
Yale University
Department of Computer Science

P.O. Box 208205
New Haven, CT 06520–8285

Privacy from Untrusted Web Servers

Robert Fischer1

Harvard University
Margo Seltzer2

Harvard University

Michael Fischer3

Yale University

YALEU/DCS/TR-1290
May 19, 2004

1Email: rfischer@rics.bwh.harvard.edu
2Email: margo@eecs.harvard.edu
3Email: fischer-michael@cs.yale.edu

Privacy from Untrusted Web Servers

Robert Fischer∗

Harvard University
Margo Seltzer†

Harvard University
Michael Fischer‡

Yale University

Abstract

Many potentially useful web applications require use of user private data. In the typical client-server
paradigm, the server must be trusted to respect the user’s privacy, for the user’s private data is sent to the
server for processing. The Clilet system is a web application architecture and protocol that guarantees user
privacy even in the face of untrusted servers. User private data never leaves the client’s domain of trust,
even though the code and additional data needed to process it comes from the untrusted server. The Clilet
architecture is described along with a security analysis. A fully functional prototype implementation and
sample applications are also described.

1 Introduction

Alice’s company requires each of its employees to use a web-based calendar application for scheduling work-
related appointments. This application runs on a web server hosted by her company and enables management
to schedule meetings at times that minimize employee conflicts.

Alice is willing to use this application for work-related appointments; however, she does not wish others
to see the details of her personal engagements, which she regards as private. She is perfectly willing to
disclose those times at which she is unavailable for personal reasons, just not the details of those reasons.
She therefore keeps personal engagements on a separate calendar stored on her laptop. To schedule a new
appointment, she must consult both calendars in order to avoid potential time conflicts. She also must make
two entries when scheduling a personal appointment, once on her laptop with full details, and another on
the company’s calendar in order to block out the time as “personal.” This latter step is necessary in order
to prevent the company from scheduling events when she is not free. Needless to say, she finds this manual
integration of data from two sources and requirement of double entry to be cumbersome and error-prone.
Because she forgets to block out her personal time on the company’s calendar, the company’s calendar
application fails to achieve its goals of minimizing conflicts with official meetings.

The company’s IT staff, realizing that the calendar application is not working as intended, implements
a new feature that allows Alice to identify each appointments as being either “work-related” or “personal”.
When management accesses Alice’s calendar, details for all appointments marked “personal” are suppressed.
Unfortunately, this still does not allay Alice’s concerns, for she neither trusts the IT staff with her private
personal data, nor does she trust that they will not disclose it to management upon request.

The Clilet system described in this paper is designed to address Alice’s concerns. A Clilet browser pro-
vides Alice with an integrated view of private data from her laptop with public data from her company’s Clilet
server, allowing her to view a single “virtual” calendar that contains both her public and private appointments.
It also prevents private data from being returned to the server while allowing the public information to go
back unhindered.

∗Email: rfischer@rics.bwh.harvard.edu
†Email: margo@eecs.harvard.edu
‡Email: fischer-michael@cs.yale.edu

1

2 RELATED WORK 2

While one could easily imagine how to implement a specialized web browser tailored to this particular
application, actually doing so would be a major task, and assurance that sensitive data could not leak back to
the server would be difficult to achieve. Moreover, if Alice’s IT department produced such a program, Alice
would have little reason to trust that it worked as advertised. So there are two separate issues here: producing
code to run on Alice’s computer that prevents the leakage of sensitive information, and providing Alice with
reasons to trust that code.

Clilets address both concerns. The Clilet system is a general web-like client-server framework for com-
puting with a user’s private data while maintaining its privacy. The part of the system that runs on Alice’s
computer is called the Clilet browser. In order to solve any particular task, the browser runs a piece of
server-provided mobile code called a clilet that specifies how to carry out the task.

Unlike many other approaches to such problems, the clilet code itself does not have to be trusted. Alice’s
privacy assurance comes from the Clilet browser itself. As long as she trusts that her Clilet browser correctly
implements the Clilet protocol, the privacy of her data is guaranteed, regardless of what the clilet code might
attempt to do. Therefore, Alice has no reason not to use the Clilet application provided by her company for
scheduling appointments.

1.1 Summary

In summary, the Clilet system is a system for building web-like applications that allow for private data stored
and managed by the client. The system guarantees that the private data is never disclosed to the server. To
accomplish this, the web protocols are extended so the server sends the browser pieces of mobile code known
as clilets. Clilets are executed by the Clilet browser. They access private data and produce HTML output,
which the Clilet browser displays, integrating private and server-provided data. Clilets are able to process
private data as needed, eliminating the need to disclose that data to the server. Care is taken by the browser
to safeguard against malicious clilets.

A number of application domains exist today in which web applications are technically desirable but are
often not used due to privacy concerns: personal finance, on-line tax preparation, and personalized health
information to name a few. The Clilet system allows the construction of web-like applications for these
domains that guarantee users’ private data remains private.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 details the trust
model under which the Clilet system runs, providing a Clilet-enabled solution to Alice’s problem. Section 4
introduces the Clilet protocol and gives an overview of client-server interaction along with a walk-through of
a client-server interchange. Section 5 focuses on the steps taken by the Clilet browser to maintain the privacy
of private data. It goes on to discuss possible threats to that privacy and what is done about those threats.
Section 6 describes the kinds of applications for which the Clilet system is and is not well-suited, giving a
few examples. We discuss possible avenues of future research in section 7 and conclude in section 8.

2 Related Work

The Clilet system is a general-purpose client-server system that allows for private data. Private data is kept
secret from the server and no trust or trusted third party is required between client and server. As far as we
know, the Clilet system is the only system to allow for private data in this way; however, it is related to a
number of other systems.

2.1 Private Information Retrieval

Private information retrieval refers to cryptographic schemes that store private data on untrusted servers and
allow the client to query that data while keeping it secret from the server [12, 7]; however, practical private

3 TRUST MODEL AND EXAMPLE 3

information retrieval schemes for large amounts of data have not yet been demonstrated.
Although the Clilet system solves a similar problem, it does so in a very different way. Rather than

relying on cryptographic unbreakability assumptions, the Clilet system prevents an untrusted server from
learning about private data by not sending those data to the server to begin with.

2.2 Decentralized Label Model

The Decentralized Label Model and related work [10, 11] focus on providing information flow guarantees in
a distributed system. Data are tagged with labels; these labels are used by the system to enforce information
flow policies defined by the owner of the data. Awareness of information flow labels is built into Jif, a
security-typed Java variant with support for static information flow control.

One can think of numerous uses for the information flow tools provided by the Decentralized Label Model
and Jif. Among other things, the system allows for software from party A to operate on data from party B in
and environment of mutual distrust. However, the Decentralized Label Model addresses a somewhat different
problem from the Clilet system: it assumes a mutually trusted third party, whereas the Clilet system does not.

2.3 Multi-Level Systems

The Clilet system uses asynchronous clilet execution (Section 5.1) to control the flow of private data within
a clilet. Multi-level system [1] have been used to achieve a similar effect in multi-user, multi-tasking system.
Covert channels are common in multi-level systems [9]; in our case, with only one thread of control, we are
able to provably prevent them [10].

2.4 Java Applets

Other approaches exist to safeguard data privacy under different sets of assumptions. The Java Applet, for
example, is a piece of untrusted code designed to run in a web browser. It is prevented from damaging the
local system; however, any data to which it is given access can be transmitted to the server. It is therefore
similar to the public clilet segment in terms of privacy.

3 Trust Model and Example

The Clilet system assumes the following trust model:

• The client and server are mutually distrustful, with no mutually trusted third party.
• The computation requires data from the client and from the server; if data from only one or the other

were needed, a client-server application would not be necessary.
• The client wishes to prevent the server from deducing some of the data it brings to the computation.

This data is known as private data. Similarly, the server is trying to deduce the contents of the private
data.

• The client is required to trust the Clilet browser. This software, like the client’s operating system, was
produced independently of the server.

• The Clilet application application consists of parts that run on the server and parts that run on the client.
Both are produced by the server. Parts that run on the client are known as clilets.

The above requirements introduce a paradox. Since private data and data from the server are both required
for the computation, the clilet code must be able to communicate with the server and access private data.
However, this code is not trusted. Untrusted code is commonly sandboxed, given only certain permissions.
What will those permissions be? In general, code that can access private data and communicate with the

4 CLILET PROTOCOL 4

server will be able to communicate that data to the server. Therefore, it seems there is no way to simultane-
ously safeguard private data and allow the clilet to do its job of computing with data obtained from the client
and the server. We solve this seeming paradox by using a more powerful sandboxing model (see Section 5.1).

3.1 Clilet User Experience

We designed the Clilet system so that the Clilet applications look and feel like web applications. Note that
private data is not possible in today’s web applications because all data processed by the application is visible
to the server. Therefore, the Clilet system can be thought of as introducing an extended web application
protocol. We have developed a fully secure, fully functional Java-based prototype of the Clilet system.

The Clilet browser, akin to a web browser, is a trusted piece of on the client machine used to connect to a
Clilet server. To users sitting at a Clilet browser, a Clilet session works much like an HTTP/HTML session.
Users are presented an HTML page with which they interact. When a user clicks on an anchor or form
submit button, the Clilet browser initiates a round-trip communication with the server, called an interchange;
the effect of the interchange is to display a new HTML page in the browser. Sessions are managed through
the use of session keys shared between browser and server.

From the user’s point of view, there is one major difference between a Clilet and an HTTP/HTML appli-
cation: every HTML element on the screen, including form elements, is designated by the server as public or
private; the Clilet browser makes this distinction clear to the user through user interface cues. Data entered
into public form elements is passed along to the server, the same as with HTTP/HTML. However, the Clilet
browser ensures that data entered into private form elements is never revealed to the server, although it may
be stored client-side.

3.2 Example with Clilets

The IT staff of Alice’s company could address Alice’s concerns by building the shared calendar application
with the Clilet system. Alice logs into that application to view her day’s appointments. Public and private
appointments, generated by the public and private clilet segments, are shown in a distinctive fashion. Alice
is looking for a time for a doctor’s visit this afternoon. She notices 13:00 is free.

Alice clicks on a button marked “New Private Appointment” and is brought to a screen asking her for
more details. It contains a form with public and private form elements, visually distinguishable from each
other. The date, time and duration of the appointment are being requested in public form elements; all other
information is being requested in private form elements.

Alice fills out the requested information and clicks Add. The time and duration of her doctor’s visit are
sent to the server; all other data she filled in is stored locally. When Alice next clicks on “View Calendar,” she
sees the complete details of the private appointment she just made, as well as details of other appointments
loaded from the Clilet server.

4 Clilet Protocol

The workings of the Clilet system protocol are similar to HTTP with one important difference. Rather than
returning HTML to the browser, the server returns a clilet — a kind of mobile agent that includes data and
executable code. The clilet, when run, produces HTML, which is displayed to the user. It also reads and
writes in the private data store.

Clilets are sent to the Clilet browser in two pieces, the public clilet segment and the private clilet segment,
which are given different privileges when run. The public clilet segment is given access only to public data,
and it generates the bulk of the HTML. The private clilet segment is responsible for processing private form

4 CLILET PROTOCOL 5

Figure 1: The major components of the prototype Clilet browser, and how they interact on a client-server
interchange. Arrows indicate public, private and combined data flows. Numbers indicate the order in which
actions take place. All components within the dotted box on the left are part of the Clilet browser.

elements, for accessing the private data store, and for generating HTML that will solicit or display private
data for the user. It is not allowed to write HTML that could result in the transmission of data to the server.

The Clilet system uses an XML-based variant of HTML called Clilet HTML [4]. It is similar to XHTML
1.1 [2], with some changes made to accommodate public and private data within one document. As men-
tioned above, only HTML that conforms strictly to the XHTML 1.1 grammar is allowed — this enables us
to reason clearly about privacy. It would be possible to accept mal-formed HTML as well, as long as that
HTML is parsed in a consistent, well-defined manner.

4.1 Clilet Browser

The Clilet browser is responsible for communicating with the server and user and for running clilets in
a secure fashion. It is conceptually divided into a number of interacting parts (Figure 1), which we will
describe more fully below.

The HTML Display is responsible for displaying HTML, interpreting user input and communicating with
the server.1 Asynchronous clilet execution is a technique used by the Clilet browser to run a clilet — it
involves the use of a public sandbox and a private sandbox, giving different rights to the (untrusted) code
being run within. The private data store is used to store private data. The HTML Parser is responsible for
parsing HTML into a parse tree. The HTML Verifier checks the HTML for privacy violations.

4.2 Sample Interchange

A typical client-server interchange works as follows (Figure 1):

1. Upon prompting by the user, the HTML Display sends an HTTP request to the Clilet server.
2. The server processes the request in an application-dependent manner. When it is ready, it returns public

and private clilet segments to the browser.
3. The public clilet segment is executed, isolated from the world inside a public sandbox. It is allowed

to call functions in the private segment; however, these functions are not allowed to pass information

1In our prototype, HTML Display functionality is implemented mostly by the standard web browser.

5 PROTECTING PRIVACY 6

back or call functions in the public clilet segment. In order to enforce this rule, calls to the private clilet
segment are queued by the Clilet browser, only to be run upon completion of the public clilet segment.

4. Queued private clilet segment calls are executed inside a separate private sandbox. Data from private
form elements associated with the interchange are made available at this time. The public and private
sandboxes implemented in a straightforward manner using the Java 2 Platform Security [8].

5. In the course of execution, the private clilet segment reads and writes in the private data store.
6. Output from the public and private clilet segments is arranged into a complete HTML document con-

sisting of alternating public and private HTML segments (determined by whether the output was pro-
duced by a public or private clilet segment). The output of each private function call (a private HTML
segment) is inserted into the output of the public clilet segment (a public HTML segment) at the point
that the public clilet segment queued the private function.

7. The HTML Parser parses the combined public/private HTML output, producing a parse tree. Each
node in the tree corresponds to either a begin/end tag pair, or to a block of text. Each node is labeled as
public or private, depending on whether its textual representation was written by the public or private
clilet segment. Our HTML Parser is somewhat different from a standard XML/HTML parser because
it is aware of public and private HTML segments. If the HTML cannot be parsed or annotated — for
example because a tag was written partially by the public clilet segment and partially by the private
clilet segment — a fatal error is thrown and the interchange ceases.

8. The HTML Verifier ensures that no security rules are violated by the HTML represented by the parse
tree. It checks, for example, against hyperlinks annotated as private.

9. The HTML Display formats the resulting parse tree on the user’s display and solicits user interaction.

5 Protecting Privacy

The Clilet system as described above requires the client-side execution of (untrusted) code originating from
the server. That code might try to damage the client system or transmit private data back to the server. It is the
job of the Clilet browser to guard against these attacks. The job of protecting a local system from untrusted
code is a well-studied topic. We use the Java Security framework to prevent a clilet from executing dangerous
code, e.g. reformatting the filesystem — these are the same mechanisms used by classical browsers to execute
applets.

A more interesting issue is how one can prevent the clilet from transmitting private data to the server.
Only the private clilet segment is given direct access to private data. Therefore, if we can prevent the private
clilet segment from transmitting information to the server, we have achieved our objective. There are four
ways a private clilet segment might try to do this. They are listed below with the section in which we describe
how we safeguard it provided in parentheses.

1. It could transmit private data to its calling public clilet segment, which then relays that data to the
server (Section 5.1).

2. It could write something in its output that causes the HTML Display to transmit data to the server —
for example, it could try to put an anchor into a private HTML segment (Section 5.2).

3. It could vary its running time, thereby varying the overall round-trip time observable by the server.
This could be used to convey arbitrary private data (Section 5.3).

4. It could try to trick the user into revealing private data to the server (Section 5.4).

We will now discuss each of these potential attacks and the mechanisms used to thwart them.

5 PROTECTING PRIVACY 7

5.1 Asynchronous Clilet Execution

The simplest way for private clilet segments to provide data to public clilet segments would be via explicit
return values from function calls. We remove this possibility by forbidding return values from private clilet
segment execution. More fundamentally, we need to show that there is no way for private clilet segments to
implicitly pass information to their calling public clilet segment: that the behavior of the public clilet segment
must be oblivious to the actions of the private clilet segments.

This is easily proven because of our asynchronous execution model. Private clilet segment code is not
executed right away when the public clilet segment calls a private segment function. Instead, the calls are
queued, then run only after the private clilet segment finishes executing. The result is the same as if the
private clilet code had been run right away; however, it is now easy to prove that the behavior of the private
clilet segment cannot affect the public clilet segment.

5.2 HTML Integrity

The private clilet segment is allowed to write to the HTML output stream because it needs to be able to
display private data to and solicitg private data from the user. For example, private calendar information
must be displayed when the user asks for it.

However, certain kinds of HTML could result in the compromise of data privacy. For example, an anchor
tag causes data to be sent to the server when the user clicks on the anchor. An anchor tag from the private
clilet segment (a private anchor tag) could leak private data, and therefore must be prevented by the HTML
Verifier.

This is a simple task, given a parse tree representation of the HTML document. However, other types of
HTML must also be prevented as well. For example, an tag could cause the browser to request an
external image from the server; this is known as a secondary interchange. The HTML Verifier must address
all possible HTML-based privacy breaches, since even one missed vulnerability could be exploited.

We address this issue with a systematic tag-by-tag construction of HTML’s semantics [4]. The semantics,
available in simple tabular form, allows us to precisely determine exactly which tags might leak private data
and ban them (see Appendix A & B). Since web browsers must understand HTML semantics and manage
communication with the server, the task of building the HTML Verifier is clearly no harder than that of
building a web browser.

5.2.1 Preloaded Secondary Interchanges

Prohibiting all tags that spawn secondary interchanges is overly restrictive; the private clilet segment might
have a legitimate use for inline images, for example.

Therefore, Clilet HTML provides a way to pre-load secondary interchanges via the <preload> tag.
This tag, available only to the public clilet segment, initiates a secondary interchange, causing the HTML
Display to download the requested resource. When the HTML Display encounters a private node that would
otherwise initiate a secondary interchange, it looks for the requested resource (indexed by URL) in the set
of preloaded resources specified in the current interchange. If the resource is available, it is used; otherwise,
an error is generated. This design trades off efficiency (e.g., on-demand loading) for security (removal of a
covert channel).

Since only public <preload> tags are allowed, this scheme maintains the privacy of private data. At the
same time, it allows private clilet segments to make use of resources downloaded via secondary interchanges.

5 PROTECTING PRIVACY 8

5.3 Covert Timing Channels

By ensuring that the server sees the same view no matter what action is taken by the private clilet segment, the
above system prevents the private clilet segment from directly transmitting information to the server. How-
ever, the private clilet segment could still vary its running time in an attempt to affect the overall interchange
round-trip time, thereby creating a covert communication channel.

This type of covert channel is not a significant threat for many applications because it is noisy and low-
bandwidth. The total round-trip time for an interchange can be dozens of seconds, and numerous confounding
factors — including the user — add additional delay. These delay will be far greater than any “extra” delay
added by the private clilet segment that would still be tolerable to the unsuspecting user. 2

5.4 Tricking the User

We have shown above that the private clilet segment is unable to communicate with the server in any mean-
ingful way. This leaves open the possibility that the clilet might try to trick the user into revealing private
information. Clearly, we expect that the user will not put private data — or a function thereof — into public
form elements. However, there are other more subtle ways the clilet might try to trick the user.

5.4.1 Application Structure

Many web application structures force users to divulge private data simply to use the web site. For example,
the IRS web site (www.irs.gov) allows users to download tax forms. It can already deduce something about
a user’s income based on whether the user chooses to download the 1040, 1040A or 1040EZ form. Astute
users could obfuscate their choice by downloading all three; but web applications bent on discovering private
information could prevent users from making more than one choice.

The IRS web site is a simple example of this problem. In general, any web application requiring users
to make a series of if-then choices based on private data will compromise that data’s privacy — even if the
data is never explicitly handled by the application. In contrast, an application in which the user’s choices are
largely oblivious to the data or depend on private data in an unpredictable fashion — such as a public/private
shared calendar — do not suffer from this problem.

It is clear that this problem of application structure is a problem for HTTP/HTML as well as Clilet web
applications, even in the case (as with the IRS) that no private data was explicitly present. Full investigation
of web application structure as a covert channel is outside the scope of this paper.

5.4.2 Mis-Labeling

The user chooses what to put into public form elements based on the HTML text surrounding them. Mis-
labeled form elements can be used to trick the user, allowing the private clilet segment to divulge private data
even if the user provides only public data! Consider a form with two form elements, which we will call A

and B. These form elements will be used to request name and phone number, which are not private data.
Textual labels are used to tell the user whether the name should go in A and the phone number in B, or vice
versa.

If the private clilet segment is allowed to provide these labels, then it can label A as name and B as phone
number, or vice versa — depending on the value of a private bit p. The server can determine what labels the
private clilet segment used by checking whether the value in A looks like a phone number and the value in
B looks like a name — or vice versa.

2This point addresses covert channels between private clilet segment and server. Covert channels from private to public clilet
segment are completely prevented by running the private clilet segment after the public.

6 APPROPRIATE USES FOR CLILETS 9

In order to prevent this problem, the user must trust only labels appearing in public HTML segments — in
fact, the user must avoid following any directions found on the private part of the HTML page indicating how
to fill out the form elements! Clearly, it is difficult to make any automated rule against private-mode HTML
text that describes how to fill out a form. To aid the user in avoiding private-mode HTML directions, the
HTML Display provides visual cues indicating the public or private nature of every on-screen Clilet HTML
element.

5.5 Discussion

In this section, we have approached privacy threats by systematically examining the ways in which the
private clilet segment might try to communicate with the outside world — and then by showing how the
Clilet browser design prevents these attacks. These techniques, when taken in combination, are sufficient to
ensure the privacy of private data within one interchange.

In spite of all technical security means, the clilet can still try to trick users in a number of subtle ways.
Luckily, experienced users can determine the safety of an application simply by examining it from the out-
side; no knowledge of the source code is required.

Even so, users are often the weakest security link. We have therefore sought to make security statements
under “reasonable” assumptions of user awareness [6]. We assumed that the user does not enter a predictable
function of private data into a public form element; nor does the user follow directions given in a private
HTML segment. Under these conditions, we showed that any loss of private data is due to the structure of the
application. These kinds of privacy problems commonly exist in HTTP/HTML as well as Clilet applications
— the IRS web site, for example.

Although Clilet applications requires a heightened level of attention on the part of the end user, they do
something that traditional web applications do not do — allow for private data. Whether the user is willing
and able to pay attention will depend on the user and the degree to which that user values the privacy of
the data being processed. In the case that Clilet applications are not mass-market tools but rather specific
applications with a small number of well-trained users, it is quite plausible that users will be trained to take
the necessary precautions.

6 Appropriate Uses for Clilets

We began with some motivating examples for private data. Now, having described the Clilet system and
shown how it maintains privacy, we proceed to describe the kinds of problems we expect Clilets to solve.
Although we do not expect Clilet applications to replace classical web applications, we do expect that they
will be seen as the best approach for a certain class of applications.

The Clilet system is most appropriate for application that combine data from public and private sources.
All of the examples in Section 1 fit this description. Clilets are not suitable for many applications for which
one might at first consider them.

The Clilet system is not appropriate for applications that use only private data — even if the user does
not trust the application. In that case, the user should run the untrusted application in a sandbox that prevents
network access. This functionality is available today by running the application in a separate virtual or actual
machine. In contrast, some problems require only public data; traditional web applications do just fine for
that job. The vast majority of web applications fall into this category.

Again, clilets are best suited for problems that involve the combination of public and private data.

7 FUTURE RESEARCH 10

7 Future Research

The Clilet system as it stands can implement a number of interesting applications. One direction for future
Clilet research involves ways that private data might be selectively shared, in e-commerce for example.

Web-based electronic commerce generally requires users to supply credit card information to merchants.
Although they could do so, many merchants do not store credit card numbers because this would make them
vulnerable to hackers; they make the users type in the number for every transaction. Security and convenience
are unfortunately traded off against each other.

The Clilet system could form an ideal basis for a secure and convenient credit card verification scheme
that does not require a trusted third party. A user’s credit card information would be stored in the secure
client-side database. When a transaction is to be made, the server would send a private clilet segment that
would read the credit card information and send it back to the merchant. The Clilet system, noting that
(private) credit card information is being sent, would verify with the user that this is OK. This semi-manual
process is similar to data declassification in a multi-level system.

Since this credit card scheme involves sending private data to the server, it would require that the Clilet
system be extended to allow limited data declassification without breaking the security system. The right
way to do it for the Clilet system in a general fashion is an open problem.

Clilet ideas might also be extended beyond the domain of web applications. Through the use of HTML,
the Clilet system allows a web application to build a user interface with two distinct types of user widgets,
public and private. It should be possible to build multi-level user interfaces outside the scope of web appli-
cations — a multi-level GUI widget set, for example.

8 Conclusion

The web enables more interesting and complex on-line transactions every year. Clilets, which allow web
applications to work with private data without the possibility of the disclosure of that data to the server,
are another step in this evolution. They are a first step toward allowing the use of private data in a mixed
public/private setting.

In the web environment, private data usually originate on the client, while programs originate on the
server. Programs and data must find themselves on the same machine in order for any computation to be
accomplished: either the data must be sent to the program, or the program must be sent to the data. The
Clilet system makes the unusual choice of sending the program to the data — thereby avoiding the risks
involved with sending sensitive data to an untrusted server.

In a historical twist, the Clilet system runs untrusted code in the Clilet browser in order to enhance user
privacy. In the past, untrusted code was seen as a privacy risk. Sandboxing techniques like those used in
the Java system — and also by the Clilet system — make it possible to run untrusted code without risking
privacy and security.3 They therefore made feasible the approach taken by the Clilet system — that of moving
program to data.

We have shown that the use of private data in web applications is practical by building the Clilet system
— a fully functional prototype of the necessary client and server components [3]. Clilet system code and
examples can be found at http://www.clilet.org.

3Sandboxes are only effective to the extent that they are free of bugs that would allow malicious code to break them. The Clilet
system assumes the Java sandbox works as advertised; Java sandbox security bugs are outside the scope of this paper.

REFERENCES 11

References
[1] D. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition and Multics Interpretation. The Mitre

Corp, 1976.

[2] World Wide Web Consortium. XHTML 1.1. http://www.w3.org/TR/xhtml11/.

[3] Robert Fischer. Clilet web site. http://www.eecs.harvard.edu/˜citibob/clilet or http://
www.clilet.org.

[4] Robert Fischer. “Chapter 7: Clilet HTML — Syntax and Semantics”. In Web Applications with Client-Side
Storage, Harvard University Ph.D. Thesis, pages 113–131, June 2003.

[5] Robert Fischer. “Chapter 8: Browser Implementation”. In Web Applications with Client-Side Storage, Harvard
University Ph.D. Thesis, pages 132–163, June 2003.

[6] Robert Fischer. “Chapter 9: Clilet System Security”. In Web Applications with Client-Side Storage, Harvard
University Ph.D. Thesis, pages 165–187, June 2003.

[7] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private information
retrieval schemes. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 151–
160. ACM Press, 1998.

[8] Li Gong. Inside Java 2 Platform Security. Addison-Wesley, 1999.

[9] Ira S. Moskowitz and Myong H. Kang. “Covert Channels - Here to Stay?”. In Compass’94: 9th Annual Con-
ference on Computer Assurance, pages 235–244, Gaithersburg, MD, 1994. National Institute of Standards and
Technology.

[10] Andrew C. Myers and Barbara Liskov. “Protecting Privacy Using the Decentralized Label Model”. Software
Engineering and Methodology, 9(4):410–442, 2000.

[11] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1), January 2003.

[12] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted data. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, Berkeley, California, 2000.

Privacy from Untrusted Web Servers — DISC 2004 — Appendix 12

Appendix A: HTML Semantics

In order to ensure that private clilet segments do not leak data to the server through their HTML, we defined
both our own HTML variant (starting with XHTML 1.1) and a semantics that any conforming Clilet browser
must follow. The semantics define the kinds of actions taken by the Clilet browser when confronted with
each tag. With that information, the HTML Verifier is easily able to determine which tags to prohibit.

Our HTML semantics begin by defining the action of the HTML Display. When presented with a parsed
HTML tree, it scans that tree in depth-first search order, building some internal data structures. Those
structures are:

1. The canvas — an internal representation of the text/graphics page that will be displayed to the user.
2. A set of forms found in the HTML page. Every form is associated with exactly one URL.4

3. A set of public form elements found in the HTML page. There is a many-to-one relation between public
form elements and forms. Public form elements are transmitted to the server upon form submission.

4. A set of private form elements found in the HTML page. Private form elements act like public form
elements, except they are not made available to the server upon form submission. Instead, they are
made available to the next clilet sent by the server.5

5. A set of preloaded external resources, as specified by public <preload> tags.

As it scans each node in the parse tree, the HTML Display takes one or more of the following actions:

1. It adds text or graphics to the canvas. For example, an <h1> tag or some simple text changes the
canvas.

2. It creates a new form; a <form> or <a> tag, for example. The URL for the form will be sent to the
server upon form submission.

3. It adds a public form element to a form; an <input> tag in a public HTML segment, for example.
Public form elements and their associated values will be sent to the server upon form submission.

4. It adds a private form element to a form; an <input> tag in a private HTML segment, for example.
Private form elements and their associated values will not be sent to the server upon form submission.

5. It initiates a secondary interchange to preload an external resource — a graphic image, for example.
6. It uses a preloaded external resource that was downloaded in a previous secondary interchange.

Our HTML semantics defines the actions taken by the HTML Display upon encountering every kind of
tag in Clilet HTML. For example, a <a> tag writes to the canvas and creates a form. A <i> tag affects
only the canvas. A public tag affects the canvas and initiates a secondary interchange, whereas a
public tag with a ismap attribute creates a form as well. A private tag affects the canvas and
initiates a lookup in the set of preloaded URLs; it does not initiate a secondary interchange.

The HTML semantics is expressed in tabular form (Appendix B). The semantics of every node in an
HTML document is defined by the first row of the semantics table that matches the node. Matching is
done based on a node’s tag type, its attributes and its public/private designation. Further description of the
semantics is available in Fischer03 [4].

A.1 HTML Verification Rules

The goal of the HTML Verifier is to prohibit all private nodes that might result in data being transmitted to the
server. Given the above semantics, it is clear that the following must be prohibited in private clilet segments:

4Anchors are considered to be forms with zero form elements.
5It would seem more intuitive to make private form element values available to the clilet that produced those form elements,

rather than to the next clilet. We chose instead to follow the standard practice of HTTP/HTML web applications — in which one
servlet creates a form and the next servlet processes it.

Privacy from Untrusted Web Servers — DISC 2004 — Appendix 13

1. Nodes that create forms.
2. Nodes that initiate secondary interchanges.
3. Nodes that create public form elements.

Given the HTML semantics, it is easy to determine whether a private node performs one of these actions.
The HTML Verifier therefore need only check each private node against a list of criteria. In systematically
examining the HTML language, we found the HTML Verifier rules reduce to the following:6

1. The <preload> tag is added to the Clilet HTML grammar. It is legal only in the public HTML
segment.

2. The following tags are not allowed in private HTML segments:

<blockquote cite=...> <q cite=...> <ins cite=...>
<del cite=...> <a> <link>
<form>
<map> <area>.

3. The following tags create public form elements in a public HTML segment and private form elements
in a private HTML segment: <input>, <textarea>, <button>, <select>.

4. The following tags cause secondary interchanges in public HTML segments, fetches from the set of
preloaded documents in private HTML segments: <input src=...>, , <img
longdesc=
...>.

A.2 Atomicity Rules

The HTML Parser ensures that no node in the parse tree spans a public/private HTML segment bound-
ary. This atomicity requirement is critical to security because it prevents clilets from performing unwanted
“tricks” [5]. For example, a public clilet segment might begin an anchor but have a private clilet segment
write the destination URL in that anchor tag.

For the same reason, additional atomicity rules are required for some kinds of on-screen HTML elements
that require more than one node in an HTML parse tree to describe. For example, an anchor requires two
nodes — the <a> tags and the text displayed between the begin and end <a> tags. Other elements, such as
drop-down menus, require even more nodes.

As with other aspects of HTML, atomicity requirements have been systematically and completely ex-
amined in our HTML semantics, producing a set of atomicity rules [4]. These rules prevent, for example, a
private text node from appearing within a public anchor node. The rules are formulated in terms of “descen-
dants of tag <X> must have the same public/private designation as <X>.” The set of tags for which this rule
holds is precisely: <a>, <area>, <map>, <button>, <optgroup>, <select> and <textarea>.

In addition, the tag can be affected by any other <map> node in the document.
The HTML Verifier must therefore find the modifier node (if it exists) and ensure that its designation matches
that of the original node.

6Technically, the last two items are the job of the HTML Display, not the HTML Verifier

Privacy from Untrusted Web Servers — DISC 2004 — Appendix 14

Appendix B: HTML Semantics Table

Blocks
acronym x
abbr x
address x

C cite x x
x

C q cite x x
q x
cite x

C ins cite x x
ins x

C cite x x
x

Links
C a x x children
C link x x
R link x x

Input
C form x
C input x x x
R input x x x
C input x x
R input x x
C x x children
R x x children
C button x x children
R button x x children
C select x x children
R select x x children

x children
option x
label x

x
legend x

Images
C x x x
C x x x map
C x x
R x x
C map x children
C area x

Meta Info
head x
title x
meta x

C base x x

blockquote
blockquote

del
del

src
src

textarea
textarea

optgroup

fieldset

img ismap
img usemap
img src,longdesc
img src,longdesc

Pu
bl

ic
/P

ri
va

te
C

 =
 p

ub
lic

R
=p

riv
at

e

N
od

e
Ty

pe

A
ttr

ib
ut

e

C
an

va
s

Fo
rm

s

Pu
bl

ic
 F

or
m

El
em

en
ts

Pr
iv

at
e

Fo
rm

E
le

m
en

ts
2

� In
te

rc
ha

ng
e

Pr
el

oa
d

L
oo

ku
p

M
od

ifi
ed

 B
y

Privacy from Untrusted Web Servers — DISC 2004 — Appendix 15

Programming

Frames

Styles Style tags affect canvas only

Basic Tags Basic tags affect canvas only

Char Format Formatting tags affect canvas only

Tables Table tags affect canvas only

Output Output tags affect canvas only

Lists List tags affect canvas only

No client-side execution (other than clilets) in Clilet HTML

Following tags are removed: script, noscript, applet, object, param

No Frames in Clilet HTML

Following tags are removed: frame, frameset, noframeset, iframe

Tags are: style, div, span

Tags are: html, body, h1, h2, h3, h4, h5, h6, p, br, hr

Tags are: b, font, i, em, big, strong, small, sup, sub, bdo, u

Tags are: table, caption, th, tr, td, thead, tbody, tfoot, col, colgroup

Tags are: pre, code, tt, kbd, var, samp

Tags are: ul, ol, li, dir, dl, dt, dfn, dd, menu

The table on the preceding two pages describes Clilet HTML Semantics. The semantics of every node in
an HTML document is defined by first row of the semantics table that matches the node. Matching is done
based on a node’s tag type, its attributes and its public/private designation.

The columns at the right describe the action taken by the HTML display upon encountering a matching
tag. The Modified By column indicate additional atomicity requirements (Section 8). Most nodes are mod-
ified by their children; the node is potentially modified by any <map> node in the
document.

