These are the slides from the talk that I gave
on sparsification at EPFL on June 11, 2012.

Since I did not get through all the slides
during the talk, I've added some comments.

I’'m reserving this font for material that did
not appear in the slides.

--Dan Spielman
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LZ;”ZLHLE;W

This matrix comes up a lot in the talk. It
should have a name.



Objective of Sparsification:

Approximate a (weighted) graph by a
sparse weighted graph.




Cut Sparsifiers (Benczur-Karger)

Approximate boundaries of sets

Multiplicative (1+€) approximation
with O(n log n [ €2) edges



Lea rning on Graphs (Zhu-Ghahramani-Lafferty '03)

Infer values of a function at all vertices
from known values at a few vertices.

Minimize Y (z(a) — z(b))?

(a,b)eE
Subject to known values




Lea rning on Graphs (Zhu-Ghahramani-Lafferty '03)

Infer values of a function at all vertices
from known values at a few vertices.

Minimize Y (z(a) — z(b))?

(a,b)eE
Subject to known values

0.5




Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.
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Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

Induced voltages minimize

> (v(a) —v(b))’

(a,b)eFE

Subject to fixed voltages (by battery)



Graphs as Resistor Networks

Effective Resistance between sandt =
potential difference of unit flow

2 1 0
o000 Reff(s,t) = 2
1 0.5
O—~—
1.5 0
g{i Reff(s,t) = 1.5
O— 1 —



The Laplacian quadratic form of G = (V, F)

> (z(a) —z(b))’

(a,b)eE



The Laplacian matrix of G = (V, E)

> (z(a) —z(b))’

(a,b)eE

:a:TLGa;' r:V =R



Measuring boundaries of sets

Boundary: edges leaving a set of vertices




Measuring boundaries of sets

Boundary: edges leaving a set of vertices

Characteristic Vector of S:

<(1 ain S

\O a not in S




Measuring boundaries of sets

Boundary: edges leaving a set of vertices

Characteristic Vectorof S: _— . )

<(1 ain S

\O a not in S

!l Lx = Z (z(a) — z(b))* = |[boundary(9)]
(a,b)eE



Effective Resistance

Reff(s,t) = (6, — 8;)" Lz" (85 — &%)
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|

Potentials of flow
1outofsandi1intot
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Effective Resistance

Reff(s,t) = (6, — 8;)" Lz" (85 — &%)
\ Y J

Potentials of flow
1outofsandiintot

Whenever I write the inverse of a Laplacian, I
really mean the pseudo-inverse. As I explain
later, we know what the nullspace ts. So, it
s easy to work orthogonal to the nullspace.



Spectral Sparsification [S-Teng]

Given G, find a sparse graph H for which

' Lox ~x! Lyx Vx



Spectral Sparsification [S-Teng]

Given G, find a sparse graph H for which

' Lox ~x! Lyx Vx

In particular, we require

1 <.CUTLH£E<1_|_€

1+ — i Logx —

In which case we call H an e-approximation of G



Cut-approximation is different

\ k-by-k
complete
bipartite

O 111
k-by-k
complete
bipartite
1 m-1



Inequalities on Graphs

Forgraphs G = (V,E,w) and H = (V,F,z)
Lo <Ly

If Ly — Lg is positive semi-definite

Iff forall z:V — R

! Lox < ! Lygx
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Inequalities on Graphs

Forgraphs G = (V,E,w) and H = (V,F,z)
G<k-H (multiply edge weights by k)

If k- Ly — Lg ispositive semi-definite

Iff forall z:V — R

el Lox <k-x!'Lgx



Approximation

Forgraphs G = (V,E,w) and H = (V,F, z)

H is an e-approximation of G if

(1+e) 'G<xH=<(1+¢€¢G



Approximation

Forgraphs G = (V,E,w) and H = (V,F, z)

H is an e-approximation of G if

(1+e) 'G<xH=<(1+¢€¢G

i

1 E;xTLHx<<1_+€

z!l' Lox —

1+e€



Implications of Approximation

(1+€) 'G<H=<(1+¢eG
Boundaries of sets are similar.
L, and L. have similar eigenvalues

—17-—1 —1 —1
(1+€) Ly < Lg <(+¢€)ly
Effective resistances between vertices similar.

Solutions of linear equations are similar



Implications of Approximation

Solutions of linear equations are similar
(the same holds for regression/learning problems)

LG:IZ‘Zb

Loy — 1 ) (|2 —yl, <elzl,,
H J—

1/2
|zl = V2T Lax = ||LY 2|



Solutions of linear equations are similar

Want to show ||z — yHLG < € HfL’HLG

Lgx:b

Lpyy=> _ y =Ly Lew

L (@ —y) =LY%z — LYPLy Laa



Solutions of linear equations are similar

I—LY°L; LY

Le*Ly' Ly = (L4 o) L LG L
= (1+¢) 1
= (1—¢€)l




Solutions of linear equations are similar

I—LY°L; LY

So I—LY°L; LY
Similarly, 1 — L1/2L 1L1/2

|1 - L7 | < e

L

el
—el

\YJJ&

|(1 = Lf* L5 Le)a|| < e lall, ¥a



Solutions of linear equations are similar

L (x—y) = (I~ Lg L' Lg" )L

|(7 - L2 L5 Ld®)a|| < ezl , ¥

!

|£6* @ v <<

Lé/zajH



L, is a good preconditioner for L,

|26* @ v <<

Lé/sz

By solving equation in residual,
can solve equations in L by solving in L,

Laplacian solvers of (S-Teng, Koutis-Miller-Peng)
provide similar guarantees,
but L' is implicit, and L, is never constructed



Main Theorems

Forevery G = (V,E,w), thereisa H = (V, F, z) s.t.
1. His an e-approximation of G
2. \F\ < \V\ (2 + 6)2/62 (Batson-5S-Srivastava 09)

3. FCE

By careful random sampling, get
F| < O(|V]log|V| /€*) (S-Srivastava 08)



Laplacian Matrices (quick review)

Positive semi-definite

If connected, nullspace = Span(1)

As understand nullspace, can pretend invertible



Laplacian Matrices (quick review)



Laplacian Matrices (quick review)

Sum of outer
where bu v — Oy — (Sv products



Laplacian Matrices (quick review)

m-by-m diagonal

n-by-m matrix with columns b,, ,,



Sparsification by Random Sampling
Assign a probability p,, , to each edge (u,v)
Include edge (u,v) in H with probability p, ,

If include edge (u,v), give it weightw, ,/p, ,

[LH Z puv wuv/puv) uv_LG

(u,v)eEE



Sparsification by Random Sampling

Choose p,, to be w,  times the
effective resistance between u and v,

Low resistance between 1 and v means there

are many alternate routes for current to flow and
that the edge is not critical.

Reff (u,v) = b{)nglbu,v



Simplification of Sparsification

Ly < (1—|—€)L

i

MPLyM < (1+e)M* LaM

Using M — Lal/Q ‘

L' PLgL ' < (1 + o)l




Simplification of Sparsification

(1—€)Lg xLg x(1+¢€)Lg

&L

(1—)I < L;°LyL ' ? < (14 €)1

&

|1 - L5 PLuLg?| <



Analysis of Random Sampling

|1 - L5 P LuLg?| <

o[ Ly | = La, so <:[L51/2LHL51/2} _ ]



Analysis of Random Sampling

|1 - L5 P LuLg?| <




Rudelson’s Concentration Theorem (‘g9)

|fy1,...

Then

I- %Zny

Ty;y? =1 and

lyil| <t as.

< const - ¢

, Um arei.i.d. random vectors s.t.

logm

m™m



Rudelson’s Concentration Theorem (‘g9)

|fy1,...

Then

I- %Zny

Ty;y? =1 and

ly; || <t a.s.

< const - ¢

, Um arei.i.d. random vectors s.t.

logm

m™m



Applying Rudelson’s Concentration

Lc_;l/QLGLc_;l/2 _ Z We (Lc_;l/Zb ) (bT L—1/2)
(u,v)EE

wao (L6 buw) (01,26"°)

Pu v




Applying Rudelson’s Concentration

_1/2[)“’@) (bg,vLc_;l/z)

v (Le
= 2 pue Puv

To make all of these /have the same norm,

(L' *bus) (PinLe™) |
’ 2

T —1
— wu,vbu,vLG bu,v

we set

Pu,v — Wy,v




Sparsification by Random Sampling
Forevery G = (V,E,w), canfindan H = (V. F,z) s.t.

1. H is an e-approximation of GG
2. Hhas O(|V|log |[V| /€*) edges

3.Intime O(|E|log” |[V|log(1/¢))
[Koutis-Levin-Peng ‘12, using S-Teng, Koutis-Miller-Peng]



Quickly computing effective resistances

Need to compute bgijc_;lbu,v for all edges (u,v)

ldea 1: bZ,ULglbu,v = HLc_;l/zbu,vHQ

Norms are preserved under random projection
(Johnson-Lindenstrauss)

—1/2
~ ||RLG *bu|

R an O(log n)-by-n dimensional matrix



Quickly computing effective resistances

Need to compute bgijc_;lbu,v for all edges (u,v)
ldea 1: bz’vLc_;lbu,v = HLc_;l/Qbu,vHQ

This idea doesn’t work because I don’t know
how quickly apply the square root of the
inverse of L_G. But, we don’t really need this
square root. Any matrix M for which M™M
equals the inverse of the Laplacian will do.



Quickly computing effective resistances
ldea 2: Lal = LalLGLgl
—1 T 17 —1
— L 'BWBTL
_ (Lc_;lel/Q)(Wl/QBTLc_;l)
buwLig buw = [[W2BT LG by

buwLtbyy = [|RWY2BT L 0y o)

R arandom O(log n)-by-m dimensional matrix



Quickly computing effective resistances

byl byy = [|RWY2BT L 0y o)
R a random O(log n)-by-m dimensional matrix

Can e-approximate rows of RVVUQBTLC_;]L

intime O(mlog?nloge™')

using fast Laplacian solver
(S-Teng, Koutis-Miller-Peng)



Quickly computing effective resistances

byl byy = [|RWY2BT L 0y o)
R a random O(log n)-by-m dimensional matrix
Can e-approximate rows of RVVUQBTLC_;]L

intime O(mlog?nloge™')

bu.v = Oy — 0y So, each Reff is difference
of two rows



Quickly computing effective resistances

Srivastava and I didn’t take advantage of the
fact that the fast solvers are linear operators,
and our analysis tried to get the error much
lower in the 2-norm.

Koutis, Levin and Peng get a much simpler
and tighter analysis by exploiting the facts
that the fast solvers are linear operators and
that they give small error in the matrix norm.

I give the analysis in one slide.



Faster computation of effective resistances
(Koutis-Levin-Peng)

Fast Laplacian solvers:
1. find approximations in the matrix norm
2. are linear operators

That is, exists L so that

1. L' can be computed quickly, and

2. I is an e-approximation of G



Faster computation of effective resistances
(Koutis-Levin-Peng)

bg’vLalbu,v < (1+ e)banglbum



Faster computation of effective resistances
(Koutis-Levin-Peng)

bz;vL;;bu,v < (1+ e)banglbum

= (1+ e)bff’vL;lLFL;lbu,v



Faster computation of effective resistances
(Koutis-Levin-Peng)

bz;vL;;bu,v < (1+ e)banglbum

= (14 €)b, Lz LpLE" by
L. is never constructed, so use L, instead

(14 €)%by, oLz La Lz by
(14 €)%b;, ,Lz' BWB"Lz'b,,,

VAN

So, can get constant approx from constant ¢



Sparsification by Careful Construction
Forevery G = (V,E,w), canfindan H = (V. F,z) s.t.

1. H is an e-approximation of GG
2. H has at most n(2 + ¢)*/e* edges
3. In polynomial time.

Follows from improved, deterministic,
variant of Rudelson’s theorem.



Very Sparse Approximations

1. H is an e-approximation of G

2. Hhas at most n(2 + ¢€)?/e* edges

Forbige, (2+¢€)?/e* ~ (1 +4/¢)

Get n plus a small number of edges



Very Sparse Approximations

1. His a k?-aproximation of G

2. Hhas atmostn + O(n/k) edges

For bigger k, can do even better:
k-approximation

With n + O(n(logn)/k) edges
(Kolla-Makarychev-Saberi-Teng)
Uses low-stretch trees, special property of graphs



Max-Cut
Problem: find § maximizing |bdry(S)|

1.13-approx in PTime
(Goemans-Williamson)

(17/26-€)-approx is NP-Hard
(Hastad)

(1.13-€)-approx would
break Unique Games Con.
(Khot-Kindler-Mossel-O’'Donnell)

Can sparsify the graph



Min-Uncut
Problem: find S minimizing |{(u,v) & bdryS}|

If can leave em edges uncut,
can find S withO(y/em)uncut

(Goemans-Williamson)

Much better would
break Unique Games Con.
(Khot-Kindler-Mossel-O’Donnell)

Need ve-approximations, which have O(n/e) edges



Min-Uncut

Sparsifying the Laplacian doesn’t give very
good results for Min-Uncut. But, this problem
isn’t really about the Laplacian.

In the next slide, we present the sum of
rank-1 matrices that we really care about.

Note that we are now getting weighted
edges.



Min-Uncut
Problem: find S minimizing |{(u,v) & bdryS}|

1 . . 2
xEI{nﬂlzrll}n Z (xz " K )
(2,5)eFE

(zi +2;)° = @;)T G 1) @;)



Min-Uncut
Problem: find S minimizing |{(u,v) & bdryS}|

min Z (CCZ —|—£Uj)2

xe{£l1}" (e
: T
— min x- M; ;x
rE{£1}" Z ]
(2,7)EE

= a sum of rank-1 matrices



Min-Uncut
Problem: find S minimizing |{(u,v) & bdryS}|

. . . 2
xEI{nﬂlzrll}n Z (xz " K )
(2,5)eFE

— min E :CTMZ-J-SE

xe{£l1}" (i er

= a sum of rank-1 matrices

Can sparsify, and even make very sparse.
s it easier with n + O(nel/%) edges?



Unique Games (Khot)

Graph with n vertices, each given one of k colors.
Each edge (u,v) has permutation 7, on {1,...,k}

Edge (u,v) satisfied if Cy = Ty 0 (Cy)

o
e



Unique Games (Khot)

Graph with n vertices, each given one of k colors.
Each edge (u,v) has permutation 7, on {1,...,k}

Edge (u,v) satisfied if Cy = Ty 0 (Cy)

e
s




Unique Games Conjecture (Khot)

For every € > o,there is a k for which
it is hard to satisfy more than en edges,
even if it is possible to satisfy (1-€)n

e
s




Unique Games Conjecture (Khot)

For every € > o,there is a k for which
it is hard to satisfy more than en edges,
even if it is possible to satisfy (1-€)n

e
s

We can sparsify these problems too!




Sparsifying Sums of PSD Matrices
(de Carli Silva, Harvey, Sato)

1. Can generalize Rudelson’s theorem to
sums of PSD matrices.
Prove via matrix Chernoff bounds
(Ahlswede and Winter ‘02)

2. Can generalize BSS sparsification to
sums of PSD matrices.
Essentially the same proof.



Sparsifying Unique Games
Map colors {1,...,k} to vectors 01,...,0% € R*

Map permutations 7y, v to matrices 11,, ,,

| et each vertex have a vector Iy,

Edge (u,v) satisfied if ||Zy — HU,UIUHQ =0

gnin ) Z |2 —Hu,vasz2
w101, - - k}(u,v)EE



Sparsifying Unique Games

gnin ) Z |2 —HujvvaQ
qu{ 1ye o o k} (U,U)EE

Sum of PSD matrices in kn dimensions,
so can sparsify to O(kn) weighted edges.

Does this make the problem easier?

Note that this sparsification puts weights on
the edges.



Open Questions

Better sparsification of unique game problems?
Application of sparsifying unique games?
Better k-approximations fork > 17

Lower bounds on sparsification?

Fast construction of linear-sized sparsifiers



