Algorithms, Graph Theory, and
Linear Equations in Laplacians

17 \/
L A

ol
S

NN
V/
V

AN
XTIV RS
WAVAVA 4%+
YAK K

K
X
;4

\/

iﬂi
Y
K]

<J
D

Daniel A. Spielman
Yale University

Shang-Hua Teng
R i

David Harbater
UPenn

Todd
Knoblock

Serge Lang Gian-Carlo Rota
1927-2005 1932-1999

Algorithms, Graph Theory, and
Linear Equations in Laplacians

17 \/
L A

ol
S

NN
V/
V

AN
XTIV RS
WAVAVA 4%+
YAK K

K
X
;4

\/

iﬂi
Y
K]

<J
D

Daniel A. Spielman
Yale University

Solving Linear Equations Ax = b, Quickly

Goal: In time linear in the
number of non-zeros entries of 4

Special case: A4 is the Laplacian Matrix of a Graph

Solving Linear Equations Ax = b, Quickly

Goal: In time linear in the
number of non-zeros entries of 4

Special case: A4 is the Laplacian Matrix of a Graph

Cheeger’s Inequality

Random Walks
Rancdom Matrices

Approximations of Graphs

Solving Linear Equations Ax = b, Quickly

Goal: In time linear in the
number of non-zeros entries of 4

Special case: A4 is the Laplacian Matrix of a Graph

1. Why

2. Classic Approaches

3. Recent Developments
4. Connections

Graphs
Set of vertices V. Set of edges E of pairs {u,v} &V

Graphs
Set of vertices V. Set of edges E of pairs {u,v} &V

VA
SRRISAK
R ava e S A S0

O L a0 e
IR o R A
e VAYS.

-
*A"»‘"#‘%

s,
vy AVA" Y
o AV

Yy Ry S
e‘,%J:C')

Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR

()
' Loz =) (@(u)—z(v))’
. (u,v)eEE)

Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR

-
! Lox =

Laplacian Quadratic Form of G = (VE)

For ¢ : V — IR

-
! Lox =

_

Laplacian Quadratic Form for Weighted Graph

G=(V,E,w)

w:FE —]R_I_ assigns a positive weight to every edge

4)
' Loz = Z W) (2(U) — z(v))
. (u,v)eEE)

Matrix L is positive semi-definite
nullspace spanned by const vector, if connected

Laplacian Matrix of a Weighted Graph

—w(u,v) if (u,v) € K
La(u,v) = < d(u) if u=wv

0 otherwise

d(u) =3y wyer WU, v)
the weighted degree of u

N O O O

Laplacian Matrix of a Weighted Graph
—w(u,v) if (u,v) € K
La(u,v) = < d(u) if u=wv

0 otherwise

d(u) =3y wyer WU, v)
the weighted degree of u

combinatorial degree is # of attached edges

1
3 ‘ 2 4 ~1 0 _1
~1 4 -3 0

1 1 3 0 -3 4 -1

-1 0 -1 2

2‘ - 2 0 0 0

N O O O

Networks of Resistors

Ohm'’s laws gives ¢ = v/r

In general, 1 = Lgv with w(, ,y = 1/r @

Minimize dissipated energy v’ Lo

oV

1V

Networks of Resistors

Ohm'’s laws gives ¢ = v/r

In general, 1 = Lgv with w(, ,y = 1/r @

Minimize dissipated energy v’ Lo

By solving Laplacian

Learning on Graphs

Infer values of a function at all vertices
from known values at a few vertices.

Minimize z! Lox = Z W(y,v) (T () — w(”))Q
(u,v)EE

Subject to known values

Learning on Graphs

Infer values of a function at all vertices
from known values at a few vertices.

Minimize z! Lox = Z W(y,v) (T () — w(v))Q
(u,v)EE

Subject to known values

05@ 0.
oé‘o's <

0.375 0.625

By solving Laplacian

Spectral Graph Theory

Combinatorial properties of G are

igenvectors of L

igenvalues and e

revealed by e

important ones by

Compute the most

solving equations in the Laplacian.

Solving Linear Programs in Optimization

Interior Point Methods for Linear Programming:
network flow problems =) Laplacian systems

Numerical solution of Elliptic PDEs

Finite Element Method

How to Solve Linear Equations Quickly

Fast when graph is simple,
by elimination.

Fast when graph is complicated*,
by Conjugate Gradient (Hestenes ‘51, Stiefel ‘'52)

Cholesky Factorization of Laplacians

1
] ‘ 3 -1 0
-1 2 -1
1 1 0 -1 2

‘ - -1 0 0

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

R O O O K

Cholesky Factorization of Laplacians

=

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

O O O O W

O o R K

.67
.00
.33
.33

.00 -0.
.00 -1.
.00 1.
0 -0.

33
00
67
33

R O O O K

-0.33

-0.33
0.67

Cholesky Factorization of Laplacians

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

O O O O W

O o R K

.67
.00
.33
.33

-1.00 -0.
2.00 -1.
-1.00 1.
0 -0.

33
00
67
33

R O O O K

.33

.33
.67

1.67 -1.00 -0.33 -0.33

0

2.00 -1.00 0

0 -1.00

1.67 -0.33

0 -0.33 -1.00

0 -0.33

0.67

0 -0.33

733
1
‘43
1

.67

—

.2

-1

1

1.2

The order matters

-1

-1

1

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V|)
(connected,

no cycles)

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V|)
(connected,

no cycles)

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Q:\: #ops ~ O(|V])

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

O
Tree ._Q: ® #ops ~ O(|V])

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

O
Tree ._1\: ® #tops ~ O(|V|)

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])

Iragy
s
. - Ahaniaian : /
Planar &0 Lo . o #ops ~ O(|V|3/2)
el T g S Lipton-Rose-Tarjan ‘79
'-\ / _,'l'h'ailandI)

) 1 C){uedtnan
|"" ampodia
~
jﬁri | anka

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,_Qf: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79

Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,%: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79

Expander like random, #tops 2 Q(|V]3)
but O(|V|) edges Lipton-Rose-Tarjan ‘79

Conductance and Cholesky Factorization

Cholesky slow when conductance high
Cholesky fast when low for G and all subgraphs

e ©
o
For SCV g ® :‘..‘0
0‘%‘.0 o
o © o o

(I)(S) _ # edges leaving S

sum degrees on smaller side, S or V — S

[(I)G — mingcv (I)(S) }

Conductance

(S) def # edges leaving S

sum of degrees on smaller side

so t ‘ o—o

Conductance

(S) def # edges leaving S

sum of degrees on smaller side

o t$¢0

O(S) = 3/5

Conductance

def # edges leaving S
¢(S) = ,
sum of degrees on smaller side

def

P = mm o(S
-0—©O
\.<L_°1M p
— o

®(S) = 3/ min(25,23) = ¢

Cheeger’s Inequality and the Conjugate Gradient

Cheeger’s inequality (degree-d unwted case)

1 A A
[572 < ®¢ < \/Q%J

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

Cheeger’s Inequality and the Conjugate Gradient

Cheeger’s inequality (degree-d unwted case)

[A— < g < 2%2}

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

Conjugate Gradient finds € -approx solutionto L, x = b

in O(y/d/Xz2loge ') mults by L,
in O(|E|\/d/X>loge™1) ops

Fast solution of linear equations

CG fast when conductance high.

Elimination fast when low for G and all subgraphs.

Fast solution of linear equations

CG fast when conductance high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Fast solution of linear equations

CG fast when conductance high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Not all graphs fit into these categories!

Preconditioned Conjugate Gradient
Solve L, x = b by

Approximating L. by L, (the preconditioner)

In each iteration
solve a system in L,
multiply a vector by L,

€ -approx solution after

O(\/K(Lg, Li)loge 1) iterations

Preconditioned Conjugate Gradient

Solve L, x = b by
Approximating L. by L, (the preconditioner)

In each iteration
solve a system in L,
multiply a vector by L,

€ -approx solution after
O(\/k(Lg, Ly)loge 1) iterations

_relative condition number

Inequalities and Approximation

Ly <X Lg if L — L is positive semi-definite,
l.e. for all x,

el Lyxr < ol Lox

Example: if H is a subgraph of G
:L‘TL(;.CL‘ — Z W (u,v) (az(u) — w(v))Q

(u,v)EFE

Inequalities and Approximation

Ly <X Lg if L — L is positive semi-definite,
l.e. for all x,

el Lyxr < ol Lox

/{(LGaLH) S
iff cLy < La < ctLH for some ¢

Inequalities and Approximation

Ly <X Lg if L — L is positive semi-definite,
l.e. for all x,

el Lyx < ol Lox

/i(L(;,LH) St
if LH < LG < tLH
iff cLy < L <X ctLy forsomec

[Call H a t-approx of G if k(Lg,Ly) < t}

Other definitions of the condition number
(Goldstine, von Neumann ‘47)

w(Le. Lir) ! Lax ! Lygx
— max max
G ze€Span(Ly) 21 Lygx) \zeSpan(Le) 21 Loz

pseudo-inverse

N— min non-zero eigenvalue

Vaidya’s Subgraph Preconditioners

Precondition G by a subgraph H

Ly <X Lg sojustneedtforwhich Lg <X{tLg

Easy to bound ¢ if H is a spanning tree

\ oo

And, easy to solve equations in L, by elimination

The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

o—9O
N \
/0—0—0

— o

The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

N

The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

path- Iek ¢ .k’

The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

N

path -len 5

The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

\ ‘_‘_‘_?
path-len 1

The Stretch of Spanning Trees

Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

In weighted case, measure resistances of paths

Low-Stretch Spanning Trees

For every G thereis a T'with

StT(G) < mitot) where m = |FE|

(Alon-Karp-Peleg-West '91)

str(G) < O(mlog mlog” logm)

(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

[Solve linear systems in time O (m?/2 log m)]

Low-Stretch Spanning Trees

For every G thereis a T'with

StT(G) < m! o) where m = |FE|

(Alon-Karp-Peleg-West '91)

str(G) < O(mlog mlog” logm)

(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

If G is an expander str(G) > Q(mlogm)

Expander Graphs

Infinite family of d-regular graphs (all degrees d)
satsifying Ao > const > 0

Spectrally best are Ramanujan Graphs
(Margulis ‘88, Lubotzky-Phillips-Sarnak ’'88)
all eigenvalues inside d = 2vd — 1

Fundamental examples

Amazing properties

Expanders Approximate Complete Graphs

Let G be the complete graph on n vertices
(having all possible edges)

All non-zero eigenvalues of L are n

' Lgx=n forall z L1,|z| =1

Expanders Approximate Complete Graphs

Let G be the complete graph on n vertices
' Ler=n forall = 11,|z| =1

Let H be a d-regular Ramanujan Expander

(d—2vVd—1) <2'Lyz < (d+2vVd—1)

d+ 2vd—1
| —_
k(Lg, L > 1
(La H)_l oTd 1

Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€

Sparsification

S-Teng ‘04: For every G is an H with
O(nlog’ n/e®) edges and k(Lg,Ly) <1+e€

Conductance high
) A2 high (Cheeger)
—=)» random sample good (Furedi-Komlos ‘81)

Conductance not high
—m) can split graph while removing few edges

Fast Graph Decomposition by
local graph clustering

D), ';(

N § .
IR
XKD
/ AN S

RN X
s VNN O
AV =N =
i‘ NN

i
o

Given vertex of interest) "
LY

‘ o 'V V‘,\;,‘;q '
. AR o “.'5 SR """’ A \\!
find nearby cluster, small ®(S), F e """“‘\"“"”\‘

VT

in time O(|.S|)

Fast Graph Decomposition by
local graph clustering

Given vertex of interest

find nearby cluster, small ®(.5),

in time O(|.S|)

S-Teng "04:

N

-— r&l‘ '

D
‘ ?;:i/ \'“ 7R
2\ ¥

”,

A
£ SIRTS
(X
/

a

\] B SELT N S

o N@ -2 N 1/ RV g
O TN S S AT

o\ [}
g B2 N / " \"’A‘"“
NP N\ U 7 i ymd
\// ¢ O /
/) “9.. > ,“.3,; ::VA

Lovasz-Simonovits

Andersen-Chung-Lang ‘06: PageRank

Andersen-Peres ‘09:

evoloving set Markov chain

‘l

VS eVia

Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€

S-Srivastava ‘08: with O(n log n/ez) edges
proof by modern random matrix theory
Rudelson’s concentration for random sums

Sparsification

Goal: find sparse approximation for every G

S-Teng ‘04: For every G is an H with
O(nlog’ n/e?) edges and kK(Lg, L) <1-+e¢€

S-Srivastava ‘08: with O(n log n/ez) edges

Batson-S-Srivastava ‘09

dn edgesand k(Lg,Lyg) <

d+1+2Vd
d-+1—2Vd

Sparsification by Linear Algebra
edges mmmm) vectors

Find a small subset S C {1,...,m}

and coefficients ce s.t.

HZceve —I|| <e

ecS

: T
Given vectors v1, ..., 0, € R" s.t. g Vev, =1

Sparsification by Linear Algebra

. T _
Given vectors v1,...,v,, € R" s.t. E :Ue?fe =1
e

Find a small subset S C {1,...,m}
and coefficients c. s.t. H Z cevev, —I|| <€
ecsS

Rudelson ‘99 says can find |S| < O(nlogn/e?)
if choose § at random*
2
* = Prle] ~ 1/ |[vell
In graphs, are effective resistances

Sparsification by Linear Algebra

Find a small subset S C {1,...,m}

and coefficients c. s.t. H E CoVpV
eesS

Batson-S-Srivastava: can find |S| < 4n/¢?
by greedy algorithm
with Stieltjes potential function

. T _
Given vectors v1,...,v,, € R" s.t. E :Ue?fe =1

—I|| <e

Relation to Kadison-Singer, Paving Conjecture

Would be implied by the following strong
version of Weaver’s conjecture KS',

Exists constant a s.t. for vq,...,v,, € R" s.t. for

2 n T
e — — <K 1)61)621
ve]* = — <a 2
1
Exists S c {1, ... Sl =m/2 ol — 2T <
{1,..,m},[S|=m/ eEESﬁvve 1| =

NI

Relation to Kadison-Singer, Paving Conjecture

Exists constant a s.t. for vq,...,v,, € R" s.t. for

< o Zvevgzl

&

2 n
lve|” = —
m

A
NG

: 1
Exists S C {1,...,m},|S|=m/2 ||> vevS — 1
ecS

Rudelson ‘99: « = const/(logn)

Batson-S-Srivastava ‘09: true, but with coefficients in sum

Relation to Kadison-Singer, Paving Conjecture

Exists constant a s.t. for vq,...,v,, € R" s.t. for

< o Zvevgzl

&

2 n
lve|” = —
m

A
NG

: 1
Exists S C {1,...,m},|S|=m/2 ||> vevS — 1
ecS

Rudelson ‘99: « = const/(logn)

Batson-S-Srivastava ‘09: true, but with coefficients in sum

S-Srivastava ‘10: Bourgain-Tzafriri Restricted Invertability

Sparsification and Solving Linear Equations

Can reduce any Laplacian to one with O(|V|)
non-zero entries/edges.

S-Teng ‘04: Combine Low-Stretch Trees with
Sparsification to solve Laplacian systems in time
O(mlog®nloge)
m=|E| n=|V

Sparsification and Solving Linear Equations

S-Teng ‘04: Combine Low-Stretch Trees with
Sparsification to solve Laplacian systems in time

O(mlog®nloge)
m = |E| n=[V

Koutis-Miller-Peng ’10: time O(m log2 n log 6_1)

Kolla-Makarychev-Saberi-Teng '09:
O(mlognlog 6_1) after preprocessing

What’s next

Other families of linear equations:
from directed graphs
from physical problems
from optimization problems

Solving Linear equations as a primitive

Decompositions of the identity:
Understanding the vectors we get from graphs
the Ramanujan bound
Kadison-Singer?

Conclusion

It is all connected

