Spectral and Electrical

Graph Theory
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Outline

Spectral Graph Theory: Understand graphs
through eigenvectors and eigenvalues
of associated matrices.

Electrical Graph Theory: Understand graphs
through metaphor of resistor networks.

Heuristics

Algorithms
Theorems
Intuition



Spectral Graph Theory

Graph G = (V, F)

Matrix A

rows and cols
indexed by |/

Eigenvalues Ay = \v

Eigenvectors v : V — R



Spectral Graph Theory

Graph G = (V, F) O—o—0—0
Matrix A /O 10 O\
1 0 1 O
rows and cols 0 1 0 1
indexed by |/ \0 0 1 0)
A(i,j)=11if (i,§) € E

Eigenvalues Ay = \v
-1 —0.618 0.618 1

Eigenvectors v : V — R @—O—O0——0O



Example: Graph Drawing by the Laplacian




Example: Graph Drawing by the Laplacian




Example: Graph Drawing by the Laplacian

1 2
4 (1 if (i,j) € E
i 6 sy L(t,j) = ¢ deg(i) ifi=j
\O otherwise
8 9



Example: Graph Drawing by the Laplacian

1 2
4 (1 if (i,j) € E
i 6 sy L(t,j) = ¢ deg(i) ifi=j
\O otherwise
8 9

Eigenvalues 0, 1.53, 1.53, 3, 3.76, 3.76, 5, 5.7, 5.7

Let z,y € RY span eigenspace of eigenvalue 1.53



Example: Graph Drawing by the Laplacian

Plot vertex i at (x(3), y(7))

Draw edges as straight lines



Laplacian: natural quadratic form on graphs

T Le= ) (x(i) — x(j))
(¢,J)EE
L = D — A where Dis diagonal matrix of degrees

(1—1 0 0\

—1 2 —1 0
0 —1 2 —1

\ 0 0 -1 1
0——60—0




Laplacian: fast facts

L= Y (x(i) - 2(5))?
(1,j)€EE
L1=20 zero Is an eigenvalue

0=X <A< <\,

Connected if and only if Ao >0

Fiedler (‘73) called A2
“algebraic connectivity of a graph”
The further from O, the more connected.



Drawing a graph in the line (Hall >70)
maplV — IR

minimize Z (z(i) — 2(j))* = o' La
(i,j)eEE

trivial solution: z=1 So, require x L 1,|jz|| =1

Solution — = v9

Atkins, Boman, Hendrickson "97:
Gives correct drawing for graphs like

6 6 > o oo



Courant-Fischer definition of eigvals/vecs

\ xlLx a2l Ly
| = min v1 = arg min
+20 !l +20 xlx




Courant-Fischer definition of eigvals/vecs

\ xlLx a2l Ly
{ = min v1 = arg min
+20 !l +20 xlx
- 2TLy . ol Lx
Ag = min —= Vg = arg min —
CUJ_’U]_ T J)J_fU]_ o

(here v; =1)



Courant-Fischer definition of eigvals/vecs

\ xlLx a2l Ly
1 = min v1 = arg min
+20 !l +20 xlx
R R %
Ag = min —= Vg = arg min —
xlvy, T+ X zlvi X
(here v; = 1)
, ! Lx
AL = min max —
Sofdim k €S I Xx
, x! Lx
Vi = ar min
ga:J_ful,...,ka,_l xlx




Drawing a graph in the plane (Hall *70)
map V — IR? (i) € R
minimize Y (dist(Z(7), Z(j))

(i,j)eF



Drawing a graph in the plane (Hall *70)
map V — IR? (i) € R
minimize Y (dist(Z(i), Z(5))’
(i,7)eE
trivial solution: Z(i) = (1,1)
So, require x1,x9 L 1



Drawing a graph in the plane (Hall *70)
map V — IR? Z(i) € R?
minimize Y (dist(Z(i), Z(5))’
(2,j)€EE
trivial solution: Z(i) = (1,1)
So, require x1,x9 L 1
diagonal solution: Z(i) = (v2(7), v2(7))

So, require 1 L o

Solution Z(7) = (v2(i),v3(7)) up to rotation



A Graph




Drawing of the graph using v,, v,

1\

(N
N~

W
e AR R AN
VY VAV e ZaN A AN VA SN
eSS NS Za v\
/R AN 4‘ P AN A
[ ?‘ Nawa\ «},‘:‘,;
R (V\\mﬁ\,amn %
QDR ’ANVVM»
\¥ X ‘VE& ‘» SZ SH » 4
“‘&VA\V&‘

X

SN
N, AN
NN i

\/
g
Egﬁ
\/

2\

A

>

%
N
(7
"\

N
A TeeI -

Plot vertex i at (v2(),v3(%))
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The Airfoil Graph, original coordinates
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The Airfoil Graph, spectral coordinates

i

A“ ()

)




The Airfoil Graph, spectral coordinates




Spectral drawing of Streets in Rome
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Spectral drawing of Erdos graph:
edge between co-authors of papers




Dodecahedron

Best embedded by first three eigenvectors



Intuition: Graphs as Spring Networks

edges ->ideal linear springs
weights -> spring constants (k)

Physics: when stretched to length x, force is kx
potential energy is kx?/2

Nail down some vertices, let rest settle

dwomwomd




Intuition: Graphs as Spring Networks

Nail down some vertices, let rest settle
2 x (1) Z
O— 0 —@

Physics: minimizes total potential energy

> (i)~ #(i)? = #"La

(1,j)ER

subject to boundary constraints (nails)



Intuition: Graphs as Spring Networks

Nail down some vertices, let rest settle
2 x (1) Z
O— 0 —@

Physics: energy minimized when
non-fixed vertices are averages of neighbors




Tutte’s Theorem ‘63

If nail down a face of a planar 3-connected graph,
get a planar embedding!




Spectral graph drawing: Tutte justification

Condition for eigenvector Lx = Az

| | 1 .
Gives z(i) = FR Z *(J)  forall i

(i,7)€EFE

A small says x(z) near average of neighbors



Spectral graph drawing: Tutte justification

Condition for eigenvector Lx = Az

Gives az(@)zdi_A Z z(J)  forall |

(i,7)€EFE

A small says x(z) near average of neighbors

For planar graphs:
Ay < 8d/n  [S-Teng ‘96]
A3 < O(d/n) [Kelner-Lee-Price-Teng ‘09]



Small eigenvalues are not enough
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Plot vertex ¢ at (v3(7),v4(7))
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Spectral Graph Partitioning
[Donath-Hoffman ‘72, Barnes ‘82, Hagen-Kahng ‘92]
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Measuring Partition Quality: Conductance

NN

S

7 edges leaving S

®(5)

sum of degrees in S

For deg(S) < deg(V)/2



Spectral Image Segmentation (Shi-Malik ‘00)
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Spectral Image Segmentation (Shi-Malik ‘00)

N




Spectral Image Segmentation (Shi-Malik ‘00)

B2




Spectral Image Segmentation (Shi-Malik ‘00)




Spectral Image Segmentation (Shi-Malik ‘00)
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The second eigenvector
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Second eigenvector cut
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Third Eigenvector
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Fourth Eigenvector
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Cheeger’s Inequality [Cheeger 70]
[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]
For Normalized Laplacian: [ — D_l/QLD_l/2

Ao /2 < méinCI)(S) < V29

And, is a spectral cut for which

P(S) < /29



McSherry’s Analysis of Spectral Partitioning
@ o o

o
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p
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Divide vertices into Sand T
Place edges at random with

Pr [S-S edge| = p
Pr [T-T edge] = p qg<p
Pr [S-T edge| = q




McSherry’s Analysis of Spectral Partitioning
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McSherry’s Analysis of Spectral Partitioning

Bl p q }5

] P }T

S T

v2(E[ L)) is positive const on S, negative conston T

View A as perturbation of E[ A |
and L as perturbation of E| L |



McSherry’s Analysis of Spectral Partitioning

v2(E | L |) is negative const on S, positive const on T

View A as perturbation of E [ A |
and L as perturbationof E| L |

Random Matrix Theory [Furedi-Komloés ‘81, Vu ‘07]
With high probability HL —E|[ L ]H small

Perturbation Theory for Eigenvectors implies
v2(L) = va(E[ L |)



Spectral graph coloring from high eigenvectots
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Embedding of dodecahedron by 19t and 20% eigvecs.



Spectral graph coloring from high eigenvectots

Coloring 3-colorable random graphs [Alon-Kahale "97]



Independent Sets

S Is independent if
are no edges between
vertices in S




Independent Sets

S Is independent if
are no edges between
vertices in S

Hoffman’s Bound: if every vertex has degree d

d
< 1
S _n( An)




Networks of Resistors

Ohm'’s laws gives ¢ = v/r

In general, 1 = Lgv with w(, ,y = 1/r @

Minimize dissipated energy v’ Lo

oV

1V



Networks of Resistors

Ohm'’s laws gives ¢ = v/r
In general, i = Lgv with w,p = 1/r44

Minimize dissipated energy v’ Lo

By solving Laplacian




Electrical Graph Theory

Considers flows in graphs

Allows comparisons of graphs,
and embedding of one graph within another.

Relative Spectral Graph Theory



Effective Resistance

Resistance of entire network,
measured between a and b.

Ohm’s law: © = v/1

Rt (a, b) = 1/(current flow at one volt)

1V
W: 0.53V
a

- 0.2V 0.33V
oV —



Effective Resistance

Resistance of entire network,
measured between a and b.

Ohm’s law: © = v/1

Rt (a, b) = 1/(current flow at one volt)
= voltage difference to flow 1 unit



Effective Resistance

Rt (a, b) = voltage difference to flow 1 unit

Vector of one unit flow has 1 at q,
-1 at b,
O elsewhere

la,b = €a — €p

Voltages required by this flow are given by

1.
VUa b — LG lab



Effective Resistance

Res(a,b) = voltage difference of unit flow

Voltages required by unit flow are given by

1.
VUa b — LG la.b

Voltage difference is

Va.p(@) — Vap(b) = (eq — €)' Vas

(0 — )" L (ea — 1)



Effective Resistance Distance

Effective resistance is a distance
Lower when are more short paths

Equivalent to commute time distance.
expected time for a random walk from a
to reach 5 and then return to a.

See Doyle and Snell,
Random Walks and Electrical Networks



Relative Spectral Graph Theory

For two connected graphs G and H
with the same vertex set, consider

LgL;'

work orthogonal to nullspace
or use pseudoinverse

Allows one to compare G and H



Relative Spectral Graph Theory

For two connected graphs G and H, consider
—-1
LGLH — In—1

ifandonlyif G = H



Relative Spectral Graph Theory

For two connected graphs G and H, consider

LgLy' ~ 1, 4

ifandonly if G ~ H



Relative Spectral Graph Theory

For two connected graphs G and H, consider

<eigs(LgLy;' ) <1+e

1 4+ €

if and only if for all x € RY

1 < LETLG,CE

< 1]
l4+e = ' Lygx — Te



Relative Spectral Graph Theory
1 < a:'TLGa:

<1
1_|_€_33TLH£U_ TE€

1 a€ S
0 a¢S

In particular, for x(a) — {




Relative Spectral Graph Theory

1 < a:'TLGa:
l4+e = 2 Lgx

Forall S CV

‘EG(Sav T S)

— <
-€ |EH(S7V_S)

< 1+¢€

<1+e¢€



Expanders Approximate Complete Graphs

Expanders:
d-regular graphs on n vertices
high conductance
random walks mix quickly
weak expanders: eigenvalues bounded from 0

strong expanders: all eigenvalues near d



Expanders Approximate Complete Graphs

For G the complete graph on n vertices.
all non-zero eigenvalues of L. are n.

Forz 1.1, ||lz]l=1 alLox=n



Expanders Approximate Complete Graphs

For G the complete graph on n vertices.
all non-zero eigenvalues of L. are n.

Forz 1.1, ||lz]l=1 alLox=n

For H ad-regular strong expander,
all non-zero eigenvalues of L, are close to d.

For x 1. 1, ||z]| =1 vl Lyx € [Aa, \y]
~ d



Expanders Approximate Complete Graphs

For G the complete graph on n vertices.
all non-zero eigenvalues of L. are n.

Forz 1.1, ||lz]l=1 alLox=n

For H ad-regular strong expander,
all non-zero eigenvalues of L, are close to d.

For z 1 1, |z =1 o' Lyx ~d

gH Is a good approximation of G



Sparse approximations of every graph
1 < ZIZ‘TLG:IZ

<1
l4+e = 20 Lgx — Te

For every G,
there is an H with (2 + €)?n/e” edges
[Batson-S-Srivastava]

Can find an H with O(nlogn/e?) edges
in nearly-linear time. [S-Srivastava]



Sparsiﬁcation by Random Sampling [S-Srivastava]

Include edge (u, v) with probability

If include edge, give weight Wy v /Pu.v

Analyze by Rudelson’s
concentration of random sums of rank-1 matrices



Approximating a graph by a tree

Alon, Karp, Peleg, West ‘91: measure the stretch

N
oo
— &



Approximating a graph by a tree
Alon, Karp, Peleg, West ‘91: measure the stretch
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Approximating a graph by a tree

Alon, Karp, Peleg, West ‘91: measure the stretch

‘_
i
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3 \.l'—.—
j o T————————@

stretchp(2, 7) = distp(z, )




Approximating a graph by a tree

Alon, Karp, Peleg, West ‘91: measure the stretch

1
1 L@ 6
1

1
.
3: 1\,‘T'TQ— .
5 C

stretchr(G) = Z distr (2, j)
(4,5)€G




Low-Stretch Spanning Trees

For every G there is a 7 with

stretch (G) < miTo) where m = |E|

(Alon-Karp-Peleg-West "91)

stretchy (G) < O(mlogmlog® log m)
(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

Conjecture: stretchr(G) < mlog, m



Algebraic characterization of stretch [S-Woo "09]

stretchr (G) = Trace[Lg L]



Algebraic characterization of stretch [S-Woo "09]

stretchr (G) = Trace[Lg L]

Resistances in series sum

In trees, resistance is distance.
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Algebraic characterization of stretch [S-Woo "09]

stretchr (G) = Trace[Lg L]

(a,b)eEE

= > ((ea —e) @)’
(a,b)EE

— Z ' (eq —ep)(eq —ep)
(a,b)EE



Algebraic characterization of stretch [S-Woo "09]

stretchr (G) = Trace[Lg L]

Trace[Lngl] = Z Trace[(eq — ep)(€q — eb)TL:Fl]



Algebraic characterization of stretch [S-Woo "09]

stretchr (G) = Trace[Lg L]

Z (eq — eb)TL — €p) Z Reg(a, b)

(a,b)eE (a,b)eEE

= Z stretchr(a,b)

(a,b)EE



Notable Things I’ve left out

Behavior under graph transformations
Graph Isomorphism
Random Walks and Diffusion
PageRank and Hits
Matrix-Tree Theorem
Special Graphs

(Cayley, Strongly-Regular, etc.)
Diameter bounds
Colin de Verdiere invariant
Discretizations of Manifolds



The next two talks

Tomorrow:
Solving equations in Laplacians
In nearly-linear time.

Preconditioning
Sparsification

Low-Stretch Spanning Trees
Local graph partitioning



The next two talks

Thursday:
Existence of sparse approximations.

A theorem in linear algebra
and some of its connections.



