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Abstract: We note that there are at least 14 orders of magnitude difference in scals
between observable macroscopic brain activity and synaptic iransmission processes. This
motivates development of a quantum description of the brain and its activity. We begin
by devising a double slit experiment analog for neural transmission that exhibits
interference in that transmission. Next the uncertainty principle is demonstrated for
ceural transmission. Then use of a path integral formalism is motivated, by showing that
‘e conventional model of transmission of information in a neural net has the form of a
discrete approximation to the Feynman path integral. To exploit the path integral
methodology, we first produce a Lagrangian-type theory for neural nets and a
concomitant principle of least action. The latter involves a so-called greedy variztion to
accommodate the dissipation of neural transmission. Using these tools, we derive the
wave function of a neural network by means of the path integral approach. We verify
that in the limit as a scale parameter vanishes, the path integral wave formulation leads to
the Hopfield equations that form the underlying classical level description. Finally a
neural net wave equation (Schrodinger equation) is derived for the wave function by
appropriate differentiation of the path integral that defines it.
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1. INTRODUCTION

There are many models of the flow of information in the brain and its neurons, models
at various scales of phenomenology (from sub-neuron to neural assembly) Haykin, 1999,
McKenna, Davis, and Zornetzer 1992, Valient, 1994. Most such modals, involving as
they do input-output equations, circuit equations, etc. are expressed in terms of the
methods of classical physics. Non classical physical effects seldom find their way into
such modeling, since most believe that the scale is wrong for their relevance. Exceptions
are found in the work of Penrose, 1989, 1994 and 1997, Hammeroff and Penrose?, 1996
and in the work of Miranker®, 1997, 2002.

A key requirement for the meaningfulness of quantum effects in mechanics is the
small scale on which such effects prevail. More accurately, a scale small compared to the
scale on which we base our experience and observation of the matter that exhibits those
effects to us. In fact, quantum effects are taken to be universal, present at all scales, but
their magnitude diminishes rapidly with an approach to the macroscopic scale of the
observer. Where can such a disparity of scales be found in the brain? The human brain
contains about one hundred billion neurons and more than one hundred thousand billion
synapses. So observation at the macroscopic scale (say observation of the behavior of a
brain compartment) of effects taking place at the neuronal or subneuronal (synaptic) scale
may involve a difference of as many as 14 orders of magnitude (and possibly more®).
This could very well be enough to take as satisfied the requirement for large difference in
scale in the study of the brain by quantum observational methods.

Why would a brain model based on quantum methods be of interest? The
development of the methods of quantum mechanics in the last century was critical to
explain and to gain understanding of physical phenomena that are inaccessible to
classical methods, as is well known. There are a variety of phenomena and effects
associated with brain function that seem to be impenetrable by conventional approaches
of analysis. Among these phenomena are qualia, emotions, intentionality, etc. The
potential to frame methods for study and understanding of these neuronal features is the
motivation for development of such quantum methodology.

? Penrose and Hammeroff seek quantum effects in the microtubules that comprise the cyto-skeleton of the
neurons. The tubulin dimers (about one million per neuron) that compose the microtubule walls are taken to
be the units that encode the quantum states.

3 Miranker demonstrates quantum effects in the information processing itself that is conducted by neuronal
assemblies.

* The remarks in footnote 2 suggest one way how several more orders of magnitude might be involved.




We shall develop a quantum description of the brain and its activity. We begin by
devising a double slit experiment for neural transmission, and we show that ineiference
effects accompany that transmission. The uncertainty principle is demonstrated by
showing that an atiempt to determine which of the neurons involv: ' in the experiment is
transmitting causes the interference to disappear.

We then derive 2 wave function that characterizes neuronal information transmission.
To motivate this, we first show that the conventional model of transmission of
informaiion in a neural net has the form of a discrete approximation to the path integral of
Feynman. Then we consider the Hopfield model of a neural network. We show that this
model corresponds 1o a classical dynamical system with dissipation. We then produce a
Lagrangian-type theory for such systems and a concomitant principle of least action. The
latter involves a so-called greedy variation of the action functional, a feature that
accommodates the dissipation. With this in hand we have the tools necessary to define
the wave function of a neural network by means of the path integral approach, and we
give the relevant derivation. We then note (by taking the limit as a scale parameter
vanishes) that the path integral formulation delivers the Hopfield equations®. (What we
may call the classical equations of neural net dynamics.)

_ The last step is to produce a wave equation, namely the analog of a Schrddinger
equation for the newly derived wave function of neural transmission. This is done, as in
the case of quantum mechanics, by an appropriate differentiation of the path integral
defining the wave function. This completes the derivation of the principle constituents of
a quantum theory for the brain.

2. A NEURONAL DOUBLE SLIT EXPERIMENT

Consider the basic model neuron with n input synapses. Let w=(w,...,w,) bethe
vector of synaptic weights, and let v* = (Vf,...,v%) be the vector of afferent activity (the
neuronal inputs). We take the neuronal output, v¢, to be a gain function, g, (with
threshold) of the total input. In particular,

(2.1) vi=gu-0),

where the total neuronal input u is a sum of the individual weighted synaptic inputs,

S This property is analogous to the delivery of classical mechanics as a limiting case of quantum mechanics
as the Planck constant vanishes, as is well known.




n
2.2) u= Z Wy,
k=1

and 6 is a threshold.

This model is a simplification of actual neuronal information processing that is in fact
frequency encoded. Namely what is called the neuronal activity here in fact models the
frequency of the actual output. It is essential that we take note of this, and so we formally
replace the neuronal output by exp(iv,z). Here v, is the output frequency of the action

potential of a neuron, tis the time, and k indexes the neurons.

To formulate a double slit experiment, we need three collections of neurons: the
source neurons, the interneurons, I, and the target neurons, ;. The source neurons are

analogs of the source of electrons in the double slit experiment of quantum mechanics.
The interneurons correspond to the slits. The target neurons correspond to locations
(targets) on the screen recording the arrival of the electrons. The signal exp(iv,?) is

generated at [, for each £, in response to the afferent activity supplied by the source
neurons. Let x, denote the distance of travel of a signal from I, toward T. Then at time

t and position x,, such a signal has the form

. 2
expi(vt+—x,)
(2.3) A

Xy

Here the x, in the denominator represents a dissipation of signal strength. A is the signal

wavelength, that is, /27 is the spatial frequency of the signal, a universal quantity.

We confine our attention to two interneurons, 7, and 1,, say (representing the double
slit). Let x,; denote the total distance (length of travel via neuronal processes (axons,

dendrites...)) from neuron I, to target neuron T,. Then the signals emitted by

I,k =1,2 arrive and are summed to form the input at T;. The resulting input value is

. 27
eXpi(vt + —X;)

A

(2.4) B= i

k=1 Xij

Here for simplicity, we have taken the synaptic weights to have unit value. Suppose the
outputs of I, and I, are of equal strength (i.e., v, =v,). (This corresponds to the




indistinguishabi*iv of electrons being fired by the source toward the slits in the case of
quantum mecharics.) Then suppressing the subscript j, we have

@.5) B =t — -

Let y be the distance along the assembly T, where y =0 is the target location where

12 . N . i « . N .
x, = X,. Aplotof |BJ vs. y is given in Figure 2.1, demonstrating interferenc: as in the
double slit experiment of quantum mechanics (Kleinert, 1995, p. 13).

Figure 2.1: Interference pattern of signal arrivals at the cell assembly T

2.1 The uncertainty principle

We shall refer to the uncertainty principle given in the following form (Feynman and
Hibbs, 1965, p. 9).

Any determination of the alternative taken by a process capable of following more
than one alternative destroys the interference betweei alternatives.

Now suppose that we seek to determine which of the two neurons I, or I, fired, say
by placing a voltage probe at I,. In analogy with the case of electrons where the
emission is made so weak that only one electron at a time passes through the apparatus,
we suppose that the source is s0 weak that the firing neurons I, or I, are at most at
threshold. In this arrangement we suppose that the probe reduces the net input to I,
thereby preventing it from firing. In this situation (2.5) becomes

(2.6) |B} =1/x],

demonstrating the loss of interference.




3. THE WAVE FUNCTION

We are now going to define a wave function for neural transmission. To do this we
adapt the approach of Feynman, employing path integrals. As motivation, we begin by
showing that the propagation of information in a neural net has the structure of a discrete
approximation to a path integral.

3.1 The neural net as a path integral approximation

Using the neural input-output equations, (2.1), (2.2), and taking the gain g to be linear
and homogeneous, we find that the output of a neuron, as it depends on the inputs from
N —1 preceding layers, may be expressed as follows.

N-1
(3'1) 82.”gznyvxkxk_lvxlxo *

Xyoy k=1

Note that we have replaced the index label & for neurons in (2.1), (2.2) by the more
representative label x,. x, indexes neurons in the k-th layer, k=1,...,N-1. Now we

replace (3.1) by

X N-1
(3.2) Zg%‘-- . Zg%ew[i DW=t )] h],
k=1

X Xn-y

so that it expresses the more accurate frequency modulated encoding (corresponding to
(2.3)). Note that two time intervals, Ax/A and (¢, —#,_,)/h, have been introduced in

(3.2). The first represents the time needed to execute the gain function, and the second
represents the time needed to convey the information between neuronal layers. A and h
are appropriate scaling factors. (The value of A is specified in (4.6) below, but the value
of his as yet unknown®) It’s clear that (3.2) has the form of a discrete approximation to
a path integral. Namely, it arises by replacing the integrals in the following expression
by Riemann sums.

o s dx dx
3.3 o[ eh gL gL
(3) 1 ebs . g
where
(34) S= jw(é)dé.

® Of course, in quantum mechanics # is the Planck constant 7.
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((3.3) defines the Feynman path integral in the limitas N — oo (Fzynman and Hibbs,
1965, Sect. 2-4). In (3.30, (3.4) tis a fixed value of time, 1 = NAr, where
t,—1,_,=hAt,k=1.,N,and w(&) is a continuous version of the synaptic weights.
Taking the limitin (3.3) as N — oo defines a path integral as a formal expression of
propzzation in a continuum neural net. Namely,

G.5) . [ (),

paths
where f is an appropriate functional measure.

3.2 A Lagrangian formulation of neural net dynamics

The next step in our development is to generate a Lagrangian formulation of neural
net dynamics, including a principle of least action. Since these dynamics are di.sipative,
a novel notion of optimization is required, as we shall see (Mjolsness and Miranker,
1998).

A Lagrangian for a dynamical system with position” v and velocity vis
(3.6) L=K-P,

where K =K (\:) is the kinetic energy and P = P(v) is the potential energy. The action §

is given by

G.7) s= [ Ldt= [ L.
Let us extremize S by taking a greedy variation, namely

5,5 8
G® Sy v

j L(v,v)dr.

7 In correspondence with the use of the variable v to represent the neural output, we use v to express the

position variable and V the velocity in the Lagrangian formulation here.




This is called a greedy variation since we require optimality, not merely for the trajectory
as a whole, but for the trajectory at every instant of time. Then it can be shown (see
Appendix 1) that

8,5 _ L)

(3.9) :
OV | av

This is in contrast to the conventional variation (not greedy) of the action, namely

610 &_ofa) a
o o\ gy) o
Suppose the Lagrangian has the form
dE(v) OF dv
3.11 L=K+———=K+——.
G.1D dt ov dt

Then for the greedy variation of the corresponding action, we would have

Let us suppose that in equilibrium (where the velocity v vanishes), we have
oK ({, =0)/Jdv=0. Then extremization of the action S yields extremal points of E, that is

(3.13) —5G—S—aL~0 = —a£=0.

50"—3\.;_ v

3.3 Application to Hopfield nets, the neural net principle of least action

The relaxation neural net, commonly called the Hopfield net, is associated with an
energy (Lyapunov) function E(v). As an example (see Hertz, Krogh and Palmer, 1991
Sect. 3.3), take®

§rivj

y

(3.14) E=E(v)=——;- Ty, = fv, + 2 &,v),

®In(3.14) 7; corresponds to the synaptic weight between neuron i and neuron j, f; is the exogenous input

the network at neuron /, and @; corresponds to the gain function of neuron i.




< 1
(3.13) K=—2—zui‘g' (1),
where -

(3.16) v, = gw).

With the choices (3.14)-(3.16) for the Lagrangian in (3.11), extremization of the action S
via greedy variation yields

(3.17) i == =N Ty, ~ f+ B,).

i j

We recognize (3.17) as the dynamics of a Hopfield net. (Compare (3.1) with (2.2) and
(3.16) with (2.1).) So(3.3), (3.4), and (3.17) are the neural net analogs of the
Lagrangian, the action, and the equations of motion in classical mechanics, respectively.
From (3.9), (3.13) we see that the neural net principle of least action is

(3.18) 965 =0.
OV

3.4 The path integral

Let a=(v,,t,) and b= (v,,t,) denote points between which a trajectory of the
dynamics passes (say from a to b as time increases). Then for i and A = A(€)as suitable
constants, define the kernel I'(b,a) by means of a path integral as follows.

3 = lim L [ [
(3.19) r(b,a)_lgngLje R

Here v,,...,Vy_, is a uniform partition of (v,,v,) with mesh width €=(v, - v,)/N,and

(3.20) S[b,a] = j Lv,v)dr.

a

To interpret (3.19), (3.20), replace the right hand side of (3.20) by a discrete sum with
respect to a partition of (z,,2,) also with mesh width €, in particular by




v =y, v
(3.21) L( R

(3‘22) J.exp l!_ (viﬂ —vi viﬂ +vi) +L(v:' _vi-l vi + v!_l\-ldv.
R e e T2 )

Recall that in the case of Hopfield net dynamics at hand, we have L= K + %E-, E=E(W),
ar

1 ) . o .
and K = ;zzc;g(zii) with v; = g(1;,). Now suppose that the limit in (3.19) exists and

defines a path integral denoted by

;S[b.n]

b
(3.23) e uav),

where (¢ is an appropriate measure.

3.5 The classical limit

Let V denote the potential. Then in the quantum mechanics case, the Lagrangian has

Py

the form L=mx /2 - V(x,1). In this case, i, which appears in the exponential in (3.23),
is the Planck constant #, and the corresponding path integral is used to define the
quantum mechanical wave function. It is shown by a type of stationary phase argument
(Feynman and Hibbs (1965), Sect. 2-3.) that in the limit as % — 0, the contributions to
the value of the path integral cancel except where the action S is stationary (i.e., where
OL/&x = 0). To implement the stationary phase calculation, a variation in the action is
performed and using the result in (3.10) the Lagrangian form of the equations of classical
mechanics emerge. That is, classical mechanics emerges from quantum mechanics in the
limitas 22— 0.

The same argument may be applied to the path integral (3.23) except that we make the
action stationary (i.e., we conduct the stationary phase calculation) by performing a

greedy variation (where g—é = 3L(v., v) =0 (cf. (3.9), (3.18)). Using L as givenin (3.11)
cY dv ;

and in the Hopfield case (3.14)-(3.16), we see that we recover the Hopfield dynamics

(3.17) by this limiting process (5 — 0). So we see that the (customary) equations of

10




eural net dvnamics emerge from the path integral wave description of the neural net in
the limit as /2 — 0, provided that the action is appropriately defined and exiremized (in
the greedy sense) as in Section 3.2.

3.6 The wave function
Let y(v,t) denote the wave function of the neural net. Itis defined by the condition

that it have the following properiy of evolution in time.
(3'24) W(v’_?!tz ) = J F(V:,tz ;vl ’ t[)W(vl ? Il )dvl s

where I” is givenin (3.19).
4. THE WAVE EQUATION

We shall now derive an equation that describes the time evolution of the wave
function ¥, the neural net Schrodinger equation. (Some details of the derivation are
collected in the Appendices 2 and 3.)

Let I'(i +1;i) denote the kernel of (3.19) corresponding to the passaz: of information

in an infinitesimal time interval € between two locations (two v values) indexed by i+1
and i, respectively. Then consider the following approximation for I'(i+11).

(4.1) [+ L) =Lexp & gL(vm =V Vi ¥ v,ﬂ_
A h

& 2

-~

Now consider w(v,t + €), and using (4.1), take the following approximation for it.

4.2) yvt+e)= -i; jeXpB- EL(V i W Vl)]w(v,,t)dv,.

e €

The Lagrangian (cf. (3.11)) may be analogously approximated:

@3) L(v—vl’v+v1)= 1 (v—vl) +Ey(v+vl)v—v‘.
€ 2 2d )\ € 2 €

11




The first term on the right in (4.3) uses the second relation in (A2.4) of Appendix 2. Note
' s - ' 4, Vtv
that g (1) =g (g7 () = g' (g7 (——

)). Then inserting (4.3) into (4.2) gives -

._4

@4) wvi+e)= jl{ex {211;(”) (v=w) } {ekp[ v )E(v-r»)g](mvpz)dvl_
4

Setting v, =v+1, (4.4) becomes

e . 2 . 2y L
4.5) l,[f(v,l‘-i—&‘):fi—exp{ f l—inEv("v T"ﬂw(vﬂy,r)dn.

2hg () € h 2

In Appendix 3, we expand (4.5) in Taylor series in €, and we then equate terms of equal
order in €. The zeroeth order equation determines A. Namely

2mihe %
(4.6) A -( ) ) ,
where
“«.7 m(v)=1/g (g’l ).

The first order equation is vacuous. The second order equation yields the wave
equation we seek. Namely

h 81// h2 0° Iv v
. —_—— E -Vy,
“.8) i ot 2m(v) c?vz Y ov v

a neural net Schroédinger equation. Here

_ _ Evz(v) th
“.9) V=V(®) () + () E (v).
Setting

_ h E(W)
(4.10) Q= Wexpl:4im(v) f e v J




to account for the dissipation, a direct calculation shows that ¢ satisfies the Schrodinger
equation of quantum mechanics. In particular,
op hoo° ¢

(4.11) R T 2% v U,

where for the potential we have |

(4.12) U) = (E‘+1E) ——(kn;VEv—l_A'mEf—hEW).
2 2m\m h

APPENDICES

Appendix 1

In this appendix we shall demonstrate (3.9), namely that

568 BL(V v)

(ALD)
56" (9v

Let us take the greedy variation of S about a function v'. Let v = v+ eu, where €>0
and 1 is an arbitrary function. We have

5.5 8¢5
Al.2 Lo = — | L(v' V)T
(Al-2) OV 5v_J; (v
t .# 1-. * * .-r *
=1imJ-L(v +&u,v +€u)y—L(v,v )(lT
£—-0 &

_ j 8L(\;',v*)ll_ AL )
o ov

T CEEIEA
I +j(f9v ‘9"(8 D

Choose u(t) to be the function u(7) = u(z,t;a) = exp(-(t - 7)*/a), where a>0. We
see that

uldt

(Al1.3) u@)=1, lin‘é w(7) =0, and u(—=)=0.

13




Then (A1.2) gives

(Al4) ——=

= 'G’E.u(t) - -3—[.11!(“&) + j(ﬁé - _8_f ()LDudf.
0 d

2y o’fkav

Now take the limit in (Al4)as a— 0. Using (A1.3), we obtain

Cn

§_ 8 e )
g—i;_—é—juv Wydr =2V

9v

(Al5)

demonstrating (3.9).

Appendix 2
In this appendix, we shall demonstrate (3 17), namely

(A2.1) ,'_=___= 2 = [+ D).

To begin, differentiate (3.16) with respect to ¢, obtaining
(A2.2) v=g Ui .

Next we note the familiar inverse differentiation relation

(A2.3) b =

)
g & 0

Using (A2.2) and then (A2.3), enables us to write K as follows (cf. 3.15)
.

(A2.4) K= lZuﬁg.(u,-)
) 2 (u )

= z]:v;-a—v? 'l(vj).

14




. . . ... L K /)
Inserting this into the extremization condition —(?—— = 4 + —@—— =0 (ct. (3.12)), we obinin

al’i dv m’i

(A2.3)

Combining (A2.2) and (A2.3) gives

L) —I .
(A2.6) =8 c?\)(.Vi) v,

H

which when inserted into (A2.5) yields (A2.1). This demonstrates (3.17).

Appendix 3

Here we give details of the Taylor series argument following (4.5), beginning by
noting the following series replacements.

(A3.1) l;f(»’,t+8)=l//(v,t)+£§é[u£+'--.
(A32) oL =w, t)+n%?+ Ly ‘933’

Recalling that v = v, + 71 and employing the abbreviation

(A3.3) F=F(n)= exp[——i—nE‘ (2v A "1)],

h 2
we find F(0)=1, F;,(O)=—%Ev(v), and F (0)———1—E (v )——E (v). Then we have
(43.4) Fe1-LEon-( S EENF +E, )L

Using these three Taylor expansions in (4.5), it becomes the following expression (to
highest order).

15




(v dy _ =1 Jimny
(A3.5) | v(v,H)+e¢ > _LQAeXPL AT

e om—(Leaeis ()T
X{l hEv(v)n (h: E (v)+ hEn,(L)) 5 j

dv 1 ,70%
X{w(v,t) + 77—5'; + e —(;Tl',_/—}dn .

Here .we have introduced the q‘ﬁantity (cf. (3.16), (4.7)
(A3.6) mv)=1/g (g7 () =1/g (g™ (v+m)=1/g ().

Equating terms in (A3.5) of order zero in 1 gives the following equation.

a Tl im(v) i
(A3.7) Y1) =W, i y exp[ T }dn
1{ 2mihe
B W(V’I)X( m(v) J

(A3.7) gives the result for A shown in (4.6). The terms of order unity in 77 in (A3.5)
cancel out. What remains is

—

or 27ihe 27the

-0

(A3.8) 83_1// - (_’71(_‘1)5 ,,nz Cxpl:i m(v) 772}

. l ) ' i‘ )
rar B0 S (FRe E“'“’))"’]""'

P

Since
“12_ . im(v) 2] _ ihe
(A3.9) i Aexp[———Zhs n’ fdn=— o
(A3.8) may be written as
h oy B Py ok dy [ EX(v) h
: - -—Ew 2| E ,
(43.10) i 2me) o me) +(2m(v) 2im(v) "(V))w

namely, the neural net wave equation ((4.8), (4.9)).

16
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