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From Applied to Pure Mathematics

Algebraic and Spectral Graph Theory

Sparsification:
approximating graphs by graphs with fewer edges

The Kadison-Singer problem
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A Social Network Graph




A Social Network Graph

“vertex”
or “node”
<o “edge



A Social Network Graph

“vertex”
or “node”
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pair of nodes




A Big Social Network Graph




A Graph G = (V, E)

V' = vertices, I = edges, pairs of vertices
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The Graph of a Mesh
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Examples of Graphs
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Examples of Graphs




How to understand large-scale structure

Draw the graph
Identify communities and hierarchical structure

Use physical metaphorts
Edges as resistors or rubber bands

Examine processes

Diffusion of gas / Random Walks



The Laplacian quadratic form of G = (V, E)
r:V —-R Z (z(a) — CE(b))z

(a,b)eE




The Laplacian quadratic form of G = (V, E)
r:V —-R Z (z(a) — CE(b))z

(a,b)eE




The Laplacian quadratic form of G = (V, E)
r:V —-R Z (z(a) — x(b))z

(a,b)eE




The Laplacian matrix of G = (V, E)
r:V —=>R Z (z(a) — x(b))Z

(a,b)eE

— 21 L



Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.
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Graphs as Resistor Networks

Induced voltages minimize Z (z(a) — (b)),
(a,b)EE

subject to constraints.
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Graphs as Resistor Networks

Induced voltages minimize Z (z(a) — (b)),

subject to constraints. (a.b)EE
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Graphs as Resistor Networks

Induced voltages minimize Z (z(a) — (b)),
(a,b)EE

subject to constraints.




Graphs as Resistor Networks

Induced voltages minimize Z (z(a) — (b)),

subject to constraints. (a.b)EE

Effective conductance = current flow with one volt




Weighted Graphs

Edge (@, b) assigned a non-negative real weight
Wq.p € R measuring

strength of connection

1/resistance



Spectral Graph Drawing (Hall "70)

Want to map V' — R with most edges short

Edges are drawn as curves for visibility.



Spectral Graph Drawing (Hall *70)

Want to map V' — R with most edges short

Minimize 'Lz = Y (2(a) — (b))’
(a,b)eE

to tix scale, require Z x(a)Z =1



Spectral Graph Drawing (Hall *70)

Want to map V' — R with most edges short

Minimize 'Lz = Y (2(a) — (b))’
(a,b)eE

to tix scale, require Z x(a)Z =1

|zl =1



Courant-Fischer Theorem

A\ = min 2! Lx v1 = arg min vl La
x#£0 x#£0
|z]|=1 |z]|=1

Where A1 is the smallest eigenvalue of L
and V1 is the corresponding eigenvectot.



Courant-Fischer Theorem

A\ = min 2! Lx v1 = arg min vl La
x#£0 x#£0
|z]|=1 |z]|=1

Where A1 is the smallest eigenvalue of L
and V1 is the corresponding eigenvectot.

For z' Lx = Z (z(a) — (b))’

(a,b)eE

A1 = 0 and v1 is a constant vector



Spectral Graph Drawing (Hall *70)

Want to map V' — R with most edges short

Minimize #" Lo = )  (x(a) — z(b))
(a,b)eE

Such that ||z] =1 and Z:E(CL) =0



Spectral Graph Drawing (Hall *70)

Want to map V' — R with most edges short

Minimize #" Lo = )  (x(a) — z(b))
(a,b)eE

Such that ||z] =1 and Z:E(CL) =0

Courant-Fischer Theorem:
solution is V2, the eigenvector of Az |
the second-smallest eigenvalue



Spectral Graph Drawing (Hall "70)

Z (z(a) —x(b))® = area under blue curves
(a,b)eFE




Spectral Graph Drawing (Hall "70)

Z (z(a) —x(b))® = area under blue curves
(a,b)eFE




Space the points evenly




And, move them to the circle
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Finish by putting me back in the center




Spectral Graph Drawing (Hall *70)

Want to map V — R? with most edges short

e 3 [[(2600) - (20|

(a,b)eE
Such that lz =1 and » x(a)=0

lyl =1 and D y(a)=0



Spectral Graph Drawing (Hall *70)

Want to map V — R? with most edges short

2
x(a) x(b)
Minimize Z ( > — ( b )
e y(a) y(b)
Such that |x|| =1 and 11 =0

lyl =1 and 17y =0



Spectral Graph Drawing (Hall *70)

Want to map V — R? with most edges short

2
z(a) x(b)
e () - ()
ol y(a) y(b)
Such that |z =1 and 175 =0

lyl =1 and 17y =0

and ZUT?J =0, to prevent T =Y



Spectral Graph Drawing (Hall *70)

Minimize Y (:;EZD E (ggzg) |

(a,b)EE

Such that [|z]| =1 |yl =1
Tz2=0 11y=0 and zly=0

Courant-Fischer Theorem:
solution 1s & = V2, Yy = V3, up to rotation



Spectral Graph Drawing (Hall *70)

Arbitrary Spectral
Drawing Drawing



Spectral Graph Drawing (Hall "70)
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Spectral Graph Drawing (Hall ”70
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Dodecahedron

Best embedded by first three eigenvectors



Spectral drawing of Erdos graph:

edge between co-authors of papers




When there 1s a “nice” drawing:

Most edges are short
Vertices are spread out and don’t clump too much

A2 is close to 0

When A2 is big, say > 10/ \V\1/2
there is no nice picture of the graph



Expanders: when A2 is big

Formally: infinite families of graphs
of constant degree d and large Ao

Examples: random d-regular graphs
Ramanujan graphs

Have no communities or clusters.
Incredibly useful in Computer Science:

Act like random graphs (pseudo-random)

Used in many important theorems and algorithms



Good Expander Graphs

d-regular graphs with A2, ..., Ay & d

, e =
Courant-Fischer: for all 2] = 1 .CCTLG:E
T p—



Good Expander Graphs

d-regular graphs with A2, ..., Ay & d

, 1"2=0
Courant-Fischer: for all | T’ ) a:TLGx ~ d
T p—

For K, , the complete graph on n vertices

112 =0 T
A2y ..es Ap =1 50 for =1 7 Lx x=mn

mn

mn



Good Expander Graphs




Sparse Approximations of (Graphs (S-Teng 04)

A graph H is a sparse approximation of G
if H has few edges and Lr = L¢

few: the number of edges in H is
O(n) or O(nlogn), wheren = |V|

L oz Lur e
€
l+e¢ ™ al'Lgx — oraf =&
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Sparse Approximations of (Graphs (S-Teng 04)

A graph H is a sparse approximation of G
if H has few edges and Lr = L¢

few: the number of edges in H is
O(n) or O(nlogn), wheren = |V|

L Le if — v Lnw <1l+e forall
. €
H G i TS T e or all =
1
Lo <L 1+ ¢) L,

N

Where M<M if ZETMCESZETMQZ‘ forall <«



Sparse Approximations of (Graphs (S-Teng 04)

A graph H is a sparse approximation of G
if H has few edges and Lr = L¢

few: the number of edges in H is
O(n) or O(nlogn), wheren = |V|

L~ Lo if —— < S EHT <y e
€
H ~e La i e = T lhoa orall =
1
Lo < Lu < (14 6L

N

Where MﬁM if ZETMCESZETMQZ‘ forall <«



Sparse Approximations of (Graphs (S-Teng 04)

The number of edgesin H 1s
O(n) or O(nlogn), wheren = |V|

1
1+ €

Lo <Ly < (1+¢€)lLg

~—

Where M <M if 7'Mz < 2TMz forall «



Why we sparsity graphs
To save memory when storing graphs.
To speed up algorithms:

flow pI‘OblCmS n graphs (Benczur-Karger “90)
linear equations 1n Laplacians (S-Teng 04)



Graph Sparsitication Theorems
For every G = (V, E,w), thereisa H = (V, F, z) s.t.
Lec~eLg and  |F| < (2+4¢€)’n/e

(Batson-S-Srivastava ‘09)



Graph Sparsitication Theorems
For every G = (V, E,w), thereisa H = (V, F, z) s.t.
Lec~eLg and  |F| < (2+4¢€)’n/e

(Batson-S-Srivastava ‘09)

By careful random sampling, can quickly get
[F| < O(nlogn/e”)
(S-Stivastava ‘08)



Laplacian Matrices



Laplacian Matrices

T
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Laplacian Matrices

T
— E ua,bua,b Ug b — 5& — 51)






Matrix Sparsification

)= (0 ) (U7)
) S subssectac[)ér C\[/elej;tors,




Matrix Sparsification

)= (0 ) (U7)
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Matrix Sparsification
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Simplification of Matrix Sparsification

1 __
MIMIZ(1+eM
(1 + €) ( )

1s equivalent to

I< M '2PMMY2 < (1+6)l
(1+¢€)



Simplification of Matrix Sparsification

<M '2MM~Y2 < (1

i+ 0

Set v; = M_l/zuz- Zviv,’f =N

T
We need E S;V;V; ¢ 1



Simplification of Matrix Sparsification

<M '2MM~Y2 < (1

At o)

Set V; = M_l/Qui Zviv,’f =/

1

“Decomposition of

the identity” Z(th) o ||tH
“Parseval frame” p ‘
“Isotropic Position”



Matrix Sparsification by Sampling

(Rudelson 99, Ahlswede-Winter ‘02, Tropp ’11)
For V1,...,Um € R"  with E vivi =1
)
: oy 2
Choose v; with probability p; ~ |v; ||

If choose v;, set 5; = 1/297;

<( 1/p; with probability p;
S; —

0 with probability 1 — p;
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Matrix Sparsification by Sampling

(Rudelson 99, Ahlswede-Winter ‘02, Tropp ’11)
For V1,...,Um € R"  with E vivi =1
)
: oy 2
Choose v; with probability p; ~ |v; ||

If choose v;, set s; = 1/p; (etfective conductance)

<( 1/p; with probability p;
S; —

0 with probability 1 — p;

\

T T
K E S;V;V; :E V;;
i

1




Matrix Sparsification by Sampling

(Rudelson 99, Ahlswede-Winter ‘02, Tropp ’11)
For U1,...,0m € R™  with > wiv] =1
()
: - 2
Choose v; with probability p; = C'(logn) ||v;| /62

If choose v;, set 5; = 1/297;

<( 1/p; with probability p;
S; —

0 with probability 1 — p;

\
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Matrix Sparsification by Sampling

(Rudelson 99, Ahlswede-Winter ‘02, Tropp ’11)
For U1,...,0m € R™  with > wiv] =1
)
: oy 2
Choose v; with probability p; = C'(logn) ||v;| /62
If choose v;, set s; = 1/p;

With high probability, choose O(nlogn/e”) vectors

E T
and S;UiV; e Il

1



Optimal (?) Matrix Sparsification
(Batson-S-Srivastava ‘09)

n .
For /Ul,...,’Um ER with E UZ‘fU;F:I
)

Can choose (2 + €)*n/e* vectors
and nonzero values for the $; so that

E Si”UZ'U;-F %GI

1



Optimal (?) Matrix Sparsification
(Batson-S-Srivastava ‘09)

n .
For /Ul,...,’Um ER with E UZ‘fU;F:I
)

Can choose (2 +€)*n/e® vectors
and nonzero values for the $; so that

E S{UZ'U;-F %GI

1

What are the S; ¢



Optimal (?) Matrix Sparsification
(Batson-S-Srivastava ‘09)

n .
For U1,..sUm € R with va? =1
i

Can choose (2 +€)*n/e® vectors
and nonzero values for the $; so that

E S{Uﬂj,;r %GI

1

s; ~ 1/ ||vil|° 0



The Kadison-Singer Problem 59

Equivalent to:
Anderson’s Paving Conjectures (79, ‘81)
Bourgain-Tzafrir1 Conjecture (‘91)

Feichtinger Conjecture (‘05)
Many others

Implied by:
Weaver’s KS, conjecture (‘04)



Weaver’s Conjecture: Isotropic vectors

va? =1

for every unit vector ¢

S (w2 =1

1




Partition into approximately "2-Isotropic Sets




Partltlon 1nto approximately /2-Isotropic Sets
| 51 52

“ﬂ

1/4<Zes(

)2 < 3/4



Partltlon 1nto approximately /2-Isotropic Sets
51 52

1/4 <37 cs (v 1)? < 3/4
1/4 < €igs(d ;e s, Vit; 1) <3/4



Partltlon Into approximately /2-Isotropic Sets
51 52

1/4 <37 cs (v 1)? < 3/4
1/4 < eigs(P_es, UiV Yy <3/4

< eigs(zzes vl) < 3/4

T T
because D vivi =1— > ww;

1€51 1€S5



Big vectors make this difficult
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Big vectors make this difficult




Weaver’s Conjecture KS,

There exist positive constants a and € so that
- 2 T _
if all [|v;]]” < aand Y viv; =1

then exists a partition into §; and §, with

eigS(ZieSj viv?) <1l-—e



Theorem (Marcus-S-Srivastava “15)
For all a > 0
if all ||| < aand Ywvivl =1

then exists a partition into §; and §, with

eigs(Q_es. vivl) < 1 4 3a



We want

e1gs

/Z Vi V;

E V;U;

1€S55

)

)/

VA
D=



We want

roots

poly

1€51

VA
N[



We want

1€51

VAN

roots | poly

Consider expected polynomial of a random partition.



Proot Outline

1. Prove expected characteristic polynomial
has real roots

2. Prove its largest root is at most 1/2 + 3a
3. Prove is an interlacing family, so

exists a partition whose polynomial
has largest root at most 1/2 + 3«



Interlacing

Polynomial p(x) =

interlaces q (CE ) =



Common Interlacing

p1(¢) and P2(%) have a common interlacing if
can partition the line into intervals so that
each contains one root from each polynomial

N NN
B2



Common Interlacing

If p, and p, have a common interlacing,

max-root (p;) < max-root (E; [ p; |)

for some 1.
Largest root

//ﬁ%\\w



Common Interlacing

If p, and p, have a common interlacing,

max-root (p;) < max-root (E; [ p; |)

for some 1.
Largest root

//@&%\\w



Without a common interlacing

5~

-0.5
-3




Without a common interlacing

(x +1)(x + 2)2




Without a common interlacing
(¢ + 4)(z — 1)(z — 8)

250 -
200 -
150 |

100 -

N \

-150 -

-200




Without a common interlacing
(x4+4)(x —1)(z —8)
(x +32)(x —6.8)(x —T7)

_(x+3)(x—9)(x—10.3)

150
100
50
0 —
> / \/
100 |
450
200 ! i




Common Interlacing

If p, and p, have a common interlacing,

max-root (p;) < max-root (E; [ p; |)

for some 1.
Largest root

//ﬁ%\\w



Common Interlacing

p1(¢) and P2(2) have a common interlacing iff
Ap1(x) + (1 — A)pa2(z) is real rooted forall 0 < A <1

N AN
VS 2Ny



Interlacing Family of Polynomials

{Potoeriim is an interlacing tamily

if 1ts members can be placed on the leaves of a tree so that
when every node is labeled with the average of leaves below,

siblings have common interlacings

Ei ;| pij |

P11 P12 P21 P22



Interlacing Family of Polynomials

{Potoeriim is an interlacing tamily

if 1ts members can be placed on the leaves of a tree so that
when every node is labeled with the average of leaves below,

siblings have common interlacings

Ei ;| pij |

P11 P12 P21 P22



Interlacing Family of Polynomials

{Potoeriim is an interlacing tamily

if 1ts members can be placed on the leaves of a tree so that
when every node is labeled with the average of leaves below,

siblings have common interlacings

Ei ;| pij |

P11 P12\ [ P2.1 P22



Interlacing Family of Polynomials

Theorem:
There 1s a 0 so that

max-root(p,) < max-root(E,p, )

Ei ;| pij |

E; | p2,i |
N/

P11 P12 P21 D22

E; | p1.i |




Interlacing Family of Polynomials

Theorem:
There 1s a 0 so that

max-root(p,) < max-root(E,p, )

Ei ;| pij]

E; | p2,i |
N

P11 P1,2\ | P2,1 D22

E; | p1.i |




Interlacing Family of Polynomials

Theorem:
There 1s a 0 so that

max-root(p,) < max-root(E,p, )

Ei ;| pij |

E; | p2,i |
N

P11 P12 P21 D22

E; | p1.i |




Our family 1s interlacing

/va? 0 \ _

Es, s, | poly | €
e 0 va?)

o\ i,

Form other polynomials in the tree
by fixing the choices of where some vectors go



Summary

1. Prove expected characteristic polynomial
has real roots

2. Prove its largest root is at most 1/2 + 3a
3. Prove is an interlacing family, so

exists a partition whose polynomial
has largest root at most 1/2 + 3«



To learn more about Laplacians, see

My class notes from
“Spectral Graph Theory” and “Graphs and Networks”

My web page on

Laplacian linear equations, sparsification, etc.

To learn more about Kadison-Singer

Papers in Annals of Mathematics and survey from ICM.

Available on arXiv and my web page



