
A Risk-Evaluation Assisted System for Service Selection

Ennan Zhai† Liang Gu†,‡,⋆ Yumei Hai‡

†Department of Computer Science, Yale University, US
‡Department of Computer Science, Jinan University, China

ennan.zhai@yale.edu, os.liang.gu@gmail.com, haiyumei@gmail.com

Abstract—With the rapid adoption of Service Oriented Ar-
chitecture (SOA), increasingly more application-level services
are developed through composing service components offered
by different service providers. While such application devel-
opment mode offers advantages in terms of cost-effectiveness
and flexibility, application developers cannot understand or
deal with risks potentially resulting from vulnerabilities within
composed services due to non-transparency of the service
providers. Furthermore, some of the vulnerabilities in prac-
tice are deeply hidden in dependency structures underlying
composed services, thus making even the service providers fail
to know the vulnerabilities.

This paper proposes a risk-evaluation assisted service se-
lection system, called RiskEvaluation-as-a-Service(or REaaS),
which aims to assist application developers to understand
vulnerability risks hidden within alternative services when
the developers at first attempt to adopt their applications. In
particular, for a given application developer’s service selection
requirement, REaaS produces a ranking list based upon
vulnerability risks of alternative services to serve as a guideline
regarding which service has the lowest potential risks (e.g.,
bugs) for this application deployment. REaaS achieves this goal
through the following three steps: 1) generating a package
dependency graph for each alternative service, 2) assigning
threat-degrees to packages in each dependency graph, and 3)
analyzing each dependency graph and evaluating service-risk
of each service. We have built a REaaS prototype and used
real case study to demonstrate the practicality of REaaS.

I. INTRODUCTION

Service Oriented Architecture (SOA) concepts and tech-

niques have already transformed the Internet into an im-

portant service delivery platform rather than mere a global

communication provider. It has been explicit that an in-

creasing trend for organizations and enterprises to develop

sophisticated application-level services by composing decen-

tralized services offered by different providers (either public

or private), which introduces significant advantages in terms

of cost-effectiveness, extensibility and flexibility.

Nevertheless, recent efforts [18, 2] indicated that such

a shift of paradigm potentially introduces new security

risks. In particular, different services used or composed

by application-level services in SOA are often developed

by various providers, which are built upon diverse third-

party packages. Thus, the types of vulnerabilities faced by

application providers are much more diverse than the ones in

traditional applications. There have been public vulnerability

databases containing: 1) classification of vulnerabilities, 2)

description of the nature of their threats, and 3) some sever-

ity scores based on metrics proposed by security experts.

⋆Corresponding Author

However, it is still extremely challenging for the application

developers to detect and identify fault-cause due to non-

transparency of those service providers.

In order to tackle this problem, we propose to use risk-

evaluation based service selection approach to help the

application developers understand potential risks resulting

from vulnerabilities within each of alternative services. This

effort intuitively enables the application developers to avoid

selecting the services holding “dangerous” vulnerabilities.

In fact, service selection technique in SOA is not a new

topic yet. While there have been many service selection

techniques, these approaches mainly focus on choosing suit-

able services through measuring qualities of services (i.e.,

QoS) rather than taking risks caused by vulnerabilities into

account. Furthermore, most of the current service selection

efforts fail to offer systematic solutions.

Following the above insight, this paper designs and builds

a practical risk-evaluation assisted service selection system,

called RiskEvaluation-as-a-Service(or REaaS), for applica-

tion developers. To estimate potential risks, REaaS first au-

tomatically extracts package dependencies within alternative

services, and assigns threat-degree to each package within

the services through leveraging existing vulnerability scoring

systems such as CVE [3] and CVSS [4]. Then, REaaS

quantifies service-risk for each of the alternative services

and finally offers a ranking list based on these service-risks

to serve as a guideline regarding which service holds the

lowest vulnerability risks for application developers.

Besides the above design, building a practical REaaS

still needs to address a few challenges in real world. With

the temptation of getting more users, service providers

may not honestly report the configuration of their services.

Meanwhile these providers might be concerned with the

leakage of their sensitive information such as internal pack-

age dependencies. We employ TPM-based attestation to

present evidences of these operations which enables both

service providers and REaaS to attest the authenticity of

their executions. With this design, service providers are able

to verify if their internal information has been leaked and

REaaS also can check whether the service providers honestly

perform its protocol.

Our REaaS prototype has a few limitations and would

require further development to support more sophisticated

service selections in SOA. Nevertheless, we believe this first-

step effort suggests a practical path towards complementing

current SOA service selection techniques. This paper makes

the following contributions. 1) To the best of our knowledge,

we are the first to study the problem of service selection

based on evaluations of risks resulting from vulnerabilities.

2) We present a novel design, REaaS, which provides the

first practical solution to this problem. 3) We build a REaaS

prototype and demonstrate the practicality of our system

through evaluating this prototype with realistic case study.

II. SYSTEM MODEL

This section describes system model including: target

scenario (Section II-A) and trust assumptions (Section II-B).

A. Target Scenario

Our target scenario consists of three different types of en-

tities: clients, service providers and service-selection system.

Clients. The clients are run by application developers who

plan to deploy their applications upon one or more services

offered by multiple individual service providers. A client,

i.e., application developer, in practice might be a large

organization with vast resources and global interests such

as Netflix [7] or an individual with limited resources and

regional interests such as Zynga [10]. In our scenario, each

of clients aims to select one or more services which have the

lowest risks from many alternative service providers having

similar functions to deploy her application.

Service providers. The service providers host and offer

software related supports for storage, communication or

computational purposes. With respect to a similar service

function, there are normally many service providers. They

need to register on a certain service-selection system (de-

fined later), thus forming a set of alternative services to

potential clients. The goal of service providers is to sell their

services to clients without leaking their internal information

such as package dependencies within their services.

Service-selection system. The service-selection system fills

the gap between clients and service providers. A client who

attempts to adopt her application needs to express her expec-

tations in terms of submitting a requirement to the service-

selection system who in turn makes a service-selection

suggestion obtained based upon its service-selection scheme.

The service-selection system aims to serve as a guide who

recommends clients the most suitable services according to

their requirements.

B. Assumptions

Clients (or application developers) are honest but curious.

Each of them will faithfully participate in a service-selection

process, but may try to exploit additional information that

can be learned in doing so. The clients do not operate

fake identities, which means there is no collusion (i.e.,

information sharing) among clients.

Service providers are potentially malicious in that they

expect to benefit themselves by dishonestly registering their

information on the service-selection system. For instance,

Figure 1: A typical REaaS service selection process, where

an application developer, Alice, running Client i wants to

select a service with the lowest vulnerability risks from n
alternative service providers for her application.

a service provider may enable its service to obtain better

service-selection score, if it does not register information

which might lead to negative impact on its score calcu-

lations. Since the providers desire selling their services,

the service providers have motivations to join the service-

selection system in practice. However, the service providers

do not allow the service-selection system to leak internal

information within their services to the clients. Namely,

only the service-selection system can keep the internal

information of each service provider.

The service-selection system is potentially malicious in

that it may try to leak service providers’ internal informa-

tion by analyzing services, but the service-selection sys-

tem faithfully performs its own service-selection protocol.

The service-selection system cannot create fake identities,

and there is no collusion between clients and the service-

selection system.

III. BASIC SYSTEM DESIGN

In order to provide a risk-evaluation assisted service

selection, we make a systematic effort – designing and de-

veloping a practical system, RiskEvaluation-as-a-Service(or

REaaS), which is applicable to the deployment model given

in Section II.

This section presents REaaS’s basic design under assump-

tion that all the three entities (i.e., clients, REaaS and service

providers) are honest but curious. In the next section, we will

present how to use trusted platform module attestation based

technique to enhance this basic design, thus enabling the

REaaS to handle scenario under assumption that REaaS and

service providers are potentially malicious (as mentioned in

Section II-B).

A. System Working Process

We now use Figure 1 to illustrate how does REaaS assist

a given client, say Alice, to select a service from many

alternative service providers.

Step 1: Service provider registrations. First of all, service

providers who want to sell or publish their services need to

contact a REaaS and register on the REaaS. These regis-

tered service providers would show as alternative services

to clients who are potential customers of the REaaS. In

REaaS’s service registration, each service provider needs to

collect dependency information about packages underlying

its service, and uses the collected information to construct a

dependency graph. Namely, a dependency graph in principle

represents an alternative service. Then, each service provider

sends its dependency graph to the REaaS as registering in-

formation. Our REaaS offers package dependency collection

and dependency graph generation tools to service providers.

Details about service registrations are given in Section III-B.

Step 2: Requirement submission. After registration phase,

a client, say Alice (Client i in Figure 1), who plans to

deploy her application upon one or more services for storage,

communication or computation purpose, contacts the REaaS.

She conveys the REaaS her requirements which typically

include: 1) which alternative services she may use, and 2)

what security objective she is concerned with. The former

item is a set of alternative service providers from which

Alice wants to select one or more services. For the latter one,

REaaS provides three optional security objectives: integrity,

confidentiality and availability. Alice could make her choice

according to her application type and domain. In practice,

Alice may not have enough knowledge for the above re-

quirements, so she is allowed to consult and negotiate with

the REaaS.

Step 3: Service-risk evaluation. After receiving require-

ment from Alice, the REaaS performs service-risk evaluation

to produce a service-risk value for each of alternative ser-

vices. This value is used to quantify and account for potential

risks resulting from vulnerabilities within a service. Until

finish service-risk evaluations to all the alternative services,

the REaaS generates a list by ordering these services based

on their service-risk values. Then, the REaaS sends the

generated ranking list back to Alice. With this list, Alice

is able to understand potential vulnerability risk underlying

each of alternative services, thus making the selection for

her application under this guide. Detailed designs on REaaS

are mentioned in Section III-D.

B. Service Provider Registrations (Step 1)

We now present design of each step in REaaS working

process. In the initial phase, each of the service providers

Pi needs to submit their registration information to the

REaaS. Besides each service’s name, function description

and unique identity, service providers also need to submit

REaaS registration information on package dependencies

within their services. Thus, each provider, Pi, performs a

collection operation to its own service Si in order to extract

such information. This information would be used by REaaS

to make service-risk evaluations. Note that clients cannot see

package dependency information within each of alternative

Figure 2: Dependency graph corresponding to MySQL pack-

age dependency example.

services, since the REaaS needs to preserve the privacy of

internal information of each service provider.

Automatically extracting complete information about

package dependencies within services is extremely challeng-

ing in practice. In REaaS design, we adapt our previous

effort indaas-depends, the automatic package dependency

collector of INDaaS [27], and offer this adapted collector

to service providers. A provider Pi inputs her service Si

to the adapted indaas-depends. The indaas-depends searches

through the apt-cache and the apt-rdepends [1] to find out all

the package components and their dependencies within Si.

The indaas-depends presents a listing of each dependency

a package has, and then iterates each of these packages

and recursively lists their dependencies. As a result, the

adapted indaas-depends emulates all the dependencies by

organizing them in terms of a dependency graph Gi. Namely,

a dependency graph in principle represents a target service.

We now use a simple but illustrative example to show a

package dependency collection result and its corresponding

dependency graph that are output by our adapted indaas-

depends. This example assumes that we are trying to dis-

cover and collect package dependencies within MySQL

database service, and the following is the package depen-

dency collection result.

mysql-server

Depends: mysql-server-5.5

mysql-server-5.5

Depends: libc6 (>= 2.14)

Depends: debconf (>= 0.5)

debconf

Depends: perl-base (>= 5.6.1-4)

libc6

Depends: libc-bin (= 2.15-0ubuntu10)

Depends: libgcc1

Depends: tzdata

The above result forms a dependency graph, as shown

in Figure 2, where each node represents a package. This

dependency graph will be used by service-risk evaluation.

C. Requirement Submission (Step 2)

After initial service registration phase, clients who want

to select services for their applications are allowed to send

requirements to the REaaS. As mentioned in Section III-A,

a given client’s requirement mainly includes two items. The

first item is used to list a set of services which have been

registered on the REaaS as alternative. The second one

aims to explicitly describe security objective (or concern) on

evaluating risks within the alternative services. For instance,

if some client wants to select a storage service only for

her application’s exception event logging, which is rarely

invoked, then the client may desire a storage service with

the lowest integrity risks rather availability or confidentiality.

In the REaaS design, we provide three options on security

objectives: availability, integrity and confidentiality, since

CVE + CVSS can provide the three types of risk estima-

tions (shown in Section III-D).

D. Service-Risk Evaluations (Step 3)

When receiving a given client’s service selection require-

ment, the REaaS performs service-risk evaluation to each

of alternative services Si, and produces a service-risk value

quantifying potential risk with respect to Si. Once the REaaS

finishes service-risk evaluation to all the alternative services,

it will generate a list ranking these services based on their

service-risk values.

The REaaS produces a service-risk value for Si through

three main modules: 1) package threat-degree assignment, 2)

risk-weighted dependency graph generation, and 3) service-

risk quantification. The input of the REaaS is a dependency

graph Gi representing structures underlying the target ser-

vice Si.

Package threat-degree assignment. With the package de-

pendency graph Gi as input, the REaaS utilizes its first mod-

ule, package threat-degree assignment, to assign a threat-

degree to each package used by Si. Since each node in Gi

represents a package of Si, the module iterates all the nodes

in Gi. For each node (i.e., package), the module finds out all

of its public vulnerabilities through querying CVE + CVSS.

The Common Vulnerabilities and Exposures (CVE) sys-

tem [3] provides a database on publicly known information-

security vulnerabilities and exposures. Different from CVE,

the Common Vulnerability Scoring System (CVSS) [4]

offers an open framework for quantifying impacts of public

vulnerabilities. Thus, CVE + CVSS store all the public

vulnerabilities for a given package and their base-scores.

The base-scores are generated based on some sophisticated

equations formulated by CVSS security supervisors. In the

REaaS, we use TDi to denote threat-degree of a given

package i. TDi is the average of base-scores of all the

vulnerabilities within the package i. Equation 1 presents the

detailed computation of TDi.

TDi =

n
∑

j=1

BSj(i)/n

BSj(i) = (0.4 · Expj(i) + 0.6 · Impj(i)) · 1.176

Impj(i) = 10.41 · ImpactLevelj(SecObj)

(1)

Where, BSj(i) means base-score of the jth vulnerability of

package i. The computation of base-score of a vulnerability

is similar to the one in CVSS, which depends on two

parameters: Expj(i) and Impj(i). The former one, i.e.,

Expj(i), can be directly obtained by searching vulnerability

j in CVSS. We only adapt the computation of Impj(i),
which is responsible for computing the vulnerability j’s

impact on client’s specified security objective SecObj. We

use ImpactLevelj(SecObj) to denote the impact level of vul-

nerability j on security objective SecObj. This impact level

could be extracted from CVSS according to specific SecObj
which is given in client’s service selection requirement. Note

that numbers (e.g., 1.176, 10.41, 0.4 and 0.6) in Equation 1

are set by CVSS.

Risk-weighted dependency graph generation. After ob-

taining threat-degree of each package within Si, the second

module of the REaaS attaches these values to their corre-

sponding node in Gi, thus forming a risk-wighted package

dependency graph. We use risk-weighted Gi to denote this

new dependency graph.

Service-risk quantification. The REaaS’s third module,

service-risk quantification, evaluates the risk of Si by per-

forming PageRank algorithm [21] on the risk-weighted Gi.

Weight of each node in the PageRank computation is threat-

degree of the package corresponding to the node. Intuitively,

if many packages with high risks support a service, the

service is likely to play a dangerous role in the alternative

service set. Based upon PageRank algorithm, the service-

risk quantification module is able to get a service-risk

with respect to Si under the specified security object. Of

course, other dependency graph analysis algorithms such

as HITS [17] can also be adopted to compute service-risks

instead of using PageRank. Furthermore, if the dependency

graph has richer semantic features, the importance compu-

tation function could be enhanced accordingly. Using which

algorithm is an option for our system, and the decision

may be made based upon different applications. In general,

we believe that PageRank is one representative importance

function that is suitable to our purpose and is expected to

be useful to estimate service-risks of services.

E. Ranking List Generation

Running the above three steps can obtain the service-risk

of one service. Once finishing computations of service-risks

of all the alternative services, the REaaS generates a ranking

list which orders the services according to their service-risk

values. Then, the REaaS sends the ranking list back to the

client. Since the client receives only an ordered list reflecting

potential risks within alternative services, she obtains no

proprietary information on the service providers’ internal

package information from this result. In addition, with this

ranking list, the client can understand the possible risk of

each service under her security concern; thus, she can pick

out the most secure service.

IV. TPM-BASED ATTESTATION ENHANCED REAAS

Last section presents REaaS basic design under assump-

tion that all the entities are honest but curious. However, in

practice, REaaS and service providers might be malicious,

which have been defined in Section II-B. Namely, REaaS

might leak service providers’ registration information and

service providers may dishonestly submit their registration

information to REaaS. Thus, this section presents a full

version of REaaS which is able to handle the scenario

with assumption that REaaS and service providers could be

potentially malicious.

In order to guarantee that REaaS does not leak the service

providers’ information to clients or any other unauthorized

parties, REaaS employs Trusted Platform Module (TPM)

based attestation to support the remote attestation on its

execution. This enables each of service providers to get

the corresponding execution records on REaaS’s service-

risk evaluation, and the providers can verify whether the

risk evaluation process strictly follows the protocol and does

nothing more. Similarly, each service provider also needs to

deploy TPM locally in order to support REaaS’s verification

on whether the provider honestly registers its information

such as collected package dependency information.

Before presenting how do we design TPM-based attes-

tation enhanced REaaS, we first show a preliminary about

general TPM technology and attestation in Section IV-A.

A. Preliminary: Trusted Platform Module Technology

A series of Trusted Computing specifications were in-

troduced to provide the hardware-based trust bootstrapping

on a platform. Among all of them, the Trusted Platform

Module (TPM) [25, 24] is the fundamental building block,

a secure co-processor widely deployed on desktops, laptops

and servers. In order to guarantee its role as the root of

trust, TPM is required to be implemented with tamper-resist

techniques to protect it from physical attacks. To offer a

strong identity, the TPM uses an Attestation Identity Key

(AIK). Based the Storage Root Key (SRK), TPM can build

up a hierarchy key system to provide storage protection

and key management. All other typical security mechanisms

can be built on top of this hierarchy key layer, such as

authorization and message authentication. To track the hash

values that constitute a fingerprint, the TPM provides special

registers called Platform Configuration Registers (PCRs).

Whenever a reboot occurs, the PCRs are reset and then can

be used to record new hash values.

Remote attestation is one of the most important features

presented by the Trusted Computing specifications. With

an authenticated booting procedure, TPM can automatically

record the configuration of a platform, from BIOS to the

Operating System and finally up to the applications’ states.

In a typical TPM-based attestation scenario, a challenger,

who wants to know whether some application operates

honestly, sends a challenge request to platform running the

application. The platform uses TPM to sign all the state

records relative to the target application and then sends the

signed state records back to the challenger. The challenger

can verify the configuration of the platform/application by

checking all the records, and the genuine of these records

can be attested by checking the hash chain.

TPM-based attestation provides a reliable way for parties

in different trust domains to check the platform configura-

tion. As the progress of research on remote attestation, it is

practical to extend the TPM-attestation to attest semantic

properties of systems[11, 15]. In this paper, REaaS em-

ploys TPM-based attestation to provide evidences for service

providers to verify the execution process of the REaaS. With

the support of remote attestation, REaaS is able to prove

whether it does preserve registration information for the

service providers. Similarly, due to the attestation support,

REaaS also can check whether service providers honestly

submit their registration information such as package de-

pendency information.

B. Remote Attestation for REaaS

Remote attestation on service providers’ behaviors. In

Step 1, after a service provider collects its own package de-

pendencies, it already can submit the collected information

to the REaaS as registration information. Nevertheless, as

what we mention in trust assumption section (Section II-B),

service providers might want to hide parts of their infor-

mation to get better scores in the REaaS’s service-selection

process. In order to ensure each of service providers honestly

submits its package dependency information, the REaaS

employs TPM-based remote attestation protocol. This de-

sign needs each of service providers to run the package

dependency collection operation on a TPM equipped ma-

chine. Under TPM-based attestation, all the states that each

service provider performs package dependency collection

would be recorded and signed, thus forming a specific hash-

chain. Then, the REaaS could attest the honesty of service

providers by checking the integrity of their hash-chains,

since the hash-chains record all the states of the service

providers’ dependency collection operations.

Remote attestation on REaaS’s behaviors. In practice, the

REaaS is potentially malicious in that it may leak service

providers’ registration information such as internal package

dependencies. To make sure that the REaaS will do as it

is specified in the protocol and nothing more, TPM-based

attestation is employed to attest the REaaS’s execution. We

now present how to perform a remote attestation to a service-

risk evaluation execution of REaaS.

On the REaaS side, the system is required to be equipped

with TPM. When the REaaS boots up, an authenticated

boot process is employed and the states of all these loaded

modules are recorded as Rboot by TPM PCRs before loading

REaaS on the platform. Namely, Rboot contains the system

information before running REaaS. When the REaaS pre-

pares to run a risk evaluation with respect to some service,

say Si, the state of REaaS needs to be recorded with TPM,

denoted as RREaaS . Meanwhile, the registered package

dependency information of the service Si is also recorded

with TPM, denoted as Rdepinfo. When the evaluation is

running, TPM enables the monitoring in the system to record

all inputs and outputs of the REaaS. We use Rinput and

Routputs to denote these two types of records. After the

service evaluation, the REaaS employs TPM PCR to record

the generated Si’s service-risk (denoted as SR), and binds

it with all the previous records by signed quote: Sevl =

Sig{ Rboot|| RREaaS || Rdepinfo|| Rinput|| Routputs|| SR}.

All the above records are organized as a hash-chain and

are sent to the provider of Si for verification. The service

provider could examine all these records to confirm whether

its internal information is leaked or whether any unspecified

behaviors were done by the REaaS.

V. EVALUATIONS

In this section, we evaluate REaaS system. We have

developed a REaaS prototype which implemented all of

our designs (described in Section III and Section IV). The

prototype consists of 2, 700 lines of Python code. Using

the prototype, we mainly aim to answer two questions: 1)

whether REaaS is capable of assisting application developers

to select the services with the lowest risks, and 2) how

is the performance of REaaS? In order to answer the first

question, we construct a realistic case study which helps a

given application developers to select service with the lowest

vulnerability risks. Then, we measure performance of REaaS

by comparing running time of basic version REaaS (i.e.,

REaaS without TPM-based attestation) with full version

REaaS (i.e., REaaS equipped with TPM-based attestation).

A. A Case Study

To explore the practicality of our system, i.e., ability on

selecting service, we present a realistic case study using the

REaaS prototype to assist an application developer to select

a storage service.

1) Constructing Our Case Study: Alice, a rising en-

trepreneur in video on demand (VoD), intends to deploy and

publish a video application service. Alice in practice may

have limited infrastructure resources and lack of experience

on building sophisticated storage systems for her application.

Thus, she wants to adopt a storage service which were

Table I: Deeper Analysis Results.

MySQL PostgreSQL Riak MongoDB

of packages 588 736 103 108

Service-Risk 8 7 4 2

developed and offered by existing storage providers in

order to support the data storage of her application. In real

world, there are many alternative storage services, so Alice

does not know which one has the best availability. In this

case study, we assume Alice is the most concerned with

the availability of alternative storage services. Luckily, she

was recommended REaaS, a system that is able to assist

her to pick out suitable service based on her requirement

(availability in this case study). Alice therefore decides to

use REaaS to select a storage service from four alternative

storage service providers which have been registered on the

REaaS.

In our case study, we construct four storage service

providers using four real and well-known storage systems:

Riak [9], MongoDB [5], MySQL [6], and PostgreSQL [8],

respectively. We use Service Provider1-4 to denote providers

who offer the above storage services, respectively. Name,

Service Provider1 offers Riak, Service Provider2 offers

MongoDB, Service Provider3 offers MySQL, and Service

Provider4 offers PostgreSQL. While realistic storage service

providers might use other different storage systems (e.g.,

OracleDB and DB2), this configuration sufficiently exercises

our REaaS prototype. Note that Alice in practice does

not know what storage systems used by alternative service

providers in practice.

2) Evaluating Practicality of REaaS: We now evaluate

the practicality of our REaaS prototype by following steps

which are consist to the phases shown in Section III-A.

Step 1: Service provider registrations. In order to reg-

ister the information on the REaaS, four storage service

providers begin collecting package dependencies underlying

their services using indaas-depends deployed in our REaaS

prototype. With indaas-depends, four service providers ob-

tain package dependency information and generate the corre-

sponding dependency graphs. Note that this collection action

is under TPM-based attestation. After the data collection,

each of the service providers sends its registration informa-

tion including identity, service name, functions and package

dependency graph to the REaaS.

Step 2: Requirement submission. After that, Alice begins

her process by installing a REaaS client on her machine.

In order to select a storage service, Alice generates a re-

quirement including: 1) alternative storage service providers,

i.e., service provider1-4 in this case study and 2) security

objective: availability, which is thought to be the most

 1

 10

 100

 1000

 10 100 1000 10000

R
u

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

of packages within a service

no TPM

With TPM

(a) Running time about performing package dependency collec-
tion.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

R
u

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

of packages within a service

no TPM

With TPM

(b) Running time about performing a service-risk evaluation.

Figure 3: Running time measurement (using and without TPM)

important factor for selecting storage services. Then, Alice

sends this requirement to the REaaS.

Step 3: Service-risk evaluation. After receiving Alice’s

requirement, the REaaS begins service-risk evaluation oper-

ations to four alternative storage services which have been

registered on the REaaS. Under the assistance of CVE

+ CVSS, the REaaS first computes threat-degrees of all

the packages underlying the four alternative services, thus

generating a weighted package dependency graph for each of

the services. Then, the REaaS gets service-risk with respect

to each service by running the PageRank algorithm (with

1, 000 iterations) on weighted package dependency graph

representing the service. Once finishing the computations

of all the services’ service-risks, the REaaS produces a list

which orders the four alternative storage services according

to their service-risks, and sends the ranking list to Alice.

In our experiment, the ranking list generated by our REaaS

prototype is:

Four Alternative Storage Services

1. Service Provider3

2. Service Provider4

3. Service Provider1

4. Service Provider2

The ranking list means MySQL (i.e., Service Provider3)

has the highest service-risk and MongoDB (i.e., Service

Provider2) has the best availability.

3) Result Analysis: In order to show deeper evaluational

results, we now expose more information during the pro-

cess of using REaaS in our case study. Table I presents

service-risk of each of alternative storage systems. Note

that these service-risks are not shown in the list Alice

receives from the REaaS. The service-risks are obtained

by performing PageRank on weighted package dependency

graphs representing the four services. Using indaas-depends,

each of alternative service providers can extract package

dependencies underlying their storage systems. As shown in

Table I, we observed the number of packages of PostgreSQL

and MySQL are much higher than Riak and MongoDB.

This is because both PostgreSQL and MySQL are relational

database systems which need many package and library

supports; on the contrary, Riak and MongoDB are NoSQL

storage systems which normally need less packages. In

addition, we observe that while MySQL has less packages

than PostgreSQL, MySQL’s service-risk is the highest.

B. Performance Evaluation

We now evaluate performance of REaaS by measuring

our prototype’s running time. Two of the most important

operations are package dependency collection and service-

risk evaluation. Thus, this section measures the running time

of these two operations respectively.

We first measure running time that a service provider

generates a local package dependency graph representing

its service. Since this operation needs to be attested by

TPM, we measure both cases, i.e., running time with and

without TPM. The case without TPM could be looked

as a microbenchmark of extracting package dependency

information from a given service. In our measurement, we

generated services holding N packages, and set N = 10,

100, 1, 000 and 10, 000 respectively. The evaluation results

are shown in Figure 3a. Similarly, we then measure running

time that REaaS performs a service-risk evaluation to a

given service with and without TPM. We also vary the

number of packages held by the target service, N , between

10 and 10, 000. The running time without TPM case could

be looked as a microbenchmark of performing service-risk

evaluation to a service. Figure 3b presents the experimental

results.

For our experiments, we used one Dell XPS14 laptop with

2.8GHz 4-Core Intel Xeon CPU and 16GB memory. The

PageRank computation in service-risk evaluations, we use

1, 000 iterations.

As shown in Figure 3a and Figure 3b, we observed that

TPM attestation is a performance bottleneck in our system.

It introduced a lot of computational overhead to REaaS

working process. Nevertheless, given the two operations are

executed off-line in practice, we believe that the overhead is

acceptable to our system and clients.

VI. RELATED WORK

To the best of our knowledge, REaaS is the first systematic

effort which offers service selection through quantifying

potential risks resulting from vulnerabilities.

Vulnerability-based analysis in SOA. The most representa-

tive vulnerability analysis approach in SOA is ATLIST [20].

ATLIST uses dependency graph model such as fault tree [22]

to represent dependencies between various vulnerabilities in

a given SOA business process. With this dependency graph,

the administrator holding the SOA business process is able

to analyze and find out the most important vulnerabilities.

Different to our approach, ATLIST is a tool generating

vulnerability-based dependency graph for the target SOA

business process; in contrast, our approach aims to select

“secure” services for application developers. In addition,

ATLIST failed to provide practical analysis algorithm or a

systematic effort. Similar to ATLIST, Jiang et al. proposed

VRank [16] to rank vulnerabilities within any given SOA

business process. Rather than recommending services to

consumers, VRank offers fine-grained way to score vulnera-

bilities based on their service contexts. However, the purpose

of VRank is different from REaaS, because VRank only

focuses on vulnerability scoring.

Reputation-based service selection. There are a number

of efforts using trust and reputation techniques to select

services in SOA [12, 23, 14]. The web service selection

approach proposed by Wang and Vassileva [26] generates

reputation scores with respect to each alternative service

based on feedback (e.g., votes) from communities or agen-

cies. Similarly, Galizia et al. [13] proposed an approach to

compute reputation values of services based on ontology

mapping technique. Nevertheless, almost all the existing

reputation-based service selection efforts assume a trusted

third-party, and the proposed approaches have not been

developed in practice yet.

Policy-based service selection. Policy-based service selec-

tion techniques in SOA allow to specify requirements by

producing a QoS policy. Liu et al. [19] proposed a method

which uses a trusted third-party to collect property informa-

tion of all the services and select the most suitable services

for consumers based on their policies which are expressed

in forms of matrix. Regrading policy-based service selection

efforts, there are some problems. First, it is difficult to

formalize all the non-functional criteria in order to allow

overall score estimation. Second, all the properties have to

be presented as numbers which is not straightforward in

practice. Third, it is challenging how to represent the values

of properties. Like reputation-based techniques, there has not

been a systematic effort in practice yet.

VII. CONCLUSION

In this paper, we design and develop a practical system,

REaaS, to estimate risks of alternative services for applica-

tion developers. Different from existing efforts which select

services based on quantifying their QoS, our system aims

at quantifying potential risks resulting from vulnerabilities

within services. In order to design REaaS, we leverage the

following methods: software package dependency collection,

dependency graph analysis, vulnerability disclosure systems

and TPM-based attestation. Furthermore, we built a first-

step REaaS prototype system and use realistic case study to

evaluate the prototype.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful com-

ments. This research was supported by the National Science

Foundation of China under Grant NO. 61402198.

REFERENCES

[1] apt-rdepends. http://packages.debian.org/sid/apt-rdepends.

[2] Common-mode software failures. http://www.lawfareblog.com/2014/04/

heartbleed-as-metaphor/.

[3] Common Vulnerabilities and Exposures (CVE). http://cve.mitre.org.

[4] Common Vulnerability Scoring System (CVSS). http://nvd.nist.gov/cvss.cfm.

[5] MongoDB. http://www.mongodb.org/.

[6] MySQL. http://www.mysql.com/.

[7] Netflix. https://signup.netflix.com/.

[8] PostgreSQL. http://www.postgresql.org/.

[9] Riak 1.3.1. http://basho.com/riak/.

[10] Zynga. https://zynga.com/.

[11] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza

Sadeghi, and Christian Stüble. A protocol for property-based attestation. In

Proceedings of the First ACM Workshop on Scalable Trusted Computing, STC

’06, pages 7–16, New York, NY, USA, 2006. ACM.

[12] Nelly A Delessy and Eduardo B Fernandez. A pattern-driven security process

for SOA applications. In Availability, Reliability and Security, 2008. ARES 08.

Third International Conference on, pages 416–421. IEEE, 2008.

[13] Stefania Galizia, Alessio Gugliotta, and John Domingue. A trust based

methodology for web service selection. In Semantic Computing, 2007. ICSC

2007. International Conference on, pages 193–200. IEEE, 2007.

[14] Carlos Gutiérrez, Eduardo Fernandez-Medina, and Mario Piattini. Pwssec:

process for web services security. In Web Services, 2006. ICWS’06. International

Conference on, pages 213–222. IEEE, 2006.

[15] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote

attestation—a virtual machine directed approach to trusted computing. In the

Third virtual Machine Research and Technology Symposium (VM ’04). USENIX.,

2004.

[16] Jianchun Jiang, Liping Ding, Ennan Zhai, and Ting Yu. Vrank: A context-aware

approach to vulnerability scoring and ranking in SOA. In Software Security and

Reliability (SERE), 2012 IEEE Sixth International Conference on, pages 61–70.

IEEE, 2012.

[17] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal

of the ACM (JACM), 46(5):604–632, 1999.

[18] Damjan Kovač and Denis Trček. Qualitative trust modeling in SOA. Journal of

Systems Architecture, 55(4):255–263, 2009.

[19] Yutu Liu, Anne H Ngu, and Liang Z Zeng. QoS computation and policing in

dynamic web service selection. In Proceedings of the 13th international World

Wide Web conference, pages 66–73. ACM, 2004.

[20] Lutz Lowis and Rafael Accorsi. Vulnerability analysis in SOA-based business

processes. Services Computing, IEEE Transactions on, 4(3):230–242, 2011.

[21] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

PageRank citation ranking: Bringing order to the web. 1999.

[22] Chittoor V. Ramamoorthy, Gary S. Ho, and Yih-Wu Han. Fault tree analysis of

computer systems. In AFIPS National Computer Conference, 1977.

[23] Florian Skopik, Daniel Schall, and Schahram Dustdar. Modeling and mining

of dynamic trust in complex service-oriented systems. Information Systems,

35(7):735–757, 2010.

[24] Trusted Computing Group. TPM main specification. Main Specification Version

1.2 rev. 85, Trusted Computing Group, February 2005.

[25] Trusted Computing Group. Trusted platform module library specification, family

2.0, level 00, revision 00.99. Main specification, Trusted Computing Group,

October 2013.

[26] Yao Wang and Julita Vassileva. Toward trust and reputation based web service

selection: A survey, 2007.

[27] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading

off correlated failures through Independence-as-a-Service. In 11th OSDI, August

2014.

