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Abstract

We derive analogues for Bessel functions of what is known as the Christoffel-Darboux identity
for orthonormal polynomials:

∞∑
k=1

2 (ν + k) Jν+k(w) Jν+k(z) =
wz

w − z

(
Jν+1(w) Jν(z)− Jν(w) Jν+1(z)

)
and

2 (ν + 1)
∞∑

k=1

2 (ν + 2k) Jν+2k(w) Jν+2k(z) =
w2 z2

w2 − z2

(
Jν+2(w) Jν(z)− Jν(w) Jν+2(z)

)
for any distinct nonzero complex variables w and z, and any complex number ν, where Jµ is the
Bessel function of the first kind of order µ, for any complex number µ. We also provide certain
straightforward consequences of these identities.

1 Introduction

Via some brief manipulations, the present note derives fairly simple expressions for

∞∑
k=1

2 (ν + k) Jν+k(w) Jν+k(z) (1)

and
∞∑

k=1

2 (ν + 2k) Jν+2k(w) Jν+2k(z) (2)

for any distinct nonzero complex variables w and z, where ν is a complex number, and Jµ is the
Bessel function of the first kind of order µ, for any complex number µ (see, for example, [9]).

The simplified expressions for (1) and (2) are analogues for Bessel functions of what is known
as the Christoffel-Darboux identity for orthonormal polynomials (see, for example, [5]). See [8] for
an application of the results of the present note.

A number of mathematicians have published simplified expressions for the series (1) and (2);
the initial publications include [1], [4], [10], and the 1937 edition of [6]. See Section 16.32 of [9]
for a description of Kapteyn’s and Watson’s researches, and Section 11.13 of [6] for a description
of Titchmarsh’s researches. See also [10] and [11] for a comprehensive account of the literature
concerning (1), (2), including Bateman’s, Kapteyn’s, Titchmarsh’s, Watson’s, and Wilkins’ results,
and their relevance in the theory of what are known as Neumann series. See [2] for a treatment of
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certain related series that is somewhat similar to that of the present note. See [7] for analogues for
Bessel functions of the Christoffel-Darboux identity that are based on differential equations; the
present note relies on recurrence relations (that is to say, difference equations).

The present note has the following structure: Section 2 summarizes several classical facts about
Bessel functions, Section 3 provides proof of a rather trivial fact about Bessel functions, Section 4
derives simplified expressions for (1) and (2) directly from the facts in Sections 2 and 3, and
Section 5 generalizes the results of Section 4.

2 Preliminaries

This section provides several well-known facts about Bessel functions. All of these facts can be
found, for example, in [9].

For any complex number ν, we define Jν to be the (generally multiply valued) Bessel function
of the first kind of order ν (see, for example, [9]).

The following theorem states a basic symmetry of a Bessel function.

Theorem 1 Suppose that ν is a complex number.
Then,

Jν(z eπi) = eπiν Jν(z) (3)

for any nonzero complex variable z.

Proof. Formula 1 of Section 3.62 in [9] provides a slightly more general formulation of (3). 2

The following theorem states that two Bessel functions are orthogonal on (0,∞) with respect
to the weight function w(x) = 1

x when their orders differ by a nonzero even integer.

Theorem 2 Suppose that ν is a complex number.
Then, ∫ ∞

0
dx

1
x

Jν+2j(x) Jν+2k(x) =
{

0, j 6= k
1

2 (ν+2j) , j = k
(4)

for any integers j and k such that the real part of ν + j + k is positive.

Proof. Formula 7 of Section 13.41 in [9] provides a slightly more general formulation of (4). 2

The following theorem provides what is known as the Poisson integral representation of a Bessel
function.

Theorem 3 Suppose that ν is a complex number such that the real part of ν is greater than −1
2 .

Then,

Jν(z) =
zν

√
π 2ν Γ(ν + 1/2)

∫ 1

−1
du eiuz (1− u2)ν−1/2 (5)

for any complex variable z, where Γ is the gamma (factorial) function.

Proof. Formula 4 of Section 3.3 in [9] provides an equivalent formulation of (5). 2

The following three theorems provide recurrence relations for Bessel functions and their deriva-
tives.
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Theorem 4 Suppose that ν is a complex number.
Then,

d

dz
Jν+1(z) = Jν(z)− ν + 1

z
Jν+1(z) (6)

for any nonzero complex variable z.

Proof. Formula 3 of Section 3.2 in [9] provides an equivalent formulation of (6). 2

Theorem 5 Suppose that ν is a complex number.
Then,

d

dz
Jν(z) =

ν

z
Jν(z)− Jν+1(z) (7)

for any nonzero complex variable z.

Proof. Formula 4 of Section 3.2 in [9] provides an equivalent formulation of (7). 2

Theorem 6 Suppose that ν is a complex number.
Then,

2ν

z
Jν(z) = Jν−1(z) + Jν+1(z) (8)

for any nonzero complex variable z.

Proof. Formula 1 of Section 3.2 in [9] provides an equivalent formulation of (8). 2

The following corollary is an immediate consequence of (8).

Corollary 7 Suppose that ν is a complex number such that ν 6= 1 and ν 6= −1.
Then,

2ν

z2
Jν(z) =

1
2 (ν − 1)

Jν−2(z) +
ν

ν2 − 1
Jν(z) +

1
2 (ν + 1)

Jν+2(z) (9)

for any nonzero complex variable z.

3 A simple technical fact

The purpose of this section is to provide proof of Theorem 9, stating the unsurprising and entirely
trivial fact that, for any nonzero complex variable z, Jν+k(z) tends to 0 as k tends toward ∞
through the integers.

The following theorem bounds the absolute value of the gamma (factorial) function evaluated
at a certain complex number.

Theorem 8 Suppose that ν is a complex number.
Then, ∣∣∣∣Γ(ν + k +

1
2

)∣∣∣∣ ≥ (k − n)!
∣∣∣∣Γ(ν + n +

1
2

)∣∣∣∣ (10)

for any integers k and n such that k > n > |ν|+ 1
2 , where Γ is the gamma (factorial) function.
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Proof. We have that∣∣∣∣Γ(ν + k +
1
2

)∣∣∣∣ = ∣∣∣∣Γ(ν + n +
1
2

)∣∣∣∣ k−n∏
j=1

∣∣∣∣ν + k − j +
1
2

∣∣∣∣ (11)

for any integers k and n such that k > n > |ν|+ 1
2 . Furthermore,∣∣∣∣ν + k − j +

1
2

∣∣∣∣ ≥ k − n− j + 1 (12)

for any integers j, k, and n such that k > n > |ν| + 1
2 and j ≤ k − n. Combining (11) and (12)

yields (10). 2

The following technical theorem is the principal purpose of this section.

Theorem 9 Suppose that ν is a complex number.
Then, for any nonzero complex variable z, Jν+k(z) tends to 0 as k tends toward ∞ through the

integers.

Proof. We have that ∣∣1− u2
∣∣ ≤ 1 (13)

for any u ∈ [−1, 1]. Using (13), we obtain that∣∣∣(1− u2)ν−1/2
∣∣∣ ≤ 1 (14)

for any u ∈ [−1, 1].
Moreover, ∣∣eiuz

∣∣ ≤ e|u| | Im z| (15)

for any real number u, and any nonzero complex variable z, where Im z is the imaginary part of z.
Using (15), we obtain that ∣∣eiuz

∣∣ ≤ e| Im z| (16)

for any u ∈ [−1, 1], and any nonzero complex variable z.
Combining (5), (14), and (16) yields that

|Jν+k(z)| ≤ 2 e| Im z| |zν | |z|k√
π |2ν | 2k |Γ(ν + k + 1/2)|

(17)

for any nonzero complex variable z, and any integer k such that k > |ν| − 1.
We now fix any integer n such that n > |ν|+ 1

2 . Combining (17) and (10) yields that

|Jν+k(z)| ≤ Bν,n(z)
|z|k−n

2k−n (k − n)!
(18)

for any nonzero complex variable z, and any integer k such that k > n, where

Bν,n(z) =
2 e| Im z| |zν | |z|n√

π |2ν | 2n |Γ(ν + n + 1/2)|
(19)

for any nonzero complex variable z. Taking the limits of both sides of (18) as k tends toward ∞
yields the present theorem. 2
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4 Identities

This section provides the principal results of the present note.
The following theorem provides an analogue for Bessel functions of what is known as the

Christoffel-Darboux identity for orthonormal polynomials.

Theorem 10 Suppose that ν is a complex number.
Then,

∞∑
k=1

2 (ν + k) Jν+k(w) Jν+k(z) =
wz

w − z

(
Jν+1(w) Jν(z)− Jν(w) Jν+1(z)

)
(20)

for any distinct nonzero complex variables w and z.

Proof. Using (8), we obtain that

n∑
k=1

(
2 (ν + k)

w
Jν+k(w)

)
Jν+k(z)−

n∑
k=1

Jν+k(w)
(

2 (ν + k)
z

Jν+k(z)
)

= Jν(w) Jν+1(z)− Jν+1(w) Jν(z) + Jν+n+1(w) Jν+n(z)− Jν+n(w) Jν+n+1(z) (21)

for any distinct nonzero complex variables w and z, and any positive integer n; dividing both the
left- and right-hand sides of (21) by 1

w−
1
z and using Theorem 9 to take the limits as n tends toward

∞ yields (20). 2

Remark 11 When ν is a nonnegative integer, (20), (4), and (3) provide a basis for the filtering and
interpolation of linear combinations of Bessel functions on (−∞,∞), as originated for orthonormal
polynomials in [3] and [12], and subsequently optimized.

The following theorem states the limit of (20) as w tends to z.

Theorem 12 Suppose that ν is a complex number.
Then,

∞∑
k=1

2 (ν + k) (Jν+k(z))2 = z2

(
Jν(z)

d

dz
Jν+1(z)− Jν+1(z)

d

dz
Jν(z)

)
(22)

for any nonzero complex variable z.

Proof. Dividing both sides of (21) by 1
w −

1
z , we obtain that

n∑
k=1

2 (ν + k) Jν+k(w) Jν+k(z)

=
wz

w − z

((
Jν+1(w)− Jν+1(z)

)
Jν(z)−

(
Jν(w)− Jν(z)

)
Jν+1(z)

)
+

wz

w − z

((
Jν+n(w)− Jν+n(z)

)
Jν+n+1(z)

−
(
Jν+n+1(w)− Jν+n+1(z)

)
Jν+n(z)

)
(23)
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for any distinct nonzero complex variables w and z, and any positive integer n. Taking the limits
of both sides of (23) as w tends to z, and then using (7), (8), and Theorem 9 to take the limits as
n tends toward ∞, we obtain (22). 2

The following theorem provides an alternative expression for the series in (22).

Theorem 13 Suppose that ν is a complex number.
Then,

∞∑
k=1

2 (ν + k) (Jν+k(z))2 = z2 (Jν(z))2 + z2 (Jν+1(z))2 − (2ν + 1) z Jν(z) Jν+1(z) (24)

for any nonzero complex variable z.

Proof. Combining (22), (6), and (7) yields (24). 2

The following theorem provides an expression for the sum of the terms with even indices in the
series in (20).

Theorem 14 Suppose that ν is a complex number.
Then,

2 (ν + 1)
∞∑

k=1

2 (ν + 2k) Jν+2k(w) Jν+2k(z) =
w2 z2

w2 − z2

(
Jν+2(w) Jν(z)− Jν(w) Jν+2(z)

)
(25)

for any distinct nonzero complex variables w and z.

Proof. Using (9), we obtain that

2 (ν + 1)

(
n∑

k=1

(
2 (ν + 2k)

w2
Jν+2k(w)

)
Jν+2k(z)−

n∑
k=1

Jν+2k(w)
(

2 (ν + 2k)
z2

Jν+2k(z)
))

= Jν(w) Jν+2(z)− Jν+2(w) Jν(z) +
ν + 1

ν + 2n + 1

(
Jν+2n+2(w) Jν+2n(z)− Jν+2n(w) Jν+2n+2(z)

)
(26)

for any distinct nonzero complex variables w and z, and any positive integer n, provided that ν is
not an odd negative integer. When ν is an odd negative integer, (26) holds for any distinct nonzero
complex variables w and z, and any sufficiently large integer n, by continuity from the cases when
ν is not an odd negative integer. In all cases, dividing both sides of (26) by 1

w2 − 1
z2 and using

Theorem 9 to take the limits as n tends toward ∞ yields (25). 2

Remark 15 Together, (25) and (4) provide a basis for the filtering and interpolation of linear
combinations of Bessel functions on (0,∞), as originated for orthonormal polynomials in [3] and [12],
and subsequently optimized.
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5 Generalizations

This section derives an analogue, for any family of functions satisfying a symmetric “three-term”
recurrence relation, of what is known as the Christoffel-Darboux identity for orthonormal polyno-
mials.

Suppose that g and . . . , f−2, f−1, f0, f1, f2, . . . are complex-valued functions on a set S, and
. . . , c−2, c−1, c0, c1, c2, . . . , and . . . , d−2, d−1, d0, d1, d2, . . . are complex numbers, such that

g(x) fk(x) = ck−1 fk−1(x) + dk fk(x) + ck fk+1(x) (27)

for any x ∈ S, and any integer k.
Using (27), we obtain that

n∑
k=m+1

(g(x) fk(x)) fk(y)−
n∑

k=m+1

fk(x) (g(y) fk(y)) = cm

(
fm(x) fm+1(y)− fm+1(x) fm(y)

)
+ cn

(
fn+1(x) fn(y)− fn(x) fn+1(y)

)
(28)

for any x ∈ S and y ∈ S, and any integers m and n such that m < n.
Dividing both sides of (28) by g(x)− g(y), we obtain that

n∑
k=m+1

fk(x) fk(y) =
cm

g(x)− g(y)

(
fm(x) fm+1(y)− fm+1(x) fm(y)

)
+

cn

g(x)− g(y)

(
fn+1(x) fn(y)− fn(x) fn+1(y)

)
(29)

for any x ∈ S and y ∈ S such that g(x) 6= g(y), and any integers m and n such that m < n; (29) is
analogous to the classical Christoffel-Darboux identity for orthonormal polynomials described, for
example, in [5].

Section 4 implicitly applies (29) with m = 0 for the following choices of functions:

g(x) =
1
x

(30)

and
fk(x) =

√
2 (ν + k) Jν+k(x), (31)

as well as
g(x) =

1
x2

(32)

and
fk(x) =

√
2 (ν + 2k) Jν+2k(x). (33)
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