Laplacian Matrices of Graphs

Spectral and Electrical Theory
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Outline
Introduction to graphs
Physical metaphors
Laplacian matrices
Spectral graph theory
A very fast survey

Trailer for lectures 2 and 3



Graphs and Networks

V: a set of vertices (nodes)
E: a set of edges
an edge is a pair of vertices

Difficult to draw when big



Examples of Graphs
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How to understand a graph

Use physical metaphors
Edges as rubber bands
Edges as resistors

Examine processes
Diffusion of gas
Spilling paint

|dentify structures
Communities



How to understand a graph

Use physical metaphors
Edges as rubber bands
Edges as resistors

Examine processes
Diffusion of gas
Spilling paint

|dentify structures
Communities



Graphs as Spring Networks

View edges as rubber bands or ideal linear springs
spring constant 1 (for now)

Nail down some vertices, let rest settle

{wowomd




Graphs as Spring Networks

View edges as rubber bands or ideal linear springs
spring constant 1 (for now)

Nail down some vertices, let rest settle

{wowomd

When stretched to length ¢
potential energy is £*/2




Graphs as Spring Networks

Nail down some vertices, let rest settle.

VR

Physics: position minimizes total potential energy

=Y (wla) — a(b))?

(a,b)eE

subject to boundary constraints (nails)



Graphs as Spring Networks

Nail down some vertices, let rest settle

VR

Energy minimized when
free vertices are averages of neighbors

f(a):di 0

* (a,b)EE

d, is degree of a, number of attached edges



Tutte’s Theorem ‘63

If nail down a face of a planar 3-connected graph,
get a planar embedding!




Tutte’s Theorem ‘63

3-connected:
cannot break graph by cutting 2 edges
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Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

1V




Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

Current flow measures strength of connection
between endpoints.

More short disjoint paths lead to higher flow.



Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.
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Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

Induced voltages minimize

> (v(a) —v(b))?

(a,b)EFE

Subject to fixed voltages (by battery)



Learning on Graphs [Zhu-Ghahramani-Lafferty ‘03]

Infer values of a function at all vertices
from known values at a few vertices.

Minimize Z (z(a) — (b))

(a,b)eEE
Subject to known values




Learning on Graphs [Zhu-Ghahramani-Lafferty ‘03]

Infer values of a function at all vertices
from known values at a few vertices.

Minimize Z (z(a) — (b))

(a,b)eEE
Subject to known values
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The Laplacian quadratic form

D (x(a) —z(b))?

(a,b)eE



The Laplacian matrix of a graph

v"Le= ) (x(a) — (b))’

(a,b)eEFE



The Laplacian matrix of a graph

v"Le= ) (x(a) — (b))’

(a,b)eEFE

To minimize subject to boundary constraints,
set derivative to zero.

Solve equation of form

Lx =0



Weighted Graphs

Edge (a, b) assigned a non-negative real weight
w, p € R measuring
| strength of connection
spring constant
1/resistance



Weighted Graphs

Edge (a, b) assigned a non-negative real weight
w, p € R measuring
| strength of connection
spring constant
1/resistance

I'll show the matrix entries tomorrow



Measuring boundaries of sets

Boundary: edges leaving a set
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Measuring boundaries of sets

Boundary: edges leaving a set

Characteristic Vector of S:

aj(a)—{l ain S

0O anotin S




Measuring boundaries of sets

Boundary: edges leaving a set

Characteristic Vector of S:

aj(a)—{l ain S

0O anotin S

v"Le= ) (2(a) — x(b))* = |boundary(5)
(a,b)eE



Cluster Quality

Number of edges leaving S
Size of S

~ |boundary(.5)|
S|
et d(S) (sparsity)




Cluster Quality

Number of edges leaving S _
Size of S

~ |boundary(.5)|
S|

d(S) (sparsity)

! Lo B Z(a,b)eE(az(a) —2(b))* ]
T > x(a)?

The Rayleigh Quotient of & with respect to L

def




Spectral Graph Theory

A n-by-n symmetric matrix has n
real eigenvalues A\ < Ay--- < A\,
and eigenvectors v1, ..., Vn such that

LU@ — )\ivi



Spectral Graph Theory

A n-by-n symmetric matrix has n
real eigenvalues A\ < Ay--- < A\,
and eigenvectors v1, ..., Vn such that

LU@ — )\ivi

These eigenvalues and eigenvectors tell us
a lot about a graph!

Theorems
Algorithms
Heuristics



The Rayleigh Quotient and Eigenvalues

A n-by-n symmetric matrix has n
real eigenvalues A\ < Ay--- < A\,
and eigenvectors v1, ..., Vn such that

LU@ — )\ivi

Courant-Fischer Theorem:

\ ol Lx a2l Lx
{ = min v1 = arg min
+£0 xlx z£0 xlx




The Courant Fischer Theorem

ol Lx T Lx
A1 = min ~ v1 = argmin —=
xZ0 T X x#0 T X
- 2TLx N
Ao = min Vo = arg min

rl v xTaj 1l v CCTZC



The Courant Fischer Theorem

ol Lx T Lx
A1 = min ~ v1 = argmin —=
xZ0 T X x#0 T X
- 2TLx N
Ao = min = Vo = arg min =
rlvy X rlvy X
, x! Lz
AL = min n
rxlvi,....,vp_1 T X
! Lz
Vi = ar min
ga:J_vl,...,fuk_l CCTiE




The first eigenvalue

\ a2l Lx
— min
! x 70 xlx
. Z(a,b)EE(x(a) — z(b))?
— min 5
70 |||

Setting z(a) =1 forall a

We find Ay =0 and v;1 =1



The second eigenvalue

Ay > 0 if and only if G is connected

Proof: if G is not connected,
are two functions with Rayleigh quotient zero

KOIO>O 0)—

"
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The second eigenvalue

Ay > 0 if and only if G is connected

Proof: if G is connected,
r 11 means ), z(a)=0

So must be an edge (a,b) for which
r(a) < z(b) and so (z(a) — z(b))? > 0

<0




The second eigenvalue

Ay > 0 if and only if G is connected

Proof: if G is connected,
r 11 means ), z(a)=0

So must be an edge (a,b) for which
r(a) < z(b) and so (z(a) — z(b))? > 0

<0




The second eigenvalue

Ao > 0 if and only if G is connected

Fiedler (‘73) called Ao
“the algebraic connectivity of a graph”
The further from 0, the more connected.



Cheeger’s Inequality [Cheeger 70]

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]

1. X\ is big if and only if G does not have good clusters.

2. If Ay is small, can use V2 to find a good cluster.



Cheeger’s Inequality [Cheeger 70]

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]

1. X\ is big if and only if G does not have good clusters.

When every vertex has d edges,

)\2/2 <  min (I)(S) S \/ Qd)\g

- |SI<n/2

~ |boundary(S)
5]

B(S)



Cheeger’s Inequality [Cheeger 70]

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]

1. X\ is big if and only if G does not have good clusters.

2. If Ay is small, can use V2 to find a good cluster.

In a moment...



Spectral Graph Drawing [Hall ‘70]

Arbitrary
Drawing



Spectral Graph Drawing [Hall ‘70]

Plot vertex a at (v2(a),vs(a))
draw edges as straight lines

7
Arbitrary Spectral
Drawing Drawing



A Graph




Drawing of the graph using v,, v,
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Plot vertex a at (v2(a),vs(a))
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The Airfoil Graph, original coordinates
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The Airfoil Graph, spectral coordinates
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The Airfoil Graph, spectral coordinates




Spectral drawing of Streets in Rome
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Spectral drawing of Erdos graph:
edge between co-authors of papers




Dodecahedron

Best embedded by first three eigenvectors



Spectral graph drawing: Tutte justification

Condition for eigenvector Lx = Az

1
Gives Z(a) = Y Z Z(b) forall a

(a,b)EFE

A small says Z(a) near average of neighbors



Spectral graph drawing: Tutte justification

Condition for eigenvector Lx = Az

1
Gives Z(a) = Y Z Z(b) forall a

(a,b)EFE

A small says Z(a) near average of neighbors

For planar graphs:
Ay < 8d/n  [S-Teng ‘96]
A3 < O(d/n) [Kelner-Lee-Price-Teng ‘09]



Small eigenvalues are not enough
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Plot vertex a at (v3(a),v4(a))



Spectral Graph Partitioning
[Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ‘92]
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itioning

Spectral Graph Part

[Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ‘92]

(a) <t} forsome t

{a : vy

S
Cheeger’s Inequality says there is a ¢ so that
2d Ao

d(S) <



Major topics in spectral graph theory

Graph Isomorphism:
determining if two graphs are the same

Independent sets:
large sets of vertices containing no edges

Graph Coloring:
so that edges connect different colors



Major topics in spectral graph theory

Graph Isomorphism
Independent sets
Graph Coloring
Behavior under graph transformations
Random Walks and Diffusion
PageRank and Hits
Colin de Verdiere invariant
Special Graphs

from groups

from meshes
Machine learning
Image processing



Solving linear equations in Laplacians

For energy minimization and
computation of eigenvectors and eigenvalues

Can do it in time nearly-linear in the
number of edges in the graph!

A powerful computational primitive.



Maximum flow problem

Send as much stuff as possible from s to t.
At most one unit can go through each edge.




Maximum flow problem
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At most one unit can go through each edge.
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Maximum flow problem

Send as much stuff as possible from s to t.
At most one unit can go through each edge.

Standard approach: incrementally add flow paths
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Maximum flow problem

Send as much stuff as possible from s to t.
At most one unit can go through each edge.
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Standard approach: incrementally add flow paths



Maximum flow problem

Send as much stuff as possible from s to t.
At most one unit can go through each edge.

Standard approach: incrementally add flow paths
Issue: sometimes requires backtracking



Maximum flow problem, electrical approach
[Christiano-Kelner-Madry-S-Teng “11]

1. Try the electrical flow.
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2. Increase resistance when too much flow
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1. Try the electrical flow.
2. Increase resistance when too much flow




Solving linear equations in Laplacians

For energy minimization and
computation of eigenvectors and eigenvalues

Can do it in time nearly-linear in the
number of edges in the graph!

Key ideas:
how to approximate a graph by a tree
or by a very sparse graph
random matrix theory
numerical linear algebra



Approximating Graphs
A graph H is an € -approximation of G if

for all x




Approximating Graphs
A graph H is an € -approximation of G if

for all x

To solve linear equations quickly,
approximate G by a simpler graph H



Approximating Graphs
A graph H is an € -approximation of G if

for all x

A very strong notion of approximation
Preserves all electrical and spectral properties



Approximating Graphs
A graph H is an € -approximation of G if

1 CETLH.I'
forallz 14¢~ aTLox —

Theorem [Batson-S-Srivastava ‘09]
Every graph G has an -approximation H
with [V| (2 + ¢)?/¢* edges



Approximating Graphs
A graph H is an € -approximation of G if

1 CETLH.I'
forallz 14+¢ = aTLox —

Theorem [Batson-S-Srivastava ‘09]
Every graph G has an -approximation H
with [V| (2 + ¢)?/¢* edges

A powerful technique in linear algebra
many applications



To learn more

Lectures 2 and 3.
More precision
More notation
Similar sophistication



To learn more

See my lecture notes from
“Spectral Graph Theory”
and
“Graphs and Networks”



