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From Applied to Pure Mathematics 

Algebraic and Spectral Graph Theory 
   
Sparsification: 
 approximating graphs by graphs with fewer edges 
 
The Kadison-Singer problem 
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G = (V,E)

 = vertices,        = edges, pairs of  vertices V E



The Graph of  a Mesh  



Examples of  Graphs 
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How to understand large-scale structure 
Draw the graph 
 
Identify communities and hierarchical structure  
 
Use physical metaphors 

 Edges as resistors or rubber bands 
   

Examine processes  
 Diffusion of  gas / Random Walks 
  



The Laplacian quadratic form of  G = (V,E)
X

(a,b)2E

(x(a)� x(b))2
x : V ! R
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The Laplacian matrix of  G = (V,E)

= x

T
Lx



Graphs as Resistor Networks 

View edges as resistors connecting vertices 
 
Apply voltages at some vertices. 
Measure induced voltages and current flow. 
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Graphs as Resistor Networks 

Induced voltages minimize                                , 
  subject to constraints. 
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  subject to constraints. 
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Graphs as Resistor Networks 

Induced voltages minimize                                , 
  subject to constraints. 

X

(a,b)2E

(x(a)� x(b))2

1V 

0V 

0.5V 

0.5V 

0.625V 0.375V 

(0.5)2

(0.5)2
(0.5

)
2

(0
.5)
2

(0.375) 2

(0.
125

)
2

(0.25)2

(0.125) 2

(0.375)2

1V 

0V 

1V 

Effective conductance = current flow with one volt 



Weighted Graphs 

Edge           assigned a non-negative real weight 
                 measuring  
         strength of  connection 
         1/resistance 

wa,b 2 R

x

T
Lx =

X

(a,b)2E

wa,b(x(a)� x(b))2

(a, b)



Want to map                  with most edges short 

Spectral Graph Drawing (Hall ’70) 

V ! R

Edges are drawn as curves for visibility. 



Want to map                  with most edges short 
 
Minimize 
 
 
 
            to fix scale, require   

Spectral Graph Drawing (Hall ’70) 

V ! R
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a

x(a)2 = 1



Want to map                  with most edges short 
 
Minimize 
 
 
 
            to fix scale, require   

Spectral Graph Drawing (Hall ’70) 

V ! R
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Courant-Fischer Theorem 

Where       is the smallest eigenvalue of  
  and      is the corresponding eigenvector. 
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T
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T
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For 

�1 = 0 and       is a constant vector v1

Where       is the smallest eigenvalue of  
  and      is the corresponding eigenvector. 
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Want to map                  with most edges short 
 
Minimize 
 
 
Such that                        and    
 
 
 

Spectral Graph Drawing (Hall ’70) 

V ! R

x

T
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Want to map                  with most edges short 
 
Minimize 
 
 
Such that                        and    
 
 
 

Spectral Graph Drawing (Hall ’70) 

V ! R
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Courant-Fischer Theorem:  
    solution is      , the eigenvector of        , 
         the second-smallest eigenvalue  

v2 �2

kxk = 1



Spectral Graph Drawing (Hall ’70) 

X

(a,b)2E

(x(a)� x(b))2 = area under blue curves 



Spectral Graph Drawing (Hall ’70) 

X

(a,b)2E

(x(a)� x(b))2 = area under blue curves 

0 =
X

a

x(a)kxk = 1



Space the points evenly 



And, move them to the circle 



Finish by putting me back in the center 



Want to map                    with most edges short 
 
 
 
 
Such that                             and 
 
 
    

Spectral Graph Drawing (Hall ’70) 
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Spectral Graph Drawing (Hall ’70) 
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Spectral Graph Drawing (Hall ’70) 
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Minimize 

Courant-Fischer Theorem:  
    solution is                          , up to rotation 
        

x = v2, y = v3

and 

kxk = 1 kyk = 1

1Tx = 0 1T y = 0 x

T
y = 0



Spectral Graph Drawing (Hall ’70) 
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Spectral Graph Drawing (Hall ’70) 

Original 
Drawing 

Spectral 
Drawing 



Spectral Graph Drawing (Hall ’70) 

Original 
Drawing 

Spectral 
Drawing 



Dodecahedron 

Best embedded by first three eigenvectors 



Spectral drawing of  Erdos graph: 
   edge between co-authors of  papers 



When there is a “nice” drawing: 

Most edges are short 
Vertices are spread out and don’t clump too much 

is close to 0 �2

When      is big, say          
   there is no nice picture of  the graph 

�2 > 10/ |V |1/2



Expanders: when      is big �2

Formally: infinite families of  graphs 
     of  constant degree d and large 
 
Examples: random d-regular graphs 
                 Ramanujan graphs 
 
Have no communities or clusters. 
 
Incredibly useful in Computer Science: 

 Act like random graphs (pseudo-random) 
 Used in many important theorems and algorithms  

�2



  -regular graphs with   �2, ...,�n ⇡ d

Courant-Fischer: for all  

d

x

T
LGx ⇡ d

1Tx = 0

kxk = 1

Good Expander Graphs 



  -regular graphs with   

Courant-Fischer: for all  

For       , the complete graph on     vertices Kn n

�2, ...,�n = n , so for  

LKn ⇡ n

d
LG

d

x

T
LGx ⇡ d

1Tx = 0

kxk = 1

Good Expander Graphs 

1Tx = 0

kxk = 1

�2, ...,�n ⇡ d

x

T
LKnx = n



LKn ⇡ n

d
LG

Good Expander Graphs 



Sparse Approximations of  Graphs 

A graph      is a sparse approximation of       
   if       has few edges and 

H G

H LH ⇡ LG

few: the number of  edges in      is  H

O(n) O(n log n) n = |V |or                  ,  where         

LH ⇡✏ LG if                                          for all  
1

1 + �
 xTLHx

xTLGx
 1 + �

x

(S-Teng ‘04) 



Sparse Approximations of  Graphs 

A graph      is a sparse approximation of       
   if       has few edges and 

H G

H LH ⇡ LG

few: the number of  edges in      is  H

O(n) O(n log n) n = |V |or                  ,  where         

LH ⇡✏ LG if                                          for all  
1

1 + �
 xTLHx

xTLGx
 1 + �

x

(S-Teng ‘04) 

Where M 4 fM
x

T
Mx  x

T f
Mxif  for all x

1

1 + ✏
LG 4 LH 4 (1 + ✏)LG



Sparse Approximations of  Graphs 

A graph      is a sparse approximation of       
   if       has few edges and 

H G

H LH ⇡ LG

few: the number of  edges in      is  H

O(n) O(n log n) n = |V |or                  ,  where         

LH ⇡✏ LG if                                          for all  
1

1 + �
 xTLHx

xTLGx
 1 + �

x

(S-Teng ‘04) 

Where M 4 fM
x

T
Mx  x

T f
Mxif  for all x

1

1 + ✏
LG 4 LH 4 (1 + ✏)LG



Sparse Approximations of  Graphs 

The number of  edges in      is  H

O(n) O(n log n) n = |V |or                  ,  where         
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Why we sparsify graphs 

To save memory when storing graphs. 
 
To speed up algorithms: 

 flow problems in graphs  (Benczur-Karger ‘96) 

 linear equations in Laplacians (S-Teng ‘04) 

       



Graph Sparsification Theorems 

 
 
 

For every                       , there is a                       s.t. 
 
 

G = (V,E,w) H = (V, F, z)

and 

(Batson-S-Srivastava ‘09) 

|F |  (2 + ✏)2n/✏2LG ⇡✏ LH



Graph Sparsification Theorems 

 
 
 

For every                       , there is a                       s.t. 
 
 

G = (V,E,w) H = (V, F, z)

and 

(Batson-S-Srivastava ‘09) 

By careful random sampling, can quickly get 

  (S-Srivastava ‘08) 

|F |  O(n log n/✏2)

|F |  (2 + ✏)2n/✏2LG ⇡✏ LH
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Matrix Sparsification 
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Simplification of  Matrix Sparsification 
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Set 

We need  
X

i

siviv
T
i ⇡✏ I

Simplification of  Matrix Sparsification 

X

i

viv
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i = Ivi = M�1/2ui
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I 4 M�1/2fMM�1/2 4 (1 + ✏)I

“Decomposition of  
the identity” 

“Parseval frame” 
“Isotropic Position” 

X

i

(vTi t)
2 = ktk2

Set                                      vi = M�1/2ui

Simplification of  Matrix Sparsification 

X

i
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T
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Matrix Sparsification by Sampling 

For                                      with 
X

i

viv
T
i = Iv1, ..., vm 2 Rn

si =

(
1/pi with probability pi
0 with probability 1� pi

(Rudelson ‘99, Ahlswede-Winter ‘02,  Tropp ’11)  
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For                                      with 
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(effective conductance) 



Matrix Sparsification by Sampling 

For                                      with 
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Matrix Sparsification by Sampling 

For                                      with 
X

i
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T
i = Iv1, ..., vm 2 Rn

(Rudelson ‘99, Ahlswede-Winter ‘02,  Tropp ’11)  

Choose        with probability  
If  choose     , set  

vi
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pi = C(log n) kvik2 /✏2
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With high probability, choose                         vectors 

and 

O(n log n/✏2)



Optimal (?) Matrix Sparsification 

For                                      with 
X

i

viv
T
i = Iv1, ..., vm 2 Rn

Can choose                           vectors 
and nonzero values for the      so that   

X

i

siviv
T
i ⇡✏ I

(Batson-S-Srivastava ‘09) 
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Optimal (?) Matrix Sparsification 

For                                      with 
X

i

viv
T
i = Iv1, ..., vm 2 Rn

Can choose                           vectors 
and nonzero values for the      so that   

X

i

siviv
T
i ⇡✏ I

(Batson-S-Srivastava ‘09) 
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The Kadison-Singer Problem ‘59 

Equivalent to: 
 Anderson’s Paving Conjectures (‘79, ‘81) 
 Bourgain-Tzafriri Conjecture (‘91) 
 Feichtinger Conjecture (‘05) 
 Many others 

 
Implied by: 

 Weaver’s KS2 conjecture (‘04) 
    



v1

�v1�v2
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Weaver’s Conjecture: Isotropic vectors 
X
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X
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(vTi t)
2 = 1

t

t



Partition into approximately ½-Isotropic Sets 
S1 S2



S1 S2

1/4 
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i2Sj
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Partition into approximately ½-Isotropic Sets 
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Partition into approximately ½-Isotropic Sets 
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Big vectors make this difficult  



S1 S2

Big vectors make this difficult  



Weaver’s Conjecture KS2 

There exist positive constants    and    so that 
 
   if  all                 and 
 
   then exists a partition into S1 and S2 with  

↵ ✏

P
vivTi = I

eigs(
P

i2Sj
vivTi )  1� ✏

kvik2  ↵



For all  
 
   if  all                 and  
 
   then exists a partition into S1 and S2 with  

↵ > 0

Theorem (Marcus-S-Srivastava ‘15) 

eigs(
P

i2Sj
vivTi )  1

2 + 3↵

P
vivTi = Ikvik2  ↵
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Consider expected polynomial of  a random partition. 
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roots
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Proof  Outline 

1.  Prove expected characteristic polynomial 
  has real roots 

2.  Prove its largest root is at most  
 

3.  Prove is an interlacing family, so 
          exists a partition whose polynomial 

         has largest root at most   

1/2 + 3↵

1/2 + 3↵



Interlacing 

Polynomial 

interlaces 

 

if    

q(x) =
Qd�1

i=1 (x� �i)

p(x) =
Qd

i=1(x� ↵i)

↵1  �1  ↵2  · · ·↵d�1  �d�1  ↵d

Example: q(x) =
d

dx

p(x)



p1(x)

Common Interlacing 

      and          have a common interlacing if  
can partition the line into intervals so that  
each contains one root from each polynomial 

p2(x)
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max-root (pi)  max-root (Ei [ pi ])
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of average	
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for some i. 
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Largest root 
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Common Interlacing 

�d�1



Without a common interlacing 

(x+ 1)(x+ 2) (x� 1)(x� 2)



(x+ 1)(x+ 2) (x� 1)(x� 2)

x

2 + 4

Without a common interlacing 
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(x+ 3)(x� 9)(x� 10.3)
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p1(x)      and           have a common interlacing iff  p2(x)
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Our family is interlacing 

Form other polynomials in the tree  
   by fixing the choices of  where some vectors go 
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Summary 

1.  Prove expected characteristic polynomial 
  has real roots 

2.  Prove its largest root is at most  
 

3.  Prove is an interlacing family, so 
          exists a partition whose polynomial 

         has largest root at most   

1/2 + 3↵

1/2 + 3↵



To learn more about Laplacians, see 

My web page on 
Laplacian linear equations, sparsification, etc. 

My class notes from  
    “Spectral Graph Theory” and “Graphs and Networks”  

Papers in Annals of Mathematics and survey from ICM.   
 
Available on arXiv and my web page  
 

To learn more about Kadison-Singer 


