Solving Systems of Linear Equations

Graph Laplacians
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Outline

Linear Systems in Laplacian Matrices
Classic ways to solve them

Approximating Graphs by Trees
Sparse Approximations of Graphs

Fast Solution of Linear Equations



Solving Linear Equations Ax = b, Quickly

Solve in time O(m log® m)
where m = number of non-zeros entries of 4

timeslog(1/e) for e-approximate solution.

Special case: 4 is the Laplacian Matrix of a Graph
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Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR
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Laplacian Quadratic Form for Weighted Graphs

G=(V,E,w)

w:FE — ]R_I_ assigns a positive weight to every edge

4 )
' Loz = Z W(w,v) (T(U) — 513(’0))2
. (u,v)eEE )

Matrix L is positive semi-definite
nullspace spanned by const vector, if connected



Laplacian Matrix of a Weighted Graph
—w(u,v) if (u,v) € E
La(u,v) = < d(u) if u=wv
0 otherwise
d(u) = 2 (puyer W(U; V)
the weighted degree of u

1

. 4 -1 0 -1

-1 4 -3 0

1 3 0 -3 4 -1
1

-1 0 -1 2
0 0 0

‘

is a diagonally dominant matrix
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A few applications

Computing effective resistances.

Solving Elliptic PDEs.

Solving Maximum Flow by Interior Point Methods

Computing Eigenvectors and Eigenvalues of
Laplacians of graphs.

N

=6

Ty

o
AW
NS
==

1Y)
)
P
&
—

Thph
yparsz



Solving Laplacian Linear Equations Quickly

Fast when graph is simple,
by elimination.

Fast approximation when graph is complicated*,
by Conjugate Gradient

* = random graph or high expansion



Cholesky Factorization of Laplacians

1
] ‘ 3 -1 0
-1 2 -1
1 1 0 -1 2

‘ - -1 0 0

When eliminate a vertex,
connect its neighbors.

Also known as Y-A
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connect its neighbors.

Also known as Y-A
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The order matters

-1

-1

1




Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])
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Complexity of Cholesky Factorization
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Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,%: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79

Expander like random, #tops 2 Q(|V]3)
but O(|V|) edges Lipton-Rose-Tarjan ‘79



Expansion and Cholesky Factorization

For SCV IS O‘\:"

bdry(S)
min (|5, |V — 5])

B(S) =

[ (I)G — minscv (I)(S) ]




Expansion and Cholesky Factorization

e ©
@
For SCV g o :‘..‘0
0‘%‘.0 o
@ ® o ©

bdry(9)|

B(S) =

[ (I)G — minSCV (I)(S) }

Cholesky slow when expansion high
Cholesky fast when low for G and all subgraphs



bdry(9)|
Expansion P(S) = |

min (|5, [V — 5])




bdry(9)|
Expansion P(S) = |

min (|5, [V — 5])




Expansion P(S) = bdry(S5)

min (|5, [V — 5])

08
SUSs

O(S) = 1/2




Cheeger’s Inequality and the Conjugate Gradient
Cheeger’s inequality (degree-d unwted case)

1A, @ Ny
—2 o T6 o [0
2d =~ d - V4,

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

near d for expanders and random graphs



Cheeger’s Inequality and the Conjugate Gradient
Cheeger’s inequality (degree-d unwted case)

LAs ®a . [yAe
2d — d — d

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

Conjugate Gradient finds € -approx solutionto L, x = b

in O(y/d/X2loge™)  multsby L,
is O(dm®_"loge ')  ops



Fast solution of linear equations

Conjugate Gradient fast when expansion high.

Elimination fast when low for G and all subgraphs.
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Fast solution of linear equations

Conjugate Gradient fast when expansion high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Not all graphs fit into these categories!



Preconditioned Conjugate Gradient

Solve L, x = b by
Approximating L. by L, (the preconditioner)

In each iteration
solve a system in L,
multiply a vector by L,

€ -approx solution after
O(\/k(Lg, Ly)loge 1) iterations
L. condition number/approx quality




The relative condition number

T

Aoy (LGLE) pseudo-inverse

N— min non-zero eigenvalue

/i(Lg, LH) —




Inequalities and Approximation

LH LG if for all x, TLHx S LgiC

Example: if H is a subgraph of G
:L‘TL(;.CL‘ — Z W (u,v) (az(u) — w(v))Q

(u,v)EFE



Inequalities and Approximation

Ly < Laifforally, z'Lyx <z’ Lox

li(Lg,LH) <t if Lg<La=<tLgy

Call such an H a t-approx of G



Inequalities and Approximation

Ly < Laifforally, z'Lyx <z’ Lox

li(Lg,LH) <t iff dc : CLH < LG < CtLH

Call such an H a t-approx of G



Vaidya’s Subgraph Preconditioners

Precondition G by a subgraph H

Ly <X Lg sojustneedtforwhich Lg <X{tLg

Easy to bound ¢ if H is a spanning tree

\ oo

And, easy to solve equations in L, by elimination



Approximate Laplacian Solvers

Preconditioned Conjugate Gradient O(mn)
[Hestenes ‘51, Stiefel '52, ?7?7]

Vaidya ‘90: Augmented MST O(mn3/%)

Boman-Hendrickson '01: 3 e
Using Low-Stretch Spanning Trees ~ O(mn / )

S-Teng '04: Spectral sparsification O(m log® n)

Koutis-Miller-Peng ‘11: Elegance é(m logn)



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

o—9O
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The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE
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The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

\ ‘_‘_‘\_?
path-len 1



The Stretch of Spanning Trees

Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

In weighted case, measure resistances of paths



Fundamental Graphic Inequality

060 O—0—0
S 7O

O. 1 (5,
N9 @ 6 0—0—0
7 7
7,@—6)—9:7
= (1,
0—0-06 "

edge < ktimes path of length &

With weights, corresponds to resistors in serial
(Poincaré inequality)

49



When T is a Spanning Tree

G T

Every edge of G not in T has unique pathinT

N[

50




When T is a Spanning Tree
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Low-Stretch Spanning Trees

For every G thereis a T'with

StT(G) < mitot) where m = |FE|

(Alon-Karp-Peleg-West '91)

str(G) < O(mlog mlog” logm)

(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

[ Solve linear systems in time O (m?/2 log m) ]




Spectral Sparsification [S-Teng ‘04]

Approximate G by a sparse H with
li(Lg,LH) < 1+e¢€

vT Lgv Nﬂﬁ vT Ly
(1 +e¢)




Cut Sparsification [Benczur-Karger ‘96]

Approximate G by a sparse H,
approximately preserving all boundaries




Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€



Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/€®) edges and k(Lg,Lyg) <1+4e€

S-Srivastava ‘08: with O(n log n/eQ) edges
by random sampling by effective resistances

1V
W\ 0.53V

1/(current flow at one volt) WO-Z?V

0.2V 0.33V

oV



Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€

S-Srivastava ‘08: with O(n log n/ez) edges

Batson-S-Srivastava ‘09

deterministic, poly time, and O(n/€?) edges



Sparsifiers Low-Stretch Trees

1 2

Ultra-Sparsifiers [S-Teng]
Approximate G by a tree plus n/log”n edges

Ly < Lo <clog?n Ly




Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes
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Eliminate degree 1 and 2 nodes
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Cholesky factor to smaller system

Eliminate degree 1 and 2 nodes

. 2 .
Get system of size O(n/log” n), solve recursively
[Joshi ‘97, Reif ‘98, S-Teng 04 ‘09]



Ultra-Sparsifiers

Solve systems in H by:
1. Cholesky eliminating degree 1 and 2 nodes
2. recursively solving reduced system




Koutis-Miller-Peng ‘11

Solve in time O(mlogn log®logn log(1/e))

Build Ultra-Sparsifier by:
1. Constructing low-stretch spanning tree
2. Adding other edges with probability

Puv ~ path-length(u, v)

Code by Yiannis Koutis



Local Graph Clustering [S-Teng ‘04]

Given vertex of interest
find nearby cluster S

with small expansion
in time O(|S])

See algorithms of
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Andersen-Peres ‘09



Open Problems
Faster and better Low-Stretch Spanning Trees.
Faster high-quality sparsification.
Faster local clustering and graph decomposition.
Other families of linear systems

from physical problems
from optimization



Conclusions

Laplacian Solvers are a powerful primitive!
Faster Maxflow: christiano-Kelner-Madry-S-Teng
Faster Random Spanning Trees: Kelner-Madry-Propp
All Effective Resistances: s-Srivastava

Maybe we can solve all well-conditioned
graph problems in nearly-linear time.

Don’t fear large constants



