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Outline 

Introduction to graphs 

Physical metaphors 

Laplacian matrices 

Spectral graph theory 

A very fast survey 

Trailer for lectures 2 and 3 



Graphs and Networks 
V: a set of vertices (nodes) 
E: a set of edges 
      an edge is a pair of vertices 
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Difficult to draw when big 
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How to understand a graph 

Use physical metaphors 
 Edges as rubber bands 
 Edges as resistors 

Examine processes  
 Diffusion of gas 
 Spilling paint 

Identify structures 
 Communities 
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Nail	
  down	
  some	
  ver8ces,	
  let	
  rest	
  se<le.	
  

Physics:	
  posi8on	
  minimizes	
  total	
  poten8al	
  energy	
  

subject	
  to	
  boundary	
  constraints	
  (nails)	
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Graphs as Spring Networks 



Nail	
  down	
  some	
  ver8ces,	
  let	
  rest	
  se<le	
  

Energy	
  minimized	
  when	
  
	
  	
  	
  	
  free	
  ver8ces	
  are	
  averages	
  of	
  neighbors	
  

x(a)
a

�x(a) =
1

da

�

(a,b)∈E

�x(b)

Graphs as Spring Networks 

is degree of    , number of attached edges  da a



If	
  nail	
  down	
  a	
  face	
  of	
  a	
  planar	
  3-­‐connected	
  graph,	
  
get	
  a	
  planar	
  embedding!	
  

Tutte’s Theorem ‘63 
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Graphs as Resistor Networks 

View edges as resistors connecting vertices 

Apply voltages at some vertices. 
Measure induced voltages and current flow. 
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Graphs as Resistor Networks 

View edges as resistors connecting vertices 

Apply voltages at some vertices. 
Measure induced voltages and current flow. 

Current flow measures strength of connection 
between endpoints. 

More short disjoint paths lead to higher flow. 
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Graphs as Resistor Networks 

View edges as resistors connecting vertices 

Apply voltages at some vertices. 
Measure induced voltages and current flow. 

Induced voltages minimize  
�

(a,b)∈E

(v(a)− v(b))2

Subject to fixed voltages (by battery) 



Learning on Graphs [Zhu-­‐Ghahramani-­‐Lafferty	
  ’03] 

Infer values of a function at all vertices 
    from known values at a few vertices. 

Minimize  

Subject to known values  

�
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Learning on Graphs [Zhu-­‐Ghahramani-­‐Lafferty	
  ’03] 

Infer values of a function at all vertices 
    from known values at a few vertices. 

Minimize  

Subject to known values  
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(a,b)∈E
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The Laplacian quadratic form 
�

(a,b)∈E

(x(a)− x(b))2



xTLx =
�

(a,b)∈E

(x(a)− x(b))2

The Laplacian matrix of  a graph 



The Laplacian matrix of  a graph 

To minimize subject to boundary constraints,  
set derivative to zero. 

Solve equation of form 

xTLx =
�

(a,b)∈E

(x(a)− x(b))2

Lx = b



Weighted Graphs 

Edge          assigned a non-negative real weight 
                 measuring  
         strength of connection 
         spring constant 
         1/resistance 

wa,b ∈ R

xTLx =
�

(a,b)∈E

wa,b(x(a)− x(b))2

(a, b)



Weighted Graphs 

Edge          assigned a non-negative real weight 
                 measuring  
         strength of connection 
         spring constant 
         1/resistance 

wa,b ∈ R

xTLx =
�

(a,b)∈E

wa,b(x(a)− x(b))2

(a, b)

I’ll show the matrix entries tomorrow 



Measuring boundaries of  sets 

Boundary: edges leaving a set 
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Measuring boundaries of  sets 
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Measuring boundaries of  sets 

Boundary: edges leaving a set 
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Characteristic Vector of S: 

x(a) =

�
1 a in S

0 a not in S

xTLx =
�

(a,b)∈E

(x(a)− x(b))2 = |boundary(S)|
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Number of edges leaving S 
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=
|boundary(S)|

|S|
def
= Φ(S)

The Rayleigh Quotient of      with respect to x L

(sparsity) 

=
xTLx

xTx
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Spectral Graph Theory 
A n-by-n symmetric matrix has n 
  real eigenvalues  
  and eigenvectors                such that 

λ1 ≤ λ2 · · · ≤ λn

v1, ..., vn

Lvi = λivi



Spectral Graph Theory 
A n-by-n symmetric matrix has n 
  real eigenvalues  
  and eigenvectors                such that 

λ1 ≤ λ2 · · · ≤ λn

v1, ..., vn

These eigenvalues and eigenvectors tell us 
  a lot about a graph! 

Theorems 
Algorithms 
Heuristics 

Lvi = λivi



The Rayleigh Quotient and Eigenvalues 
A n-by-n symmetric matrix has n 
  real eigenvalues  
  and eigenvectors                such that 

λ1 ≤ λ2 · · · ≤ λn

v1, ..., vn

Courant-Fischer Theorem: 

λ1 = min
x �=0

xTLx

xTx
v1 = argmin

x �=0

xTLx

xTx

Lvi = λivi



The Courant Fischer Theorem 



The Courant Fischer Theorem 

λk = min
x⊥v1,...,vk−1

xTLx

xTx



The first eigenvalue 

Setting                  for all     x(a) = 1 a

We find                and   λ1 = 0 v1 = 1

λ1 = min
x �=0

xTLx

xTx

= min
x �=0

�
(a,b)∈E(x(a)− x(b))2

�x�2



The second eigenvalue 

if and only if G is connected λ2 > 0

Proof: if G is not connected, 
  are two functions with Rayleigh quotient zero 
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The second eigenvalue 

if and only if G is connected λ2 > 0

Proof: if G is connected, 

- 

+ 

x ⊥ 1
�

a x(a) = 0means 

So must be an edge (a,b) for which 
x(a) < x(b) and so (x(a)− x(b))2 > 0



The second eigenvalue 

if and only if G is connected λ2 > 0

Proof: if G is connected, 

- - 
+ 

+ 

x ⊥ 1
�

a x(a) = 0means 

So must be an edge (a,b) for which 
x(a) < x(b) and so (x(a)− x(b))2 > 0



The second eigenvalue 

if and only if G is connected λ2 > 0

Fiedler (‘73) called       
       “the algebraic connectivity of a graph” 
The further from 0, the more connected. 



Cheeger’s Inequality  [Cheeger ‘70] 

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91] 

1.     is big if and only if G does not have good clusters. 

2. If      is small, can use      to find a good cluster. v2



Cheeger’s Inequality  [Cheeger ‘70] 

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91] 

1.     is big if and only if G does not have good clusters. 

λ2/2 ≤ min
|S|≤n/2

Φ(S) ≤
�

2dλ2

When every vertex has d edges, 

Φ(S) =
|boundary(S)|

|S|



Cheeger’s Inequality  [Cheeger ‘70] 

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91] 

1.     is big if and only if G does not have good clusters. 

2. If      is small, can use      to find a good cluster. v2

In a moment… 



Spectral Graph Drawing [Hall ‘70] 
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Spectral Graph Drawing 
Plot vertex     at 
draw edges as straight lines  

[Hall ‘70] 

(v2(a), v3(a))a
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A Graph 



Drawing of  the graph using v2, v3 

Plot vertex     at  a (v2(a), v3(a))





The Airfoil Graph, original coordinates 



The Airfoil Graph, spectral coordinates 



The Airfoil Graph, spectral coordinates 



Spectral drawing of  Streets in Rome 



Spectral drawing of  Erdos graph: 
   edge between co-authors of  papers 



Dodecahedron 

Best embedded by first three eigenvectors 



Condition for eigenvector 

Spectral graph drawing: Tutte justification 

Gives   for all 

λ small says         near average of neighbors 

�x(a) =
1

da − λ

�

(a,b)∈E

�x(b)

�x(a)

a



Spectral graph drawing: Tutte justification 

For planar graphs: 

λ2 ≤ 8d/n [S-Teng ‘96] 

λ3 ≤ O(d/n) [Kelner-Lee-Price-Teng ‘09] 

Condition for eigenvector 

Gives   for all 

λ small says         near average of neighbors 

�x(a) =
1

da − λ

�

(a,b)∈E

�x(b)

�x(a)

a



Small eigenvalues are not enough 

Plot vertex     at  a (v3(a), v4(a))



Spectral Graph Partitioning 

for some  

[Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ‘92] 

S = {a : v2(a) ≤ t} t



Spectral Graph Partitioning 
[Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ‘92] 

Cheeger’s Inequality says there is a    so that  

Φ(S) ≤
�

2dλ2

for some  S = {a : v2(a) ≤ t} t

t



Major topics in spectral graph theory 
Graph Isomorphism:  
   determining if two graphs are the same 

Independent sets: 
   large sets of vertices containing no edges 

Graph Coloring: 
   so that edges connect different colors 



Major topics in spectral graph theory 
Graph Isomorphism 
Independent sets 
Graph Coloring 
Behavior under graph transformations 
Random Walks and Diffusion 
PageRank and Hits 
Colin de Verdière invariant 
Special Graphs  
    from groups 
    from meshes 
Machine learning 
Image processing 



Solving linear equations in Laplacians 

For energy minimization and  
  computation of eigenvectors and eigenvalues 

Can do it in time nearly-linear in the 
  number of edges in the graph! 

A powerful computational primitive. 



Maximum flow problem 

Send as much stuff as possible from s to t. 
At most one unit can go through each edge. 

s t 
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Maximum flow problem 

s t 1 

1 

Standard approach: incrementally add flow paths 
   Issue: sometimes requires backtracking 

1 

Send as much stuff as possible from s to t. 
At most one unit can go through each edge. 



Maximum flow problem, electrical approach 

1.  Try the electrical flow. 

s t 

[Christiano-Kelner-Madry-S-Teng ‘11] 
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Maximum flow problem, electrical approach 

1.  Try the electrical flow. 
2.  Increase resistance when too much flow 

s t 

[Christiano-Kelner-Madry-S-Teng ‘11] 
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Maximum flow problem, electrical approach 

1.  Try the electrical flow. 
2.  Increase resistance when too much flow 

s t 

[Christiano-Kelner-Madry-S-Teng ‘11] 
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Solving linear equations in Laplacians 

For energy minimization and  
  computation of eigenvectors and eigenvalues 

Can do it in time nearly-linear in the 
  number of edges in the graph! 

Key ideas: 
  how to approximate a graph by a tree 
       or by a very sparse graph 
  random matrix theory 
  numerical linear algebra 



Approximating Graphs 
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A graph H is an ∊ -approximation of G if 



Approximating Graphs 

for all 

1

1 + �
≤ xTLHx

xTLGx
≤ 1 + �

x

To solve linear equations quickly, 
approximate G by a simpler graph H 

A graph H is an ∊ -approximation of G if 



Approximating Graphs 

for all 

1

1 + �
≤ xTLHx

xTLGx
≤ 1 + �

x

A very strong notion of approximation 
Preserves all electrical and spectral properties  

A graph H is an ∊ -approximation of G if 



Approximating Graphs 

for all 
1

1 + �
≤ xTLHx

xTLGx
≤ 1 + �x

Theorem [Batson-S-Srivastava ‘09] 
   Every graph G has an ∊ -approximation H 
   with                      edges    |V | (2 + �)2/�2

A graph H is an ∊ -approximation of G if 



Approximating Graphs 

for all 
1

1 + �
≤ xTLHx

xTLGx
≤ 1 + �x

Theorem [Batson-S-Srivastava ‘09] 
   Every graph G has an ∊ -approximation H 
   with                      edges 

A powerful technique in linear algebra 
 many applications    

|V | (2 + �)2/�2

A graph H is an ∊ -approximation of G if 



To learn more 

Lectures 2 and 3: 
   More precision 
   More notation 
   Similar sophistication 



To learn more 

See my lecture notes from 
  “Spectral Graph Theory” 
               and 
   “Graphs and Networks” 


