution, we reset the indices of
input channels to reuse the elements on these channels. The output sequences
are treated in a store-match pattern. When an output to Oi with σ(Oi) � � has
been computed in the multi-execution, we compare it with the corresponding
output in the normal execution instead of storing it. If they are not equal, we
direct the symbolic execution to the illegal-flow state, which has only itself as
the next state. The pushdown rule for the body of procedure output in the nor-
mal execution is given as Outs in Table 2. In the thread of multi-execution with
security level �′ = σ(Oi), the Outm rules in Table 2 are used as the model of the
body of output. Note that Outs and Outm are parameterized by the identifier i of
output channel. Outm is also parameterized by the security level of thread, i.e. �′.
ξ is a rename function on the stack symbols for generating new flow graph nodes
for each low thread of multi-execution. When the illegal-flow state is reached,
the postcondition of noninterference is violated. The precondition is satisfied by
reusing the public input channels therefore from the reachability of state error
we can ensure the violation of noninterference without considering the relation
on the subsequent outputs.

The multi-composition algorithm is given in Algorithm 1. It derives the final
set of symbolic pushdown rules Δ′ from Δ of the result of model construction.
LastTrans returns the pushdown rule corresponding to the last return command
of program. The pushdown rules modeling the multi-execution are in fact pa-
rameterized by the security level �0 of each thread. �1 is recorded to construct
the entry to the next thread. In particular, the pushdown rules w.r.t. the inputs
and outputs in each thread are related to both the identifier of channel and the
security level of thread.

Theorem 1 (Correctness). Suppose D is a finite security lattice. For a se-
curity level � (� ∈ D), P � ME(P) is the pushdown system generated by the
Multi-Composition on the model of program P , if the state error of P � ME(P)
is not reachable from any possible initial state, P is noninterferent w.r.t. �.

(The proof is sketched in our technical report [22].)
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Table 2. Stuffer Rules for Multi-Compositions

Abbr. Pushdown Rules

Outs(i) 〈oute〉 ↪→ 〈outx〉 (O′
i[qi] = tmp) ∧ (q′

i = qi + 1) ∧ rt(I�,O� \ {Oi[qi]}, p�, q� \ {qi})
Outm(i, �′) 〈ξ(�′, oute)〉 ↪→ 〈error〉 (Oi[qi] = tmp) ∧ rt(I�,O�, p�, q�)

〈ξ(�′, oute)〉 ↪→ 〈ξ(�′, outx)〉 (Oi[qi] = tmp) ∧ (q′
i = qi + 1) ∧ rt(I�,O�, p�, q� \ {qi})

Out′s(i) 〈oute〉 ↪→ 〈outm〉 (O′
i[qi] = tmp) ∧ (q′

i = qi + 1) ∧ rt(I�,O� \ {Oi[qi]}, p�, q� \ {qi})
〈outm〉 ↪→ 〈end〉 (qi = len) ∧ rt(I�,O�, p�, q�)

〈outm〉 ↪→ 〈outx〉 (qi = len) ∧ rt(I�,O�, p�, q�)

Out′m(i, �′) 〈ξ(�′, oute)〉 ↪→ 〈error〉 (Oi[qi] = tmp) ∧ rt(I�,O�, p�, q�)

〈ξ(�′, oute)〉 ↪→ 〈ξ(�′, outm)〉 (Oi[qi] = tmp) ∧ (q′
i = qi + 1) ∧ rt(I�,O�, p�, q� \ {qi})

〈ξ(�′, outm)〉 ↪→ 〈ξ(�′, succ)〉 (qi = len) ∧ rt(I�,O�, p�, q�)

〈ξ(�′, outm)〉 ↪→ 〈ξ(�′, outx)〉 (qi = len) ∧ rt(I�,O�, p�, q�)

3.3 Security Enforcement for Divergent Program

As illustrated in [23], the automated safety analysis based on the self-composition
actually enforces a termination-insensitive noninterference [24] (TINI), which is
weaker than termination-sensitive noninterference [25] (TSNI). TSNI requires
when an execution terminates on some input, any correlative execution on the
low indistinguishable inputs should also terminate, and both executions generate
low indistinguishable outputs. In another word, the executions from two indis-
tinguishable inputs should both terminate or both diverge to satisfy TSNI. On
the contrary, TINI allows the termination behavior to leak information. When
an execution terminates on some input, there may be some divergent execution
on low indistinguishable input. It only validates the indistinguishability on low
outputs when both executions terminate. As mentioned in Section 2, the serial-
ized secure multi-execution requires each thread terminates to launch the thread
on a higher security level. Therefore the noninterference specified in Definition 2
and enforced in the last section is termination insensitive.

Askarov el al. [3] have demonstrated that for language with I/Os a divergent
run can possibly leak all secret. Nonterminating program, which does not violate
batch-job termination-insensitive noninterference, should be judged insecure. In
order to adapt this requirement on termination-insensitive noninterference, we
have to explicitly terminate the normal execution of program and ensure the ter-
minated execution has the same semantic effect as the original divergent execu-
tion. Suppose the length of I/Os is finite. The key is to find the upper bound UB
of the length of outputs. The algorithm to check conformance with this stronger
termination-insensitive noninterference is given in Algorithm 2. The model Plen

is parameterized by the length of channel len. We find the upper bound of the
length of output sequence through a stepwise exponential reduction and linear
extension. When the normal execution generates the len-th output, we explicitly
direct to state end to terminate the execution. Outs(i) has to be extended to
Out′s(i) in Table 2. If the upper bound is smaller than len, the divergent run
will not get to end. For terminated program, we direct the last transition of
normal execution to an idle state noend in order to capture the upper bound of
length of outputs. Plen � ME(Plen) is the model with pushdown rules generated
by Algorithm 1. In the model the Outm(i, �′) rules w.r.t. different security levels
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Algorithm 1. Multi-Composition
1. Δ′ ← Δ \ LastTrans(P)
2. for all r ∈ Δ do /*add connection from normal execution to multi-execution*/
3. if r.expr = 〈γj〉 ↪→ 〈ε〉 ∧ r = LastTrans(P) then

4. Δ′ ← Δ′ ∪ {〈γj〉 ↪→ 〈ξ(Lowest(D̂�), startConf(P))〉 Reset(p�, q�)}
5. end if
6. end for
7. while (�0, �1)← LowestTwo(D̂�) ∧ �0 � � do /*deal with model on security level �0*/

8. D̂� ← D̂� \ {�0}
9. for all r ∈ Δ do

10. if r.expr = 〈γj〉 i
↪−→ 〈outeγk〉 then /*meet an output on channel Oi*/

11. Δ′ ← Δ′ ∪Outs(i)
12. if σ(Oi) = �0 then /*the channel is on current security level*/
13. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�0, oute)ξ(�0, γk)〉 r.R} ∪Outm(i, �0)
14. else
15. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�0, γk) rt(I�,O�, p�, q�, · · · )〉}
16. end if
17. else if r.expr = 〈γj〉 ↪→ 〈γsγk〉 then /*normal inter-procedural calls other than outputs*/
18. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�0, γs)ξ(�0, γk)〉 r.R}
19. else if r.expr = 〈γj〉 i

↪−→ 〈γk〉 then /*meet an input on channel Ii*/
20. if σ(Ii) � �0 then /*public input but confidential to the current security level*/

21. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�0, γk)〉 (x′ = ⊥) ∧ rt(I�,O�, p�, q�, · · · )}
22. else
23. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�0, γk)〉 r.R}
24. end if
25. else if r.expr = 〈γj〉 ↪→ 〈γk〉 then /*normal intra-procedural transitions*/
26. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�0, γk)〉 r.R}
27. else if r = LastTrans(P) then /*normal return*/
28. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ε〉 r.R}
29. else /*the last return, add connection to the next thread*/

30. Δ′ ← Δ′ ∪ {〈ξ(�0, γj)〉 ↪→ 〈ξ(�1, startConf(P))〉 Reset(p�)}
31. end if
32. end for
33. end while

Algorithm 2. TINI for divergent program
1. len← 2MAX;
2. while ¬Reachable(Plen, end)∧ len = 0 do /*exponential reduction for region of upper bound*/
3. len← len/2;
4. end while
5. UB← len; N ← len + 1;
6. while Reachable(PN , end) ∧N < 2 · len do /*linear extension to find the upper bound*/
7. UB← N ; N ← N + 1;
8. end while
9. return ¬∨UB

len=1 Reachable(Plen 	 ME(Plen), error);

are extended to Out′m(i, �′) in Table 2, where ξ(�′, succ) labels the last transition
of thread on level �′ in the model of multi-execution. We can observe that the
complexity is largely increased to O((MAX+UB/2) ·C(P)+UB·C(P �ME(P)))
where C(P) is the complexity of reachability problem introduced in [17].

4 Evaluation

We embed our implementation in the parser of Remopla [11] and use the model
checker Moped [12] as the back-end black-box engine for reachability analysis.
The experimental environment is 1.66GHz×2 Intel CPU/1GB RAM/Linux ker-
nal 2.6.27-14-generic. We investigated the following research questions: (1) Is
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the new approach as precise as other flow-sensitive static analysis, e.g. based
on abstract interpretation [8]? (2) Does the store-match pattern really improve
the performance of analysis compared with the common self-composition? (3)
What is the real cost when we adapt the new approach to analyze termination-
insensitive noninterference of divergent program? There are several factors that
contribute to the experimental results to answer these questions. First is the
length of channels. Because the low channels are semantically modeled in our
approach, the increase on length of channels will also increase the size of BDDs
as well as the state space of model. When we evaluate the efficiency of the new
approach, we time the experimental results correlated with different lengths of
channels. The second factor is the number of bits for each element of channels.
The regions and operations on regions expressed with BDDs may require overall
larger number of bits and state space to capture the behavior of concrete model.

Table 3. Precision

Case From NI AI
SM(LEN)

=1 ≥2

P0 Sec.1 × × � ×
P1 Fig.4,[8] × × × ×
P2 Fig.4,[8] × × × ×
P3 Fig.4,[8] × × × ×
P4 Fig.4,[8] × × × ×
P5 Fig.4,[8] × × � ×
P6 Fig.4,[8] � � � �
P7 Fig.4,[8] � � � �
P8 Fig.4,[8] × × × ×
tax Sec.7,[8] × × � ×
3 7 Ex3.7,[5] × × × ×
3 8 Ex3.8,[5] × × � ×
3 11 Ex3.11,[5] � × � �

To answer the questions, we first choose
the test cases from related work. P1∼P8
are from Fig.4 of [8] and tax is from Sec-
tion 7 of [8]. 3 7, 3 8 and 3 11 are re-
spectively the example 3.7, 3.8 and 3.11
from [5]. P0 is the motivating example in
Section 1. A comparison of precision is
given in Table 3. NI means the security of
program w.r.t. the definition of noninter-
ference. �means the program is noninter-
ferent and × means interferent. 3 7, 3 8
and 3 11 are judged by the definition of
ID-security in [5]. AI means the analysis
result using Iflow [13] and SM means the
analysis result using our approach with
store-match pattern. LEN is the length
of channels used in our approach. Here we
suppose all of the elements in channel are
binary.

We use static structure in P8 and tax to model dynamical object allocation. P1
and P2 show respectively typical explicit and implicit flow. P3 is verified insecure
when we allow the boundary of input channel to be stored explicitly as output.
At the end of the model of multi-execution we compare the boundary with the
stored one and direct the state to error when they are not equal. P4 shows the
leakage caused by the length of public output sequence. This leakage is captured
by our approach since we can reach a case when the outputs of multi-execution is
longer than that of normal execution and some newly output 1 is unequal to an
indefinite value not covered by the output of normal execution. 3 8 is similar to
P4. Our approach cannot close the terminating channel therefore 3 11 is treated
as noninterferent program. On the other hand, the approach based on abstract
interpretation is termination-sensitive. It captures the leakage of 3 11 though
the ID-security is termination-insensitive. Because in P0,P5,tax and 3 8 the
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Fig. 6. Performance Improvement by Store-Match Pattern

leakages of confidential input are reflected by the second output, we can verify
the program insecure only when LEN≥2. But with a sufficiently large boundary,
our approach will not lose precision in these cases.

There are two limits on the precision of approach based on abstract inter-
pretation. First, when the security lattice is more complex than L � H , it has
to partition the security lattice and the corresponding memory multiple times
to capture all the leakages. For example, Iflow can capture the leakage of P0
from H to L2 when partitioning the lattice by L2 (that means P0 is the same
as P5). But it cannot capture the leakage from L2 to L1 meanwhile with the
same partitioning. Instead we need an individual model to capture this leak-
age. Second, although the both approaches are flow-sensitive, our approach can
capture the value-dependent behavior of program while the approach based on
abstract interpretation cannot. For example, although Iflow can judge P7 as se-
cure program, it will mistakenly treat the program inH?x;y:=x-x;outL!y; to
be insecure. Another example can be found in [23, Fig.1]: When we use Iflow
to analyze the program, x is abstracted to H and y is abstracted to L in the
final state. The security level of the output channel is raised from L to H if l
is the output and the program is conservatively rejected. On the other hand,
our approach recording the value of computation can verify it secure. The pro-
gram in [23, Fig.9] is a similar case. The results indicate that our approach
is more precise than the analysis based on abstract interpretation to enforce
termination-insensitive noninterference.

Then we evaluate the performance improvement achieved by the store-match
pattern. With multi-execution, the common self-composition duplicates the low
output channels and constructs the illegal-flow state following the model of
multi-execution. Here we choose 8 C-programs: the first five are from the Olden
benchmarks [1], while adpcm, nsichneu and statemate are from the WCET
benchmarks [2]. We model these programs with Remopla. The system calls and
library calls are treated as stubs. The standard I/Os are considered as the I/Os
to the channels. The external values and random values are modeled to be in-
definite. The confidential input channels are randomly selected. Fig.6 shows
the experimental results. SC denotes the results of common self-composition.
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The length of channels ranges from 5 to 50. The number of bits of each integer
variable and element in channels is set to 2. The results indicate the store-match
pattern, which avoids duplication of channels, can improve the performance of
reachability analysis.

We choose P0, P6, tax, 3 8 and

Fig. 7. Efficiency Reduction by divergence

3 11 to evaluate the reduction on
efficiency caused by adapting our
approach to analyze termination-
insensitive noninterference of di-
vergent program. We suppose the
initial MAX is 5 in Algorithm 2.
The experimental results are pre-
sented in Fig.7. T UB is the time to
derive the upper bound of length
of outputs (corresponding to the
cost of line 1∼8 of Algorithm 2), while T reach is the time of conjunction of
reachability analysis (corresponding to the cost of line 9 of Algorithm 2). T0 is
the time of reachability analysis proposed in Section 3.2. In P6 and 3 11 the
length of output is 1 therefore T0 equals to T reach in these cases. For terminat-
ing programs, the precision will not be lost when using Algorithm 2. The results
also show that the cost to derive the upper bound UB becomes a major cost
when UB is small. Another factor is MAX. It is clear that greater MAX will
increase the cost to derive UB.

5 Conclusion

We present an approach based on automated verification to analyze two different
versions of termination-insensitive noninterference of program with interactive
I/Os on more complex security lattice. A store-match pattern is used to reduce
the state space of model. The precision of the approach and the effect of store-
match pattern are evaluated.
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