Solving Systems of Linear Equations

Graph Laplacians

/RN
‘ Avv % ’ 15
R

4;;:" >
IR
‘ﬂﬁ&iﬁ%ﬁﬂiﬁﬁﬁ’r

NS

NN/

S
S

Daniel A. Spielman
Yale University

Toronto, Sep. 29, 2011



Outline

Linear Systems in Laplacian Matrices
Classic ways to solve them

Approximating Graphs by Trees
Sparse Approximations of Graphs

Fast Solution of Linear Equations



Solving Linear Equations Ax = b, Quickly

Solve in time O(m log® m)
where m = number of non-zeros entries of 4

timeslog(1/e) for e-approximate solution.

Special case: 4 is the Laplacian Matrix of a Graph



Solving Linear Equations Ax = b, Quickly

Solve in time O(m log® m)
where m = number of non-zeros entries of 4

timeslog(1/e) for e-approximate solution.

|z — AT, < ef|A78]

Special case: 4 is the Laplacian Matrix of a Graph



Solving Linear Equations Ax = b, Quickly

Solve in time O(m log® m)
where m = number of non-zeros entries of 4

timeslog(1/e) for e-approximate solution.

| — A

where HZE

Special case: 4 is the Lap

A SellA7

A e VoT Ax

acian Matrix of a Graph



Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR

( )
' Loz = ) (@(u)—z(v))’
. (u,v)eEE )




Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR

-
! Lox =




Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR

-
! Lox =

\_




Laplacian Quadratic Form for Weighted Graphs

G=(V,E,w)

w:FE — ]R_I_ assigns a positive weight to every edge

4 )
' Loz = Z W(w,v) (T(U) — 513(’0))2
. (u,v)eEE )

Matrix L is positive semi-definite
nullspace spanned by const vector, if connected



Laplacian Matrix of a Weighted Graph
—w(u,v) if (u,v) € E
La(u,v) = < d(u) if u=wv
0 otherwise
d(u) = 2 (puyer W(U; V)
the weighted degree of u

1

. 4 -1 0 -1

-1 4 -3 0

1 3 0 -3 4 -1
1

-1 0 -1 2
0 0 0

‘

is a diagonally dominant matrix

N O O O



A few applications

Computing effective resistances.

Solving Elliptic PDEs.

Solving Maximum Flow by Interior Point Methods

Computing Eigenvectors and Eigenvalues of
Laplacians of graphs.

N

=6

Ty

o
AW
NS
==

1Y)
)
P
&
—

Thph
yparsz



Solving Laplacian Linear Equations Quickly

Fast when graph is simple,
by elimination.

Fast approximation when graph is complicated*,
by Conjugate Gradient

* = random graph or high expansion



Cholesky Factorization of Laplacians

1
] ‘ 3 -1 0
-1 2 -1
1 1 0 -1 2

‘ - -1 0 0

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

R O O O K



Cholesky Factorization of Laplacians

=

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

O O O O W

O o R K

.67
.00
.33
.33

.00 -0.
.00 -1.
.00 1.
0 -0.

33
00
67
33

R O O O K

-0.33

-0.33
0.67



Cholesky Factorization of Laplacians

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

O O O O W

O o R K

.67
.00
.33
.33

-1.00 -0.
2.00 -1.
-1.00 1.
0 -0.

33
00
67
33

R O O O K

.33

.33
.67



1.67 -1.00 -0.33 -0.33

0

2.00 -1.00 0

0 -1.00

1.67 -0.33

0 -0.33 -1.00

0 -0.33

0.67

0 -0.33

733
1
‘43
1

.67

—

.2

-1

1

1.2



The order matters

-1

-1

1




Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Q:\: #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

O
Tree ._Q: ® #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

O
Tree ._1\: ® #tops ~ O(|V|)



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,_Qf: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79




Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,%: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79

Expander like random, #tops 2 Q(|V]3)
but O(|V|) edges Lipton-Rose-Tarjan ‘79



Expansion and Cholesky Factorization

For SCV IS O‘\:"

bdry(S)
min (|5, |V — 5])

B(S) =

[ (I)G — minscv (I)(S) ]




Expansion and Cholesky Factorization

e ©
@
For SCV g o :‘..‘0
0‘%‘.0 o
@ ® o ©

bdry(9)|

B(S) =

[ (I)G — minSCV (I)(S) }

Cholesky slow when expansion high
Cholesky fast when low for G and all subgraphs



bdry(9)|
Expansion P(S) = |

min (|5, [V — 5])




bdry(9)|
Expansion P(S) = |

min (|5, [V — 5])




Expansion P(S) = bdry(S5)

min (|5, [V — 5])

08
SUSs

O(S) = 1/2




Cheeger’s Inequality and the Conjugate Gradient
Cheeger’s inequality (degree-d unwted case)

1A, @ Ny
—2 o T6 o [0
2d =~ d - V4,

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

near d for expanders and random graphs



Cheeger’s Inequality and the Conjugate Gradient
Cheeger’s inequality (degree-d unwted case)

LAs ®a . [yAe
2d — d — d

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

Conjugate Gradient finds € -approx solutionto L, x = b

in O(y/d/X2loge™)  multsby L,
is O(dm®_"loge ')  ops



Fast solution of linear equations

Conjugate Gradient fast when expansion high.

Elimination fast when low for G and all subgraphs.



Fast solution of linear equations

Conjugate Gradient fast when expansion high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle



Fast solution of linear equations

Conjugate Gradient fast when expansion high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Not all graphs fit into these categories!



Preconditioned Conjugate Gradient

Solve L, x = b by
Approximating L. by L, (the preconditioner)

In each iteration
solve a system in L,
multiply a vector by L,

€ -approx solution after
O(\/k(Lg, Ly)loge 1) iterations
L. condition number/approx quality




The relative condition number

T

Aoy (LGLE) pseudo-inverse

N— min non-zero eigenvalue

/i(Lg, LH) —




Inequalities and Approximation

LH LG if for all x, TLHx S LgiC

Example: if H is a subgraph of G
:L‘TL(;.CL‘ — Z W (u,v) (az(u) — w(v))Q

(u,v)EFE



Inequalities and Approximation

Ly < Laifforally, z'Lyx <z’ Lox

li(Lg,LH) <t if Lg<La=<tLgy

Call such an H a t-approx of G



Inequalities and Approximation

Ly < Laifforally, z'Lyx <z’ Lox

li(Lg,LH) <t iff dc : CLH < LG < CtLH

Call such an H a t-approx of G



Vaidya’s Subgraph Preconditioners

Precondition G by a subgraph H

Ly <X Lg sojustneedtforwhich Lg <X{tLg

Easy to bound ¢ if H is a spanning tree

\ oo

And, easy to solve equations in L, by elimination



Approximate Laplacian Solvers

Preconditioned Conjugate Gradient O(mn)
[Hestenes ‘51, Stiefel '52, ?7?7]

Vaidya ‘90: Augmented MST O(mn3/%)

Boman-Hendrickson '01: 3 e
Using Low-Stretch Spanning Trees ~ O(mn / )

S-Teng '04: Spectral sparsification O(m log® n)

Koutis-Miller-Peng ‘11: Elegance é(m logn)



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

o—9O
N \
/0—0—0

— o



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

N



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

path- Iek ¢ .k’



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

N

path -len 5



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

\ ‘_‘_‘\_?
path-len 1



The Stretch of Spanning Trees

Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

In weighted case, measure resistances of paths



Fundamental Graphic Inequality

060 O—0—0
S 7O

O. 1 (5,
N9 @ 6 0—0—0
7 7
7,@—6)—9:7
= (1,
0—0-06 "

edge < ktimes path of length &

With weights, corresponds to resistors in serial
(Poincaré inequality)

49



When T is a Spanning Tree

G T

Every edge of G not in T has unique pathinT

N[

50




When T is a Spanning Tree

o o h (3 @ @ )
y < |
® o0 0 ™ o oo o0
Q) . 93 Q)
® ©° R 4 ®© ©° R
® O 5 95 5

o
o
o
o

N

5
/
¢ Y,
® © N\ 4 6 N\
\. ° ,/\'6'
¢ 6 525060
@) . @ ®)

N

7 ‘l‘
oio,/l\o
o’ 12 12 1216

6

1



Low-Stretch Spanning Trees

For every G thereis a T'with

StT(G) < mitot) where m = |FE|

(Alon-Karp-Peleg-West '91)

str(G) < O(mlog mlog” logm)

(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

[ Solve linear systems in time O (m?/2 log m) ]




Spectral Sparsification [S-Teng ‘04]

Approximate G by a sparse H with
li(Lg,LH) < 1+e¢€

vT Lgv Nﬂﬁ vT Ly
(1 +e¢)




Cut Sparsification [Benczur-Karger ‘96]

Approximate G by a sparse H,
approximately preserving all boundaries




Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€



Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/€®) edges and k(Lg,Lyg) <1+4e€

S-Srivastava ‘08: with O(n log n/eQ) edges
by random sampling by effective resistances

1V
W\ 0.53V

1/(current flow at one volt) WO-Z?V

0.2V 0.33V

oV



Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€

S-Srivastava ‘08: with O(n log n/ez) edges

Batson-S-Srivastava ‘09

deterministic, poly time, and O(n/€?) edges



Sparsifiers Low-Stretch Trees

1 2

Ultra-Sparsifiers [S-Teng]
Approximate G by a tree plus n/log”n edges

Ly < Lo <clog?n Ly




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes

—\/ \
R~




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes

P
. ‘ }
ARSS

(&

—




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes



Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes



Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes



Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes

. 2 .
Get system of size O(n/log” n), solve recursively
[Joshi ‘97, Reif ‘98, S-Teng 04 ‘09]



Ultra-Sparsifiers

Solve systems in H by:
1. Cholesky eliminating degree 1 and 2 nodes
2. recursively solving reduced system




Koutis-Miller-Peng ‘11

Solve in time O(mlogn log®logn log(1/e))

Build Ultra-Sparsifier by:
1. Constructing low-stretch spanning tree
2. Adding other edges with probability

Puv ~ path-length(u, v)

Code by Yiannis Koutis



Local Graph Clustering [S-Teng ‘04]

Given vertex of interest
find nearby cluster S

with small expansion
in time O(|S])

See algorithms of

RO

e

I
)‘\\»‘ .4‘:‘:{-‘: :,/,'
2 NN
K A)‘\"'\./&h‘\ I e
\» ‘“///";’.\\iv N {
oy s 2

N/ —

S

c«‘ ‘ ® f N ‘@
\> QU ‘ i "’m’
R N0 \ I
--"u\;:.f,.‘p‘~‘;£-. Y

SIS . VAl \‘é
‘/]“w \\s,., ‘h ([
. ’

Andersen-Chung-Lang ‘06 and

Andersen-Peres ‘09



Open Problems
Faster and better Low-Stretch Spanning Trees.
Faster high-quality sparsification.
Faster local clustering and graph decomposition.
Other families of linear systems

from physical problems
from optimization



Conclusions

Laplacian Solvers are a powerful primitive!
Faster Maxflow: christiano-Kelner-Madry-S-Teng
Faster Random Spanning Trees: Kelner-Madry-Propp
All Effective Resistances: s-Srivastava

Maybe we can solve all well-conditioned
graph problems in nearly-linear time.

Don’t fear large constants



