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Outline 
Spectral Graph Theory:  Understand graphs 
     through eigenvectors and eigenvalues 
     of associated matrices.  

Electrical Graph Theory:  Understand graphs 
     through metaphor of resistor networks. 

Heuristics 
Algorithms 
Theorems 
Intuition 



Spectral Graph Theory 

Graph  G = (V,E)

Matrix  A

rows and cols 
indexed by  

Eigenvalues 

Eigenvectors  

Av = λv

v : V → IR

V



Spectral Graph Theory 

Graph  G = (V,E)

Matrix  A

rows and cols 
indexed by  

Eigenvalues 

Eigenvectors  

Av = λv

v : V → IR

1! 2! 3! 4!

1! 2! 3! 4!
−1 −0.618 0.618 1

A(i, j) = 1 if (i, j) ∈ E
V
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Example: Graph Drawing by the Laplacian 
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8 9

L(i, j) =






−1 if (i, j) ∈ E

deg(i) if i = j

0 otherwise

Eigenvalues 0, 1.53, 1.53, 3, 3.76, 3.76, 5, 5.7, 5.7 

Let                     span eigenspace of eigenvalue 1.53   x, y ∈ IRV



Example: Graph Drawing by the Laplacian 

1 
2 

4 

5 

6 

9 

3 

8 

7 

Plot vertex    at i (x(i), y(i))

Draw edges as straight lines 



Laplacian: natural quadratic form on graphs 

where D is diagonal matrix of degrees 

1! 2! 3! 4!



Laplacian: fast facts 

zero is an eigenvalue 

Connected if and only if  

Fiedler (‘73) called       
       “algebraic connectivity of a graph” 
The further from 0, the more connected. 

λ2 > 0



Drawing a graph in the line (Hall ’70) 

map 

minimize 

trivial solution:  So, require 

Solution 

Atkins, Boman, Hendrickson ’97: 
  Gives correct drawing for graphs like 

x ⊥ 1, �x� = 1



Courant-Fischer definition of  eigvals/vecs 



Courant-Fischer definition of  eigvals/vecs 
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(here           )  



Drawing a graph in the plane (Hall ’70) 

minimize 

map 



Drawing a graph in the plane (Hall ’70) 

minimize 

map 

trivial solution:  
So, require �x1, �x2 ⊥ 1



Drawing a graph in the plane (Hall ’70) 

minimize 

map 

trivial solution:  

So, require  

Solution up to rotation 

So, require 

diagonal solution: 
�x1 ⊥ �x2

�x1, �x2 ⊥ 1



A Graph 



Drawing of  the graph using v2, v3 

Plot vertex     at  i





The Airfoil Graph, original coordinates 



The Airfoil Graph, spectral coordinates 



The Airfoil Graph, spectral coordinates 



Spectral drawing of  Streets in Rome 



Spectral drawing of  Erdos graph: 
   edge between co-authors of  papers 



Dodecahedron 

Best embedded by first three eigenvectors 



edges	
  	
  	
  	
  	
  -­‐>	
  ideal	
  linear	
  springs	
  
weights	
  	
  -­‐>	
  spring	
  constants	
  (k)	
  

Nail	
  down	
  some	
  ver9ces,	
  let	
  rest	
  se;le	
  

Physics:	
  when	
  stretched	
  to	
  length	
  x,	
  force	
  is	
  kx	
  
poten9al	
  energy	
  is	
  kx2/2	
  

Intuition: Graphs as Spring Networks 



Nail	
  down	
  some	
  ver9ces,	
  let	
  rest	
  se;le	
  

Physics:	
  minimizes	
  total	
  poten9al	
  energy	
  

subject	
  to	
  boundary	
  constraints	
  (nails)	
  

i

Intuition: Graphs as Spring Networks 

�

(i,j)∈E

(x(i)− x(j))2 = xTLx

x(i)



Nail	
  down	
  some	
  ver9ces,	
  let	
  rest	
  se;le	
  

Physics:	
  energy	
  minimized	
  when	
  
	
  	
  	
  	
  non-­‐fixed	
  ver9ces	
  are	
  averages	
  of	
  neighbors	
  

i

Intuition: Graphs as Spring Networks 

x(i)

�x(i) =
1

di

�

(i,j)∈E

�x(j)



If	
  nail	
  down	
  a	
  face	
  of	
  a	
  planar	
  3-­‐connected	
  graph,	
  
get	
  a	
  planar	
  embedding!	
  

Tutte’s Theorem ‘63 



Condition for eigenvector 

Spectral graph drawing: Tutte justification 

Gives for all 

λ small says         near average of neighbors 

x(i) =
1

di − λ

�

(i,j)∈E

x(j)

x(i)

i



Condition for eigenvector 

Spectral graph drawing: Tutte justification 

Gives for all i 

λ small says         near average of neighbors 

x(i) =
1

di − λ

�

(i,j)∈E

x(j)

x(i)

For planar graphs: 

λ2 ≤ 8d/n [S-Teng ‘96] 

λ3 ≤ O(d/n) [Kelner-Lee-Price-Teng ‘09] 



Small eigenvalues are not enough 

Plot vertex     at  i (v3(i), v4(i))



Graph Partitioning 



Spectral Graph Partitioning 

for some  S = {i : v2(i) ≤ t}

[Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ‘92] 

t



Measuring Partition Quality: Conductance 

Φ(S) =
# edges leaving S

sum of degrees in S

S

For  deg(S) ≤ deg(V )/2



Spectral Image Segmentation (Shi-Malik ‘00) 



Spectral Image Segmentation (Shi-Malik ‘00) 



Spectral Image Segmentation (Shi-Malik ‘00) 



Spectral Image Segmentation (Shi-Malik ‘00) 



Spectral Image Segmentation (Shi-Malik ‘00) 

edge weight 



The second eigenvector 



Second eigenvector cut 



Third Eigenvector 



Fourth Eigenvector 



Cheeger’s Inequality 
[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91] 

[Cheeger ‘70] 

For Normalized Laplacian: L = D−1/2LD−1/2

And, is a spectral cut for which 

λ2/2 ≤ min
S

Φ(S) ≤
�
2λ2

Φ(S) ≤
�
2λ2



McSherry’s Analysis of  Spectral Partitioning 

S T

p 

p 

q 

Divide vertices into S and T 
Place edges at random with 

Pr [S-S edge] = p

Pr [T-T edge] = p

Pr [S-T edge] = q

q < p



McSherry’s Analysis of  Spectral Partitioning 

S T

p 

p 

q 

E [ A ] =

p q

q p

}
} T

TS

S



McSherry’s Analysis of  Spectral Partitioning 

E [ A ] =

p q

q p

}
} T

TS

S

is positive const on S, negative const on T 

View      as perturbation of  
and        as perturbation of E [ L ]

E [ A ]A
L

v2(E [ L ])



is negative const on S, positive const on T 

McSherry’s Analysis of  Spectral Partitioning 

View      as perturbation of  
and        as perturbation of E [ L ]

E [ A ]A
L

Random Matrix Theory [Füredi-Komlós ‘81, Vu ‘07] 

With high probability                             small 
���L−E [ L ]

���

Perturbation Theory for Eigenvectors implies 

v2(L) ≈ v2(E [ L ])

v2(E [ L ])



Spectral graph coloring from high eigenvectors 

Embedding of dodecahedron by 19th and 20th eigvecs. 



Spectral graph coloring from high eigenvectors 

Coloring 3-colorable random graphs [Alon-Kahale ’97] 

p

p
p

p

p



Independent Sets 

S is independent if 
  are no edges between 
  vertices in S 



Independent Sets 

S is independent if 
  are no edges between 
  vertices in S 

Hoffman’s Bound: if every vertex has degree d  

|S| ≤ n

�
1− d

λn

�



Networks of  Resistors	
  

Ohm’s	
  laws	
  gives	
  

In	
  general,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
   w(u,v) = 1/r(u,v)

Minimize	
  dissipated	
  energy	
  	
  

i = v/r

i = LGv

vTLGv

1V	
  

0V	
  



1V	
  

0V	
  

0.5V	
  

0.5V	
  

0.625V	
  0.375V	
  

By	
  solving	
  Laplacian	
  

1V	
  

0V	
  

Ohm’s	
  laws	
  gives	
  

In	
  general,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  

Minimize	
  dissipated	
  energy	
  	
  

i = v/r

i = LGv

vTLGv

Networks of  Resistors	
  

wa,b = 1/ra,b



Electrical Graph Theory 

Considers flows in graphs 

Allows comparisons of graphs, 
and embedding of one graph within another. 

Relative Spectral Graph Theory 



Effective Resistance 

Resistance of entire network,  
  measured between a and b. 

 = 1/(current flow at one volt) 

0V 

0.53V 

0.27V 

0.33V 0.2V 

1V 

0V 

a 
b 

Ohm’s law:  

Reff(a, b)

r = v/i



Effective Resistance 

 = 1/(current flow at one volt) 
 = voltage difference to flow 1 unit 

Ohm’s law:  

Reff(a, b)

Resistance of entire network,  
  measured between a and b. 

r = v/i



Effective Resistance 

= voltage difference to flow 1 unit Reff(a, b)

ia,b = ea − eb

Vector of one unit flow has 1 at a,  
                                          -1 at b,  
                                           0 elsewhere 

Voltages required by this flow are given by 

va,b = L−1
G ia,b



Effective Resistance 

= voltage difference of unit flow Reff(a, b)

Voltages required by unit flow are given by 

Voltage difference is 

va,b(a)− va,b(b) = (ea − eb)
T va,b

= (ea − eb)
TL+

G(ea − eb)

va,b = L−1
G ia,b



Effective Resistance Distance 

Effective resistance is a distance 
Lower when are more short paths 

Equivalent to commute time distance: 
  expected time for a random walk from a 
  to reach b and then return to a. 

See Doyle and Snell, 
   Random Walks and Electrical Networks 



Relative Spectral Graph Theory 

For two connected graphs G and H 
with the same vertex set, consider 

LGL
−1
H

work orthogonal to nullspace 
or use pseudoinverse 

Allows one to compare G and H 



Relative Spectral Graph Theory 

For two connected graphs G and H, consider 

if and only if G = H

LGL
−1
H

= In−1



Relative Spectral Graph Theory 

For two connected graphs G and H, consider 

if and only if 

LGL
−1
H

≈ In−1

G ≈ H



Relative Spectral Graph Theory 

For two connected graphs G and H, consider 

if and only if for all 

1

1 + �
≤ eigs(LGL

−1
H

) ≤ 1 + �

1

1 + �
≤ xTLGx

xTLHx
≤ 1 + �

x ∈ IRV



xTLGx =
�

(a,b)∈E

(x(a)− x(b))2 = |E(S, V − S)|

Relative Spectral Graph Theory 

1

1 + �
≤ xTLGx

xTLHx
≤ 1 + �

In particular, for 

0
0

0

1

1

1

S 0

x(a) =

�
1 a ∈ S

0 a �∈ S



Relative Spectral Graph Theory 

For all  

1

1 + �
≤ |EG(S, V − S)|

|EH(S, V − S)| ≤ 1 + �

S ⊂ V

1

1 + �
≤ xTLGx

xTLHx
≤ 1 + �



Expanders Approximate Complete Graphs  

Expanders: 

    d-regular graphs on n vertices 

    high conductance 

    random walks mix quickly 

    weak expanders: eigenvalues bounded from 0	



    strong expanders: all eigenvalues near d	





For G	
  	
  the	
  complete	
  graph	
  on	
  n	
  vertices.	
  	
  
	
  	
  	
  	
  all	
  non-­‐zero	
  eigenvalues	
  of	
  LG	
  are	
  n.	
  

For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   x ⊥ 1 xTLGx = n�x� = 1

Expanders Approximate Complete Graphs  



For G	
  	
  the	
  complete	
  graph	
  on	
  n	
  vertices.	
  	
  
	
  	
  	
  	
  all	
  non-­‐zero	
  eigenvalues	
  of	
  LG	
  are	
  n.	
  

For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   x ⊥ 1 xTLGx = n

For H	
  	
  a	
  d-­‐regular	
  strong	
  expander,	
  
	
  	
  	
  	
  all	
  non-­‐zero	
  eigenvalues	
  of	
  LH	
  are	
  close	
  to	
  d.	
  

For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   x ⊥ 1

�x� = 1

�x� = 1

Expanders Approximate Complete Graphs  

xTLHx ∈ [λ2,λn]

≈ d



For	
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   x ⊥ 1

n

d
H is a good approximation of  G

�x� = 1

Expanders Approximate Complete Graphs  

xTLHx ≈ d

For G	
  	
  the	
  complete	
  graph	
  on	
  n	
  vertices.	
  	
  
	
  	
  	
  	
  all	
  non-­‐zero	
  eigenvalues	
  of	
  LG	
  are	
  n.	
  

For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   x ⊥ 1 xTLGx = n

For H	
  	
  a	
  d-­‐regular	
  strong	
  expander,	
  
	
  	
  	
  	
  all	
  non-­‐zero	
  eigenvalues	
  of	
  LH	
  are	
  close	
  to	
  d.	
  

�x� = 1



Sparse approximations of  every graph 

Can find an H with                           edges 
   in nearly-linear time.  

O(n log n/�2)

[Batson-S-Srivastava] 

[S-Srivastava] 

1

1 + �
≤ xTLGx

xTLHx
≤ 1 + �

For every G,  
        there is an H with                        edges (2 + �)2n/�2



Sparsification by Random Sampling [S-­‐Srivastava]	
  

Include	
  edge	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  probability	
  	
  (u, v)

pu,v ∼ wu,vReff(u, v)

If	
  include	
  edge,	
  give	
  weight	
  	
  wu,v/pu,v

Analyze by Rudelson’s  
   concentration of random sums of rank-1 matrices 



Approximating a graph by a tree 

Alon, Karp, Peleg, West ‘91: measure the stretch 
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Approximating a graph by a tree 

Alon, Karp, Peleg, West ‘91: measure the stretch 
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j	
  
3	
  

T	
  

Approximating a graph by a tree 

Alon, Karp, Peleg, West ‘91: measure the stretch 



T	
  
3	
  

5	
  

6	
  1	
  
1	
  

1	
  1	
  

1	
   1	
   1	
   1	
   1	
  

Approximating a graph by a tree 

Alon, Karp, Peleg, West ‘91: measure the stretch 



(Alon-­‐Karp-­‐Peleg-­‐West	
  ’91)	
  

	
  (Elkin-­‐Emek-­‐S-­‐Teng	
  ’04,	
  Abraham-­‐Bartal-­‐Neiman	
  ’08)	
  

For	
  every	
  G	
  there	
  is	
  a	
  T	
  with	
  

where	
   m = |E|

Low-Stretch Spanning Trees 

Conjecture: 

stretchT (G) ≤ m1+o(1)

stretchT (G) ≤ O(m logm log2 logm)

stretchT (G) ≤ m log2 m



[S-­‐Woo	
  ’09] Algebraic characterization of  stretch 

stretchT (G) = Trace[LGL
−1
T ]



In	
  trees,	
  resistance	
  is	
  distance.	
  

Resistances	
  in	
  series	
  sum	
  

[S-­‐Woo	
  ’09] Algebraic characterization of  stretch 

T	
  a 
b 

v : 0 1
1 1

2

2

3 4
4

4

stretchT (G) = Trace[LGL
−1
T ]



xTLGx =
�

(a,b)∈E

(x(a)− x(b))2

=
�

(a,b)∈E

((ea − eb)
Tx)2

=
�

(a,b)∈E

xT (ea − eb)(ea − eb)
Tx

= xT (
�

(a,b)∈E

(ea − eb)(ea − eb)
T )x

[S-­‐Woo	
  ’09] Algebraic characterization of  stretch 

stretchT (G) = Trace[LGL
−1
T ]



[S-­‐Woo	
  ’09] Algebraic characterization of  stretch 

stretchT (G) = Trace[LGL
−1
T ]

Trace[LGL
−1
T ] =

�

(a,b)∈E

Trace[(ea − eb)(ea − eb)
TL−1

T ]

=
�

(a,b)∈E

Trace[(ea − eb)
TL−1

T (ea − eb)]

=
�

(a,b)∈E

(ea − eb)
TL−1

T (ea − eb)



[S-­‐Woo	
  ’09] Algebraic characterization of  stretch 

stretchT (G) = Trace[LGL
−1
T ]

�

(a,b)∈E

(ea − eb)
TL−1

T (ea − eb) =
�

(a,b)∈E

Reff(a, b)

=
�

(a,b)∈E

stretchT (a, b)



Notable Things I’ve left out 

Behavior under graph transformations 
Graph Isomorphism 
Random Walks and Diffusion 
PageRank and Hits 
Matrix-Tree Theorem 
Special Graphs  
    (Cayley, Strongly-Regular, etc.) 
Diameter bounds 
Colin de Verdière invariant 
Discretizations of Manifolds 



The next two talks 

Tomorrow: 
  Solving equations in Laplacians  
  in nearly-linear time. 

Preconditioning 
Sparsification 
Low-Stretch Spanning Trees 
Local graph partitioning 



The next two talks 

Thursday: 
  Existence of sparse approximations. 

A theorem in linear algebra 
and some of its connections. 


