Algorithms, Graph Theory, and Linear Equations in Laplacians

Daniel A. Spielman Yale University

Shang-Hua Teng 滕尚華

Carter Fussell TPS

David Harbater UPenn

6.00

Todd Knoblock

CTY

Serge Lang 1927-2005

Gian-Carlo Rota 1932-1999

Algorithms, Graph Theory, and Linear Equations in Laplacians

Daniel A. Spielman Yale University

Solving Linear Equations Ax = b, Quickly

Goal: In time linear in the number of non-zeros entries of A

Special case: A is the Laplacian Matrix of a Graph

Solving Linear Equations Ax = b, Quickly

Goal: In time linear in the number of non-zeros entries of A

Special case: A is the Laplacian Matrix of a Graph

Cheeger's Inequality Random Walks Random Matrices Expanders Approximations of Graphs

Solving Linear Equations Ax = b, Quickly

Goal: In time linear in the number of non-zeros entries of A

Special case: A is the Laplacian Matrix of a Graph

- 1. Why
- 2. Classic Approaches
- 3. Recent Developments
- 4. Connections

Graphs

Set of vertices V. Set of edges E of pairs $\{u,v\} \subseteq V$

Graphs

Set of vertices V. Set of edges E of pairs $\{u,v\} \subseteq V$

Laplacian Quadratic Form of G = (V,E)

For $oldsymbol{x}:V o {
m I\!R}$

$$\left(\boldsymbol{x}^T L_G \boldsymbol{x} = \sum_{(u,v) \in E} \left(\boldsymbol{x}(u) - \boldsymbol{x}(v)\right)^2\right)$$

Laplacian Quadratic Form of G = (V,E)

For $oldsymbol{x}:V o {
m I\!R}$

$$\left(\boldsymbol{x}^T L_G \boldsymbol{x} = \sum_{(u,v) \in E} (\boldsymbol{x}(u) - \boldsymbol{x}(v))^2\right)$$

Laplacian Quadratic Form of G = (V,E)

For $oldsymbol{x}:V o {
m I\!R}$

$$egin{aligned} oldsymbol{x}^T L_G oldsymbol{x} &= \sum_{(u,v) \in E} \left(oldsymbol{x}(u) - oldsymbol{x}(v)
ight)^2 \end{aligned}$$

Laplacian Quadratic Form for Weighted Graph

$$G = (V, E, w)$$

 $w:E o {
m I\!R}^+$ assigns a positive weight to every edge

$$\left[\boldsymbol{x}^T L_G \boldsymbol{x} = \sum_{(u,v) \in E} w_{(u,v)} \left(\boldsymbol{x}(u) - \boldsymbol{x}(v)\right)^2\right]$$

Matrix L_G is positive semi-definite nullspace spanned by const vector, if connected

Laplacian Matrix of a Weighted Graph

$$L_G(u, v) = \begin{cases} -w(u, v) & \text{if } (u, v) \in E \\ d(u) & \text{if } u = v \\ 0 & \text{otherwise} \end{cases}$$

$$d(u) = \sum_{(v,u)\in E} w(u,v)$$

the weighted degree of *u*

Laplacian Matrix of a Weighted Graph

$$L_G(u, v) = \begin{cases} -w(u, v) & \text{if } (u, v) \in E \\ d(u) & \text{if } u = v \\ 0 & \text{otherwise} \end{cases}$$

$$d(u) = \sum_{(v,u)\in E} w(u,v)$$

the weighted degree of *u*

combinatorial degree is # of attached edges

Networks of Resistors

Ohm's laws gives i = v/r

In general, $m{i} = L_G m{v}$ with $w_{(u,v)} = 1/r_{(u,v)}$

Minimize dissipated energy $oldsymbol{v}^T L_G oldsymbol{v}$

Networks of Resistors

Ohm's laws gives i = v/r

In general, $m{i} = L_G m{v}$ with $w_{(u,v)} = 1/r_{(u,v)}$

Minimize dissipated energy $oldsymbol{v}^T L_G oldsymbol{v}$

Learning on Graphs

Infer values of a function at all vertices from known values at a few vertices.

Minimize
$$\boldsymbol{x}^T L_G \boldsymbol{x} = \sum_{(u,v) \in E} w_{(u,v)} \left(\boldsymbol{x}(u) - \boldsymbol{x}(v) \right)^2$$

Subject to known values

Learning on Graphs

Infer values of a function at all vertices from known values at a few vertices.

Minimize
$$\boldsymbol{x}^T L_G \boldsymbol{x} = \sum_{(u,v) \in E} w_{(u,v)} \left(\boldsymbol{x}(u) - \boldsymbol{x}(v) \right)^2$$

Subject to known values

By solving Laplacian

Spectral Graph Theory

Combinatorial properties of ${\cal G}$ are revealed by eigenvalues and eigenvectors of ${\cal L}_{\cal G}$

Compute the most important ones by solving equations in the Laplacian.

Solving Linear Programs in Optimization

Interior Point Methods for Linear Programming: network flow problems \implies Laplacian systems

Numerical solution of Elliptic PDEs

Finite Element Method

How to Solve Linear Equations Quickly

Fast when graph is simple, by elimination.

Fast when graph is complicated*, by Conjugate Gradient (Hestenes '51, Stiefel '52)

Cholesky Factorization of Laplacians

When eliminate a vertex, connect its neighbors.

Also known as Y-Δ

Cholesky Factorization of Laplacians

3	-1	0	-1	-1
-1	2	-1	0	0
0	-1	2	-1	0
-1	0	-1	2	0
-1	0	0	0	1

When eliminate a vertex, connect its neighbors.

Also known as Y-Δ

Cholesky Factorization of Laplacians

3	-1	0	-1	-1
-1	2	-1	0	0
0	-1	2	-1	0
-1	0	-1	2	0
-1	0	0	0	1

When eliminate a vertex, connect its neighbors.

Also known as Y-Δ

3	- 1	0	- 1	-1
-1	2	-1	0	0
0	-1	2	-1	0
-1	0	-1	2	0
-1	0	0	0	1

The order matters

0	0	0	-1	1
-1	0	-1	3	-1
0	-1	2	-1	0
-1	2	-1	0	0
2	-1	0	-1	0

1	0	0	0	0
0	2	-1	0	-1
0	-1	2	-1	0
0	0	-1	2	-1
0	-1	0	-1	2

1	0	0	0	0
0	2	0	0	_
0	0	1.5	-1	-0.5
0	0	-1.0		-1.0
0		-0.5		1.5

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops ~ O(|V|)

Planar

#ops $\sim O(|V|^{3/2})$ Lipton-Rose-Tarjan '79

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops ~ O(|V|)

Planar

#ops $\sim O(|V|^{3/2})$ Lipton-Rose-Tarjan '79

Complexity of Cholesky Factorization

#ops $\sim \Sigma_v$ (degree of v when eliminate)²

Tree

#ops ~ O(|V|)

Planar

#ops $\sim O(|V|^{3/2})$ Lipton-Rose-Tarjan '79

Expander

like random, but O(|V|) edges

#ops $\gtrsim \Omega(|V|^3)$ Lipton-Rose-Tarjan '79

Conductance and Cholesky Factorization

Cholesky slow when conductance high Cholesky fast when low for G and all subgraphs

For
$$S \subset V$$

$$\Phi(S) = \frac{\text{\# edges leaving } S}{\text{sum degrees on smaller side, } S \text{ or } V - S}$$

$$\Phi_G = \min_{S \subset V} \Phi(S)$$

Conductance

$$\Phi(S) \stackrel{\text{def}}{=} \frac{\text{\# edges leaving } S}{\text{sum of degrees on smaller side}}$$

Conductance

$$\Phi(S) \stackrel{\text{def}}{=} \frac{\text{\# edges leaving } S}{\text{sum of degrees on smaller side}}$$

$$\Phi(S) = 3/5$$

Conductance

$$\Phi(S) \stackrel{\text{def}}{=} \frac{\text{\# edges leaving } S}{\text{sum of degrees on smaller side}}$$

$$\Phi_G \stackrel{\mathrm{def}}{=} \min_S \Phi(S)$$

$$\Phi(S) = 3/\min(25, 23) = \Phi_G$$

Cheeger's Inequality and the Conjugate Gradient

Cheeger's inequality (degree-d unwted case)

$$\left(\frac{1}{2}\frac{\lambda_2}{d} \le \Phi_G \le \sqrt{2\frac{\lambda_2}{d}}\right)$$

 λ_2 = second-smallest eigenvalue of L_G ~ d/mixing time of random walk

Cheeger's Inequality and the Conjugate Gradient

Cheeger's inequality (degree-d unwted case)

$$\left(\frac{1}{2}\frac{\lambda_2}{d} \le \Phi_G \le \sqrt{2\frac{\lambda_2}{d}}\right)$$

 λ_2 = second-smallest eigenvalue of L_G ~ $d/{\rm mixing}$ time of random walk

Conjugate Gradient finds ϵ -approx solution to $L_G x = b$

in
$$O(\sqrt{d/\lambda_2}\log\epsilon^{-1})$$
 mults by L_G in $O(|E|\sqrt{d/\lambda_2}\log\epsilon^{-1})$ ops

Fast solution of linear equations CG fast when conductance high.

Elimination fast when low for G and all subgraphs.

Fast solution of linear equations

CG fast when conductance high.

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Fast solution of linear equations

CG fast when conductance high.

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Not all graphs fit into these categories!

Preconditioned Conjugate Gradient

Solve
$$L_G x = b$$
 by

Approximating L_G by L_H (the preconditioner)

In each iteration solve a system in ${\cal L}_H$ multiply a vector by ${\cal L}_G$

∈ -approx solution after

$$O(\sqrt{\kappa(L_G, L_H)} \log \epsilon^{-1})$$
 iterations

Preconditioned Conjugate Gradient

Solve $L_G x = b$ by

Approximating L_G by L_H (the preconditioner)

In each iteration solve a system in ${\cal L}_H$ multiply a vector by ${\cal L}_G$

∈ -approx solution after

$$O(\sqrt{\kappa(L_G, L_H)} \log \epsilon^{-1})$$
 iterations

trelative condition number

Inequalities and Approximation

 $L_H \preccurlyeq L_G$ if $L_G - L_H$ is positive semi-definite, i.e. for all x,

$$x^T L_H x \preccurlyeq x^T L_G x$$

Example: if *H* is a subgraph of *G*

$$\boldsymbol{x}^T L_G \boldsymbol{x} = \sum_{(u,v) \in E} w_{(u,v)} \left(\boldsymbol{x}(u) - \boldsymbol{x}(v) \right)^2$$

Inequalities and Approximation

 $L_H \preccurlyeq L_G$ if $L_G - L_H$ is positive semi-definite, i.e. for all x,

$$x^T L_H x \preccurlyeq x^T L_G x$$

$$\kappa(L_G, L_H) \le t$$

if
$$L_H \preccurlyeq L_G \preccurlyeq tL_H$$

iff $cL_H \preccurlyeq L_G \preccurlyeq ctL_H$ for some c

Inequalities and Approximation

 $L_H \preccurlyeq L_G$ if $L_G - L_H$ is positive semi-definite, i.e. for all x,

$$x^T L_H x \preccurlyeq x^T L_G x$$

$$\kappa(L_G, L_H) \leq t$$

if
$$L_H \preccurlyeq L_G \preccurlyeq tL_H$$

iff $cL_H \preccurlyeq L_G \preccurlyeq ctL_H$ for some c

Call H a t-approx of G if $\kappa(L_G, L_H) \leq t$

Other definitions of the condition number (Goldstine, von Neumann '47)

$$\kappa(L_G, L_H) = \left(\max_{x \in \mathbf{Span}(L_H)} \frac{x^T L_G x}{x^T L_H x}\right) \left(\max_{x \in \mathbf{Span}(L_G)} \frac{x^T L_H x}{x^T L_G x}\right)$$

$$\kappa(L_G, L_H) = rac{\lambda_{max}(L_G L_H^+)}{\lambda_{min}(L_G L_H^+)}$$
 pseudo-inverse min non-zero eigenvalue

Vaidya's Subgraph Preconditioners

Precondition G by a subgraph H

 $L_H \preccurlyeq L_G$ so just need t for which $L_G \preccurlyeq tL_H$

Easy to bound t if H is a spanning tree

And, easy to solve equations in L_H by elimination

Where
$$\operatorname{st}_T(G) = \sum_{(u,v)\in E} \operatorname{path-length}_T(u,v)$$

Where
$$\operatorname{st}_T(G) = \sum_{(u,v)\in E} \operatorname{path-length}_T(u,v)$$

Where
$$\operatorname{st}_T(G) = \sum_{(u,v)\in E} \operatorname{path-length}_T(u,v)$$

Where
$$\operatorname{st}_T(G) = \sum_{(u,v)\in E} \operatorname{path-length}_T(u,v)$$

Where
$$\operatorname{st}_T(G) = \sum_{(u,v)\in E} \operatorname{path-length}_T(u,v)$$

Boman-Hendrickson '01: $L_G \preccurlyeq \operatorname{st}_G(T)L_T$

Where
$$\operatorname{st}_T(G) = \sum_{(u,v)\in E} \operatorname{path-length}_T(u,v)$$

In weighted case, measure resistances of paths

Low-Stretch Spanning Trees

For every G there is a T with

$$\operatorname{st}_T(G) \le m^{1+o(1)}$$
 where $m = |E|$

(Alon-Karp-Peleg-West '91)

$$\operatorname{st}_T(G) \le O(m \log m \log^2 \log m)$$

(Elkin-Emek-S-Teng '04, Abraham-Bartal-Neiman '08)

Solve linear systems in time $O(m^{3/2} \log m)$

Low-Stretch Spanning Trees

For every G there is a T with

$$\operatorname{st}_T(G) \le m^{1+o(1)}$$
 where $m = |E|$

(Alon-Karp-Peleg-West '91)

$$\operatorname{st}_T(G) \le O(m \log m \log^2 \log m)$$

(Elkin-Emek-S-Teng '04, Abraham-Bartal-Neiman '08)

If G is an expander $\operatorname{st}_T(G) \ge \Omega(m \log m)$

Expander Graphs

Infinite family of d-regular graphs (all degrees d) satsifying $\lambda_2 \ge \mathrm{const} > 0$

Spectrally best are Ramanujan Graphs (Margulis '88, Lubotzky-Phillips-Sarnak '88) all eigenvalues inside $d\pm2\sqrt{d-1}$

Fundamental examples

Amazing properties

Expanders Approximate Complete Graphs

Let G be the complete graph on n vertices (having all possible edges)

All non-zero eigenvalues of L_G are n

$$x^T L_G x = n$$
 for all $x \perp 1, ||x|| = 1$

Expanders Approximate Complete Graphs

Let G be the complete graph on n vertices

$$x^T L_G x = n$$
 for all $x \perp 1, ||x|| = 1$

Let H be a d-regular Ramanujan Expander

$$(d - 2\sqrt{d-1}) \le x^T L_H x \le (d + 2\sqrt{d-1})$$

$$\kappa(L_G, L_H) \le \frac{d + 2\sqrt{d - 1}}{d - 2\sqrt{d - 1}} \to 1$$

Sparsification

Goal: find sparse approximation for every G

S-Teng '04: For every G is an H with $O(n\log^7 n/\epsilon^2)$ edges and $\kappa(L_G,L_H) \leq 1+\epsilon$

Sparsification

S-Teng '04: For every G is an H with

$$O(n\log^7 n/\epsilon^2)$$
 edges and $\kappa(L_G, L_H) \leq 1 + \epsilon$

Conductance high

 λ_2 high (Cheeger)

random sample good (Füredi-Komlós '81)

Conductance not high

can split graph while removing few edges

Fast Graph Decomposition by local graph clustering

Given vertex of interest find nearby cluster, small $\Phi(S)$, in time O(|S|)

Fast Graph Decomposition by local graph clustering

Given vertex of interest find nearby cluster, small $\Phi(S)$, in time O(|S|)

S-Teng '04: Lovász-Simonovits

Andersen-Chung-Lang '06: PageRank

Andersen-Peres '09: evoloving set Markov chain

Sparsification

Goal: find sparse approximation for every G

S-Teng '04: For every G is an H with $O(n\log^7 n/\epsilon^2) \ \text{edges and} \ \kappa(L_G,L_H) \le 1+\epsilon$

S-Srivastava '08: with $O(n \log n/\epsilon^2)$ edges proof by modern random matrix theory Rudelson's concentration for random sums

Sparsification

Goal: find sparse approximation for every G

S-Teng '04: For every G is an H with $O(n\log^7 n/\epsilon^2)$ edges and $\kappa(L_G,L_H) \leq 1+\epsilon$

S-Srivastava '08: with $O(n \log n/\epsilon^2)$ edges

Batson-S-Srivastava '09

$$dn$$
 edges and $\kappa(L_G,L_H) \leq rac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}}$

Sparsification by Linear Algebra

edges vectors

Given vectors
$$v_1,...,v_m\in {\rm I\!R}^n$$
 s.t. $\sum_e v_e v_e^T = I$

Find a small subset $S \subset \{1,...,m\}$ and coefficients c_e s.t.

$$\left|\left|\sum_{e \in S} c_e v_e v_e^T - I\right|\right| \le \epsilon$$

Sparsification by Linear Algebra

Given vectors
$$v_1,...,v_m \in {\rm I\!R}^n$$
 s.t. $\sum_e v_e v_e^T = I$

Find a small subset $S \subset \{1,...,m\}$

and coefficients
$$c_e$$
 s.t. $||\sum_{e\in S} c_e v_e v_e^T - I|| \leq \epsilon$

Rudelson '99 says can find $|S| \le O(n \log n/\epsilon^2)$ if choose S at random*

* =
$$\Pr\left[e\right] \sim 1/\left\|v_e\right\|^2$$

In graphs, are effective resistances

Sparsification by Linear Algebra

Given vectors
$$v_1,...,v_m \in {\rm I\!R}^n$$
 s.t. $\sum_e v_e v_e^T = I$

Find a small subset $S\subset\{1,...,m\}$ and coefficients c_e s.t. $||\sum_{e\in S}c_ev_ev_e^T-I||\leq\epsilon$

Batson-S-Srivastava: can find $|S| \leq 4n/\epsilon^2$ by greedy algorithm with Stieltjes potential function

Relation to Kadison-Singer, Paving Conjecture

Would be implied by the following strong version of Weaver's conjecture KS'₂

Exists constant α s.t. for $v_1,...,v_m \in \mathbb{R}^n$ s.t. for

$$||v_e||^2 = \frac{n}{m} \le \alpha \qquad \sum_e v_e v_e^T = I$$

Exists
$$S \subset \{1,...,m\} \,, |S| = m/2$$
 $\left\| \sum_{e \in S} v_e v_e^T - \frac{1}{2} I \right\| \leq \frac{1}{4}$

Relation to Kadison-Singer, Paving Conjecture

Exists constant α s.t. for $v_1,...,v_m \in \mathbb{R}^n$ s.t. for

$$||v_e||^2 = \frac{n}{m} \le \alpha \qquad \sum_e v_e v_e^T = I$$

Exists
$$S \subset \{1,...,m\}, |S| = m/2$$
 $\left\| \sum_{e \in S} v_e v_e^T - \frac{1}{2}I \right\| \leq \frac{1}{4}$

Rudelson '99: $\alpha = \text{const}/(\log n)$

Batson-S-Srivastava '09: true, but with coefficients in sum

Relation to Kadison-Singer, Paving Conjecture

Exists constant α s.t. for $v_1,...,v_m \in \mathbb{R}^n$ s.t. for

$$||v_e||^2 = \frac{n}{m} \le \alpha \qquad \sum_e v_e v_e^T = I$$

Exists
$$S \subset \{1,...,m\} \,, |S| = m/2$$
 $\left\| \sum_{e \in S} v_e v_e^T - \frac{1}{2} I \right\| \leq \frac{1}{4}$

Rudelson '99: $\alpha = \frac{\text{const}}{(\log n)}$

Batson-S-Srivastava '09: true, but with coefficients in sum S-Srivastava '10: Bourgain-Tzafriri Restricted Invertability

Sparsification and Solving Linear Equations

Can reduce any Laplacian to one with O(|V|) non-zero entries/edges.

S-Teng '04: Combine Low-Stretch Trees with Sparsification to solve Laplacian systems in time

$$O(m \log^{c} n \log \epsilon^{-1})$$

$$m = |E| \quad n = |V|$$

Sparsification and Solving Linear Equations

S-Teng '04: Combine Low-Stretch Trees with Sparsification to solve Laplacian systems in time

$$O(m \log^{c} n \log \epsilon^{-1})$$
$$m = |E| \quad n = |V|$$

Koutis-Miller-Peng '10: time $O(m \log^2 n \log \epsilon^{-1})$

Kolla-Makarychev-Saberi-Teng '09: $O(m \log n \log \epsilon^{-1})$ after preprocessing

What's next

Other families of linear equations: from directed graphs

from physical problems from optimization problems

Solving Linear equations as a primitive

Decompositions of the identity:

Understanding the vectors we get from graphs

the Ramanujan bound

Kadison-Singer?

Conclusion

It is all connected