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Abstract

In this paper, we analyze the second eigenvector technique of spectral partitioning on the
planted partition random graph model, by constructing a recursive algorithm using the second
eigenvectors in order to learn the planted partitions. The correctness of our algorithm is not
based on the ratio-cut interpretation of the second eigenvector, but exploits instead the stability
of the eigenvector subspace. As a result, we get an improved cluster separation bound in terms
of dependence on the maximum variance. We also extend our results for a clustering problem
in the case of sparse graphs.



1 Introduction

Clustering of graphs is an extremely general framework that captures a number of important
problems on graphs e.g. coloring, bisection, and finding dense communities. In a general setting,
the clustering problem is to partition the vertex set of a graph into “clusters”, where each cluster
contains vertices of only “one type”. The exact notion of what the vertex “type” represents is
dependent on the particular application of the clustering framework and may be defined in many
ways. We will deal with the clustering problem on graphs generated by the versatile planted
partition model (See [18, 5]). In this probabilistic model, the vertex set of the graph is partitioned
into k subsets T1, T2, . . . , Tk. Each edge (u, v) is then a random variable that is independently
chosen to be present with a probability Auv, and absent otherwise. The probabilities Auv depend
only on the parts to which the two endpoints u and v belong. The adjacency matrix Â of the
random graph so generated is presented as input. Our task then is to identify the latent clusters
T1, T2, . . . , Tk from Â.

Spectral methods have been widely used for clustering problems, both for theoretical analysis
involving generative models and empirical and application areas. The underlying idea in spectral
methods is to use information about the eigenvectors of Â in order to extract structure. There are
different variations to this basic theme of spectral clustering, which can be essentially divided into
2 classes of algorithms.

1. Projection heuristics, in which the top few eigenvectors of the adjacency matrix Â are used
to construct a low-dimensional representation of the data, which is then clustered.

2. The second eigenvector heuristic, in which the coordinates of the second eigenvector of Â is
used to find a split of the vertex set into two parts. This technique is then applied recursively
to each of the parts obtained.

Experimental results claiming the goodness of both the spectral heuristics abound. Relatively
fewer are results that strive to demonstrate provable guarantees about the heuristics. Perhaps
more importantly, the worst case guarantees [17] that have been obtained do not seem to match
the stellar performance of spectral methods on most inputs, and thus it is still an open question to
characterize the class of inputs for which spectral heuristics do work well. An equally pressing open
question is to figure out which particular spectral heuristic is more appropriate for any one setting.
Is it possible to characterize instances for which any one of the spectral methods will outperform
the other, or do the two methods give competitive results for most interesting problem instances?

In order to be able to formalize the average case behavior of spectral analysis, researchers have
analyzed its performance on graphs generated by random models with latent structure [4, 18].
As described above, these graphs are generated by zero-one entries from a independently chosen
according to a low-rank probability matrix. The low rank of the probability matrix reflects the
small number of vertex types present in the unperturbed data. The intuition developed by Azar et
al. [4] is that in such models, the random perturbations may cause the individual eigenvectors to
vary significantly, but the subspace spanned by the top few eigenvectors remains stable. Thus, the
projection heuristic can be formalized as trying to approximate the idealized subspace that contains
all the required cluster information encoded in the probability matrix. From this perspective,
however, the second eigenvector technique does not seem to be well motivated, and it remains an
open question as to whether we can claim anything better than the worst case bounds for the
second eigenvector heuristic in this setting.
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In this paper, we prove the goodness of the second eigenvector partitioning for the planted
partition random graph model [11, 4, 18, 10]. We demonstrate that in spite of the fact that the
second eigenvector itself is not stable, we can use it to recover the embedded structure. The key
argument behind our approach is to exploit the fact that the stability of the eigenvector subspace
implies that the number of possible configurations of the second eigenvector is small. We first create
identical copies of our dataset by randomly partitioning our input matrix into O(log n) submatrices.
The second eigenvector partitioning is then applied on each of these submatrices, creating different
approximately good bi-partitions. We then finally combine all these bi-partitions to create a clean
bi-partition. This procedure is then performed recursively on each of the resulting parts.

Our main aim in analyzing the planted partition model using the second eigenvector technique
is to try to bridge the gap between the worst case analysis and the actual performance. However, in
doing so, we achieve a number of other goals too. The most significant among these is that we can
get tighter guarantees than McSherry [18] in terms of the dependence on the maximum variance.
The required separation between the columns clusters Tr and Ts can now be in terms of σr + σs,
the maximum variances in each of these two clusters, instead of the maximum variance σmax in
the entire matrix. This gain could be significant if the maximum variance σmax is due to only one
cluster, for instance one community being more densely connected than everyone else, and thus
can potentially lead to identification of a finer structure in the data. Our separation bounds are
however worse than [18, 1] in terms of dependence on k, the number of clusters.

The algorithm that we develop is also quite natural in terms of applicability. As a counterpoint,
the analysis of the spectral projection heuristic in McSherry [18] and in Dasgupta et al.[18, 10]
for the planted partition graph model requires the construction of an intricate projection matrix.
Unlike previous work that tries to capture the goodness of the second eigenvector partitioning in
terms of the stability of the second eigenvector, we base our proof on perturbation analysis of the
random matrix Â−E

[
Â

]
.

At each stage in our algorithm we divide up the vertices into two (or more) parts each of which
respects the original structure. In effect, we never need to know the actual number of clusters
that are present. We do, however, need an upper bound on the number of clusters in estimating
the number of submatrices required for cleaning up the bi-partitions. In terms of computational
efficiency, we have to pay a small penalty as at each stage we are computing the second eigenvectors
of O(log n) submatrices instead of a single large matrix.

Another contribution of the paper is to model and solve a restricted clustering problem for
sparse (constant degree) graphs. Graphs clustered in practice are often “sparse”, even of very low
constant degree. A concern about analysis of many heuristics on random models [18, 10] is that
they don’t cover sparse graphs.

In this paper, we use a random regular model motivated by random regular graphs (see [14, 6],
for example) for the clustering problem that allows us to use strong concentration results which
are available in that setting. We will use some extra assumptions on the degrees of the vertices
and finally show that expansion properties of the model will allow us to achieve a clean clustering
through a simple algorithm.

2 Model

We have n vertices, that we denote by 1 to n. A is matrix of probabilities where the entry Auv

is the probability of an edge between the vertices u and v. The vertices are partitioned into k
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different clusters T1, T2, . . . , Tk. The size of the rth cluster Tr is denoted by nr and the minimum
size is denoted by nmin = minr{nr}. Let, wmin = nmin/n. We also assume that the minimum
size nmin ∈ Ω(n/k) i.e. wmin = Ω(1/k). The characteristic vector of the cluster Tr is denoted
by g(r) defined as g(r)(i) = 1/

√
nr for i ∈ Tr and 0 elsewhere. The probability matrix A is block

structured in the following sense: the probability Auv depends only on the two clusters in which the
vertices u and v belong to. Given the probability matrix A, the random graph Â is then generated
by independently setting each Âuv(= Âvu) to 1 with probability Auv and 0 otherwise. Thus, the
expectation of the random variable Âuv is equal to Auv. The variance of Âuv is thus Auv(1−Auv).
The maximum variance of any entry of Â is denoted σ2, and the maximum variance for all vertices
belonging to a cluster Tr as denoted as σ2

r . We usually denote a matrix of random variables by X̂

and the expectation of X̂ as X = E
[
X̂

]
. We will also denote vectors by boldface, e.g. x,u being

vectors. x has the ith coordinate x(i). For a matrix X, Xi denotes the column i.
Obviously, we will need to assume that the clusters are sufficiently separated in order for us to

be able to learn them. Our separation condition for the clusters is similar to that of [18].

Separation Condition. Each of the variances σr satisfies σ2
r ≥ log6 n/n. Furthermore, there

exists a large enough constant c such that for vertices u ∈ Tr and v ∈ Ts, the columns Au and Av

of the probability matrix A corresponding to different clusters Tr and Ts satisfy

‖Au −Av‖2
2 ≥ 64c2k5 (σr + σs)

2 log (n)
wmin

(1)

For clarity of exposition, we will make no attempt to optimize the constants or exponents of k.
Similarly, we will ignore the term wmin for the most part, as it is a constant in our model (and can
be easily incorporated in the proofs presented). Given the above separation, our aim is to present
a recursive algorithm based on the singular vectors in order to learn the clusters Tr. As a result
of our recursive algorithm, at each stage, we will have a partitioning of the set of vertices. We say
that a partitioning (S1, . . . , Sl), respects the original clustering if the vertices of each Tr lie wholly
in any one of the Sj . We will refer to the parts Sj as super-clusters, being the union of one or more
clusters Tr. We say that a partitioning (S1, . . . , Sl) agrees with the underlying clusters if each Si is
exactly equal to some Tr (i.e. l = k). The aim is to prove the following theorem.

Theorem 1. Given Â that is generated as above, i.e. A = E
[
Â

]
satisfies condition 1, we can

cluster the vertices such that the partitioning agrees with the underlying clusters with probability at
least 1− 1

nδ , for suitably large δ.

3 Related Work

The second eigenvector technique has been analyzed before, but mostly from the viewpoint of
constructing cuts in the graph that have a small ratio of edges cut to vertices separated. There
has been a series of results [13, 2, 5, 19] relating the gap between the first and second eigenvalues,
known as the Fiedler gap, to the quality of the cut induced by the second eigenvector. Spielman and
Teng [20] demonstrated that the second eigenvector partitioning heuristic is good for meshes and
planar graphs. Kannan et al. [17] gave a bicriteria approximation for clustering using the second
eigenvector method. Cheng et al. [7] showed how to use the second eigenvector method combined
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with a particular cluster objective function in order to devise a divide and merge algorithm for
spectral clustering. In the random graph setting, there has been results by Alon et al. [3], and
Coja-oghlan [8] in using the coordinates of the second eigenvector in order to perform coloring and
bisection. In each of these algorithms, however, the cleanup phase is very specific to the particular
clustering task at hand, and in particular is not similar to our algorithm.

Experimental studies done on the relative benefits of the two heuristics often show that the
two techniques outperform each other on different data sets [21]. In fact results by Meila et al.[21]
demonstrate that the recursive methods using the second eigenvector are actually more stable than
the multiway spectral clustering methods if the noise is high. The recursive partitioning done
by the second eigenvector technique can also be consider as a hierarchical clustering technique.
Experimental results by Zhao et al. [23] show that recursive clustering using the second eigenvector
performs better than a number of other hierarchical clustering algorithms.

4 Algorithm

4.1 Algorithm Sketch

For the sake of simplicity, in most of the paper, we will be discussing the basic bipartitioning step
that is at the core of of our algorithm. In Section 4.3 we will describe how to apply it recursively
to learn all the k clusters.

Define the matrix J = I − 1
n11T . Note that for any vector z such that

∑
i zi = 0, i.e. z is

orthogonal to the all ones vector, Jz = z. Given the original matrix Â we will create Θ(n/(k log n))
submatrices by partitioning the set of rows into Θ(n/(k log n)) parts randomly. Suppose Ĉ denotes
any one of these parts. Given the matrix Ĉ as input, we will first find the top right singular vector u
of the matrix ĈJ . The coordinates of this vector will induce a mapping from the columns (vertices)
of Ĉ to the real numbers. We will find a large “gap” such that substantial number of vertices are
mapped to both sides of the gap. This gives us a natural bipartition of the set of vertices of Ĉ.
We will prove that this classifies all vertices correctly, except possibly a small fraction. This will
be shown in Lemmas 3 to 7 in section 4.2.

We next need to “clean up” this bi-partitioning, and this will be done using a correlation graph
construction along with a Chernoff bound. For this, we utilize the bi-partitions that we get from
the different random submatrices created, and combine them to get a clean bi-partitioning. The
algorithm and a proof will be furnished in Lemma 8. This completes one stage of recursion in
which we create a number of superclusters all of which respect the original clustering. Subsequent
stages proceed similarly, by just working on the appropriate set of columns i.e. vertices corre-
sponding to each supercluster. In what follows, we will be using the terms “column” and “vertex”
interchangeably, noting that vertex x corresponds to column Ĉx.

4.2 Proof

For the standard linear algebraic techniques used in this section, we refer the reader to [16]. Recall
that each Ĉ is a n

2k log n × n matrix where the rows are chosen randomly. Denote the expectation

of Ĉ by E
[
Ĉ

]
= C, and by u the top right singular vector of ĈJ , i.e. the top eigenvector of

(ĈJ)T ĈJ . In what follows, we demonstrate that for each of random submatrices Ĉ, we can utilize
the second right singular vector u to create a partitioning of the columns of ĈJ that respects the
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original clustering. The following fact is intuitive and will be proven later in lemma 9, when we
illustrate the full algorithm.

Fact 2. Ĉ has at least nr
2k log n rows for each cluster Tr.

Let σ = maxr{σr}, where the maximum is taken only over clusters present in Ĉ (and therefore,
potentially much smaller than σmax). We also denote C(r, s) for the entries of C corresponding to
vertices of Tr and Ts. The following result is from Furedi-Komlos and more recently, Vu [22, 15]
claiming that a matrix of i.i.d. random variables is close to its expectation in the spectral norm.

Lemma 3. (Furedi, Komlos; Vu) If X̂ is a 0/1 random matrix with expectation X = E
[
X̂

]
,

and the maximum variance of the entries of X̂ is σ2 which satisfies σ2 ≥ log6 n/n,1 then with
probability 1− o(1),

‖X − X̂‖2 < 3σ
√

n

In particular, we have ‖C − Ĉ‖2 < 3σ
√

n.

We now embark into a series of lemmas whose final goal is to show that the top right singular
vector u of ĈJ gives us an approximately good bi-partition. First we claim that the topmost
singular value of the expectation matrix CJ is large relative to the size of the perturbation that
will be applied to it.

Lemma 4. The first singular value λ1 of the expected matrix CJ satisfies λ1(CJ) ≥ 2c(σr+σs)k2√n
for each pair of clusters r and s that belong to C. Thus, in particular, λ1(CJ) ≥ 2cνk2√n.

Proof. Suppose Ĉ has the clusters Tr and Ts, r 6= s. Assume nr ≤ ns. Consider the vector z
defined as :

zx =


1√
2nr

if x ∈ Tr

−
√

nr

ns

√
2

if x ∈ Ts

0 otherwise

Now,
∑

x z(x) = nr√
2nr

−
√

nr√
2ns

ns = 0. Also, ‖z‖2 = nr
2nr

+ nrns
2n2

s
= 1

2 + 1
2

nr
ns
≤ 1. Clearly, ‖z‖ ≤ 1.

For any row Cj from a cluster Tt, it can be shown that Cj · z =
√

nr
2 (C(r, t) − C(s, t)). We also

know from fact 2 that there are at least nt/(2k log n) such rows. Now,

‖CJz‖2 ≥
∑

j

(Cj · z)2 =
∑

t

∑
j∈Tt

(Cj · z)2

≥
∑

t

nt

2k log n

nr

2
(C(r, t)− C(s, t))2 =

nr

4k log n

∑
t

nt(C(r, t)− C(s, t))2

=
nr

4k log n
‖Cr − Cs‖2

2 ≥ 64
nr

4k log n
c2k5 (σr + σs)

2 log (n)/wmin ≥ 16c2nk4(σr + σs)2

using the separation condition and the fact that nr is at least wminn. And thus λ1(CJ) is at least
4c(σr + σs)k2√n. Note that the 4th step uses the separation condition (1). 2

1In fact, in light of recent results in [12] this holds for σ2 ≥ C′ log n/n, with a different constant in the concentration
bound.
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The above result, combined with the fact the the spectral norm of the random perturbation
being small immediately implies that the norm of the matrix ĈJ is large too. Thus,

Lemma 5. The top singular value of ĈJ is at least cνk2√n.

Proof. Suppose z is defined as in Lemma 4. Then, Jz = z. Now,

‖ĈJz‖ = ‖(C − (C − Ĉ))Jz‖ ≥ ‖CJz‖ − ‖(C − Ĉ)z‖

≥ ‖CJz‖ − ‖C − Ĉ‖‖z‖ ≥ ‖CJz‖ − ‖C − Ĉ‖

≥ ‖CJz‖ − ‖C − Ĉ‖

For the last step note that ‖z‖ ≤ 1. Applying the results of Lemma 3 and Lemma 4, we have that,
if the constant c > 1, ‖ĈJz‖ ≥ cσk2√n. 2

We now claim that the coordinates u(x) of the singular vector u of ĈJ are almost constant on
each cluster. This will then enable us to use this singular vector for bi-partition.

Lemma 6. The vector u, the top right singular vector of ĈJ can be written as u = v+w where both
v,w are orthogonal to 1 and further, v is a linear combination of the indicator vectors g(1),g(2), . . .
for clusters Tr that have vertices in the columns of Ĉ. Also, w sums to zero on each Tr. Moreover,

‖w‖ ≤ 4
ck2

(2)

Proof. We may define the two vectors v and w as follows.

v =
∑

r

(g(r) · u)g(r), w = u− v.

It is easy to check that w is orthogonal to v, and that
∑

x∈Tr
w(x) = 0 on every cluster Tr. Thus

both v and w are orthogonal to 1. As v is orthogonal to w, ‖v‖2 + ‖w‖2 = ‖u‖2 = 1. Now,

λ1(ĈJ) = ‖ĈJu‖ ≤ ‖ĈJv‖+ ‖ĈJw‖

≤ λ1(ĈJ)‖v‖+ ‖CJw‖+ ‖CJ − ĈJ‖‖w‖

≤ λ1(ĈJ)(1− ‖w‖2/2) + ‖C − Ĉ‖‖w‖

using the fact that (1− x)1/2 ≤ 1− x
2 for 0 ≤ x ≤ 1, and also noting that Jw = w, and therefore

CJw = Cw = 0. Thus, from the above,

‖w‖ ≤ 2‖C − Ĉ‖
λ1(ĈJ)

≤ 4σ
√

n

cνk2
√

n
≤ 4

ck2

using Lemma 2 and Lemma 5. 2

We now show that in bi-partitioning each Ĉ using the vector u, we only make mistakes for a
small fraction of the columns.

6



Lemma 7. Given the top right singular vector u of Ĉ, there is a way to bipartition the columns
of Ĉ based on u, such that all but nmin

ck columns respect the underlying clustering of the probability
matrix C.

Proof. Consider the following algorithm. Consider the real values u(x) corresponding to the
columns Ĉx.

1. Find β such that at most n
ck2 of the u(x) lies in (β, β + 2

k
√

n
). Moreover, define L = {x :

u(x) < β + 1
k
√

n
};R = {x : u(x) ≥ β + 1

k
√

n
}. It must be that both |L| and |R| are at least

nmin/2. Note that Ĉ = L ∪ R. If we cannot find any such gap, don’t proceed (a cluster has
been found that can’t be partitioned further).

2. Take L ∪R as the bipartition.

We must show that, if the vertices contain at least two clusters, a gap of 2
k
√

n
exists with at least

nmin/2 vertices on each side. For simplicity, for this proof we assume that all clusters are of equal
size (the general case will be quite similar). Let v =

∑k
r=1 αrg(r). Recall that v is orthogonal to

1, and thus
∑k

r=1 αr

√
k
n = 0. Now note that 1 = ‖u‖2 = ‖v‖2 + ‖w‖2. This and lemma 6 gives us

k∑
r=1

α2
r ≥ 1− 16

c2k
≥ 1

2
(3)

We now show that there is an interval of Θ
(

1
k
√

k

)
on the real line such that no αr lies in this

interval and at least one αr lies on each side of the interval. We will call such a gap a “proper gap”.
Note that a proper gap will partition the set of vertices into two parts such that there are at least
nmin/2 vertices on each side of it.

The above claim can be proved using basic algebra. Assume that the maximum gap between
the αr’s is ∆. Since αr’s sum to zero, there has to be two αr’s, one positive and one negative, with
absolute value most ∆. Without loss of generality, if α1 ≤ . . . ≤ αi < αi+1 = 0 = ... = αj−1 <
αj ≤ . . . ≤ αk, then clearly, α2

i + α2
j ≤ ∆2. Further, the consecutive separations are each smaller

than ∆. Thus, the norm of the vector α can be bounded by ∆2 + 2∆2
∑

i<=k i2 ≤ ∆2k3. Which

together with equation 3 gives us the desired claim that ∆ ≥ Θ
(

1
k
√

k

)
.

Thus, it can been seen easily that for some constant c, there will be a proper gap of 1
ck
√

n
in

the vector v. We then argue that most of the coordinates of w are small and do not spoil the gap.
Since the norm of ‖w‖2 is bounded by 16/(c2k4), it is straightforward to show that at most n

ck2

vertices x can have w(x) over 4
k
√

cn
. This shows that for most vertices w(x) is small and will not

“spoil” the proper gap in v. Thus, with high probability, the above algorithm of finding a gap in u
always succeeds. Next we have to show that any such gap that is found from u actually corresponds
to a proper gap in v. This essentially follows from the definition of the gap in u. Since there must
be at least nmin/2 vertices on each side of the gap in u, and since the values u(x) and v(x) are
close (i.e. w(x) = u(x) − v(x) is smaller than 1/(2k

√
n)) except for n

ck vertices, it follows that a
proper gap found in u must correspond to a proper gap in v. Thus the only vertices that can be
misclassified using this bi-partition are the vertices that are either in the gap, or have w(x) larger
than 1

k
√

n
. Given this claim, it can be seen a using a proper gap a bi-partition of the vertices can

be found with at most n
2ck2 ≈ Θ

(
nmin
ck

)
vertices on the wrong side of the gap. 2
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Only the “clean up” phase now remains. A natural idea would be to use log n independent
samples of Ĉ (thus requiring the log n factor in the separation) and try to use a Chernoff bound
argument. This argument doesn’t work, unfortunately, the reason being that the singular vector
can induce different bi-partitions for each of the Ĉ’s. For instance, if there are 3 clusters in the
original data, then in the first step we could split any one of the three clusters from the other two.
This means a naive approach will need to account for all possible bi-partitionings and hence require
an extra 2k in the separation condition. The way we deal with this is to construct a correlation
graph combining O(log n) bi-partitions, where vertices are connected iff they were placed together
for “most” samples. Intuitively, we utilize the fact that although the second singular vector itself is
not stable, there is only a small number of “configurations” possible for this singular vector. This
intuition is made rigorous in the following lemma.

Lemma 8. Suppose we are given set V that is the union of a number of clusters T1 ∪ . . . ∪ Tt.
Given p = ck log n independent bi-partitions of the set of columns V , such that each bi-partition
agrees with the underlying clusters for all but nmin

4ck vertices, there exists an algorithm that, with high
probability, will compute a partitioning of the set V such that

• The partitioning respects the underlying clusters of the set V .

• The partitioning is non-trivial, that is, if the set V contains at least two clusters, then the
algorithm finds at least two partitions.

Proof. Consider the following algorithm. Denote ε = 1
4ck .

1. Construct a (correlation) graph H over the vertex set V .

2. Two vertices x and y are adjacent if they are on the same L or R for at least (1−2ε) fraction
of the bi-partitions.

3. Let N1, . . . , Nl be the connected components of this graph. Return N1, . . . , Nl.

We now need to prove that the following claims hold with high probability :

• Each Nj respects the cluster boundary, i.e. each cluster Tr that is present in V satisfies
Tr ⊆ Njr for some jr.

• If there are at least two clusters present in V , i.e. t ≥ 2, then there are at least two components
in H.

For two vertices x, y ∈ H, let the support s(x, y) equal the fraction of tests such that x and y
are on the same side of the bi-partition. For the first claim, we define a vertex x to be a “bad”
vertex for the ith test if |w(x)| > 1

k
√

cn
. From lemma 7 the number of bad vertices is clearly at most

1
cknmin. It is clear that a misclassified vertex x must either lie in the gap (β, β + 2

k
√

n
) or it must

be a bad one. So for any vertex x, the probability that x is misclassified in the ith test is at most
ε = 1/(4ck). If there are p tests, then the expected times that a vertex x is misclassified is at most
εp. To show the first part of our claim we just need to use Chernoff bounds. Supposing Y i

x is the
indicator random variable for the vertex x being misclassified in the ith test. Thus,

Pr

[∑
i

Y i
x > 2εp

]
< exp

(
−16p

ck

)
<

1
n3
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since p = ck log n. Thus, each pair of vertices in a cluster, are on the same side of the bipartition for
at least (1− 2ε) fraction of the tests. Thus, the components Nj always obey the cluster partitions.

Next, we have to show that we have at least two components in the correlation graph. For
contradiction, assume there is only one connected component. We know, that if x, y ∈ Tr for some
r, the fraction of tests on which they landed on same side of partition is s(x, y) ≥ (1− 2ε). Hence
the subgraph induced by each Tr is complete. With at most k clusters in V , this means that any
two vertices x, y (not necessarily in the same cluster) are separated by a path of length at most k.
Clearly s(x, y) ≥ (1− 2kε). Hence, the total support of inter-cluster vertex pairs is∑

r 6=s

∑
x∈Tr,y∈Ts

s(x, y) ≥ (1− 2kε)
∑
r 6=s

nrns ≥
∑
r 6=s

nrns − 2kε
∑
r 6=s

nrns. (4)

Let us count this same quantity by another method. From Lemma 7, it is clear that for each
test at least one cluster was separated from the rest (apart from small errors). Since by the above
argument, all but ε vertices are good, we have that, at least nmin (1− ε) vertices were separated
from the rest. Hence the total support is∑

r 6=s

∑
x∈Tr,y∈Ts

s(x, y) ≤
∑
r 6=s

nrns − nmin (1− ε) (n− nmin(1− ε)) <
∑
r 6=s

nrns − nminn/2

But this contradicts equation 4 if

2kε
∑
r 6=s

nrns < nminn/2

i.e. ε < nminn/4
k

P
r 6=s nrns

< nminn/2
kn2 ≤ 1

2ck . Hence, with the choice of ε = 1/(4ck), we get a contradiction,
and so must have more than one component in the correlation graph. Hence, with the error
probability of 1

4ck for each bi-partition, and p ≥ ck log n independent bi-partitions, the correlation
graph satisfies the properties claimed. 2

4.3 Final Algorithm

This section describes the complete algorithm. Basically, it is the bi-partitioning technique pre-
sented in the previous section repeated (at most) k times applied to the matrix Â. As the split in
every level is “clean”, as we have shown above, the whole analysis goes through for recursive steps
without any problems.

In order to de-condition the steps of the recursion, we have to first create k independent instances
of the data by partitioning the rows of the matrix Â into a k equally sized randomly chosen sets.
This creates a collection of rectangular matrices B̂1, . . . , B̂k, each belonging to <n/k×n. Each matrix
B̂i will be used for only one stage of recursion. At each stage of the recursion, we will have in our
hands a set of l superclusters S1, . . . , Sl of the columns, where l is less than or equal to k. In
order to further subdivide this super-clustering, for each supercluster Sj , we invoke the module
Bi-Partition on appropriate columns of any one of the matrices B̂ij .

The module Bi-Partition(X̂, k) on being invoked with the matrix X̂ and the cluster parameter
k consists of two phases: an approximate partitioning by the singular vector, followed by a clean-up
phase. The rows of matrix X̂ are further subdivided to create a number of rectangular matrices
Ĉ(i). First we partition the columns of each of these rectangular matrices Ĉ(i) using the top right

9



Algorithm 1 Cluster (Â, k)
Partition the set of rows into k random equal parts, each part to be used in the corresponding
step of recursion. Name the ith part to be B̂i.
Let (S1, . . . , Sl) =Bi-Partition (B̂1, k).
Recursively call Bi-Partition on each of Si, and on each of the results, using the appropriate
columns of a separate B̂j for each call. The recursion ends when the current call returns only
one Si. Let T̂1, . . . , T̂k be the final groups.

Algorithm 2 Bi-Partition (X̂, k)
Partition the set of rows into c1 log n equal parts randomly. The ith set of rows forms the matrix
Ĉ(i).
For each Ĉ(i), find the right singular vector of Ĉ(i)J and call it ui.
Split:
Find a proper gap β, such that (β, β + 2

k
√

n
) has at most n

c2k vertices and define

Li = {x : ui(x) < β +
1

k
√

n
}

Ri = {x : ui(x) ≥ β +
1

k
√

n
}

|Li| ≥ nmin/2; |Ri| ≥ nmin/2

Ĉ(i) = Li ∪Ri

If no such gap exists, return.
Cleanup:
Construct a (correlation) graph with the columns of X̂ as the vertices.
Connect two vertices x and y if they are on the same Li or Ri for at least (1− 1

2ck ) log n times.
Let N1, . . . , Nl be the connected components of this graph. Return N1, . . . , Nl.

10



singular vector of Ĉ(i)J . The different bi-partitions are then combined as in Lemma 8 to create a
final clean bi-partition of the set of columns (vertices) in X̂.

One thing we still need to prove that the fact 2 made for Ĉ in the beginning of section 4.2 is
valid for C(i)

Lemma 9. Consider each matrix C(i) = E
[
Ĉ(i)

]
. W.h.p. there are at least nr

2c1k log n rows in C(i)

corresponding to Tr.

Proof. In each Ĉ(i), the expected number of rows from each Tr is nj

k×c1 log n . Using Chernoff bound,

the number of rows contributed by each cluster Tr to the matrix Ĉ(i) is at least nj

2c1k log n with
probability 1 − exp[− nj

2c1k log n ] ≥ 1 − 1
n3 . Thus, over the all random partitions, w.p. 1 − 1

n2 , the
statement is true.

5 Skewed degree graphs

In this section, we extend our clustering algorithm for graphs with skewed degree distributions.
Our model for a skewed degree random graph with structure is same as that of [10]. That is,
in addition to the block structured probability matrix A, we now have a set of degrees {du, u =
1 . . . n}. The rescaled set of probabilities are given in the new probability matrix G, defined as
Muv = duAuvdv. Thus, M = DAD. The actual graph is represented by the matrix M̂ , that
is generated by independently rounding the (u, v)th entry to 1 with probability Muv and 0 with
probability 1−Muv. Our aim is then to recover the clusters T1, T2, . . . Tk from the matrix M̂ .

The intuition behind this algorithm is similar to that of [10]. We need to rescale the variances,
so that the error introduced by clustering is a function of the average degree of the graph, rather
than the maximum degree. In order to achieve this, [10] perform a scaling of the matrix M̂ and
work with the normalized Laplacian L̂ = D−1/2M̂D−1/2. As expected, the intuition carries through
for us too.

Our algorithm for the bipartition follows the same structure as the previous case, with two
changes. We simply compute call the algorithm Cluster with the matrix L̂. Secondly, instead of
using the topmost singular vector u to bi-partition the rows in step 1 of Partition, we use the
vector D−1/2u.

6 Sparse Graphs

6.1 Model

The input Â is a n-vertex undirected graph. There will be k clusters in the graph, with nr = Ω(n)
being the size of cluster Tr. Let x ∈ Tr. Then we assume that the number of edges from x to
vertices of Ts:

e(x, Ts) = drs (5)

For some constant drs. We assume that these constants satisfy nrdrs = nsdsr.
Let Â(rs) be the submatrix of Â containg rows corresponding to Tr and columns corresponding

to Ts. Then Â(rs) is a matrix randomly chosen from all matrices satisfying equation 5 (to account
for symmetry Â(rs) = (Â(rs))T ). For nr = ns, [14] provides an efficient way to generate such a
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matrix, but this does not of much concern here, as we assume that the data is given to us (one of
the motivations for [14] was efficient constructions of an expander).

Let A = E
[
Â

]
. If vertex x ∈ Tr, let Ax = µr. It is easy to see that µr(y) = drs

ns
if y ∈ Ts

Note that µr(x) = µs(y) where y ∈ Ts;x ∈ Tr due to symmetry. Let d be a upper bound for vertex
degree in the graph.

We will assume, for all r, and some constant c0

drr ≥
1
2
d + c0

√
dk (6)

Which will now imply something we need

‖µr − µs‖2
2 ≥ c2

0k
2 d

n
(7)

We seek to find the clusters. It is instructive to note that compared to the non-sparse, we don’t have
an log n term in the seperation, neither the possibility of using independence of samples (entries
are not independent).

6.2 Related work

Among previous works on “sparse” graphs are results by Alon and Kahale [3] (3 coloring) and
Coja-Oghlan [8, 9] (bisection, clustering). Our results are not comparable to theirs as those models
are only sparse “on average”. Nevertheless, the gap required in the latter, improving on [5], is
np′ − np = Θ(

√
np′ log np′) in a G(n, p′) model, which put in our terminology is Θ(

√
d log d),

similar to our seperation (infact we don’t need the log d factor). The seperation in [3] is d. It
should be emphasized again that both settings are quite different from ours.

A d-regular model for bisection was studied by Bui et. al. [6]. They present an algorithm that
finds bisections of width (cardinality of the bisection) o(n1−1/(d/2)) from a graph that is randomly
chosen from d-regular graphs having such a bisection. We depend on having different drr for different
cluster for a notion of partitioning, and in any case we seek to solve a more general problem.

6.3 Algorithm

For sets (of vertices) U and W , let e(U,W ) be the the number of edges between U and W . The
module Cluster presented earlier remains the same. The change is that module Partition gets
replaced by SparsePartition.

Algorithm 3 SparsePartition(A)
Find the right singular vector of AJ , and call it u.
Find a gap of size 2c√

n
such that there is no vertex with u(x) in this gap.

Create two partitions with vertices from each side of this gap
Let V = P ′

1 ∪ P ′
2 to be the bipartitioning. Test that both P ′

1 and P ′
2 have at least nmin

2 vertices.
Return otherwise.
Call SparseCleanup(P ′

1, P
′
2, d)

The algorithm SparseCleanup is substantially different from the cleanup phase presented
earlier.

Our main theorem is

12



Algorithm 4 SparseCleanup(P1, P2, d)
{Stage one}
loop

find a vertex v in P ′
2 such that e(v, P ′

1) > e(v, P ′
2)(1 + 1

2
√

d
)

if no vertex can be found, end loop.
move v to P ′

1

end loop
{Stage two}
loop

find a vertex v in P ′
1 such that e(v, P ′

2) > e(v, P ′
1)(1 + 1

2
√

d
)

if no vertex can be found, end loop.
move v to P ′

2

end loop

Theorem 10. If d is a large enough constant, and Â is randomly generated as described in the
model, SparsePartiton(Â) will successfully bipartition the the columns Âx of the data along cluster
lines.

Proof. The proof crucially uses expansion properties of the model for a cleanup to be possible. We
refer the reader to the appendix for details.

Proofs (Sparse model)

Again, for simplicty we will concentrate on proving that a single step of bipartitioning works cleanly.
Given that, its easy to see that the recursive steps work.

We start by quoting the following result due to Friedman, Kahn and Szemeredi [14].

Theorem 11. (Friedman, Kahn, Szemeredi) Let A be the adjacency matrix of a random d
regular graph. Then, almost surely,

σ2(A) ≤ 3
√

d

Where, σ2(A) is the second largest singular value of A.

From this it follows that

Lemma 12. With high probability, only εm (or less) objects will be misclassified after in algorithm
3 before calling SparseCleanUp.

Proof. This will follow the trajectory of the lemmas 4 to 7. The main change will the use of theorem
11 instead of theorem 3.

We now need to show that the cleanup phase works. Though the method makes intuitive sense,
we have to prove that small subsets of vertices of a cluster will not have most of their edges within
themselves, because then the cleanup phase will not succeed. For example, if misclassified U is such
that |U | = d + 1, and e(U,U) = d2/2, then cleanup phase will fail. To prove that such a situation
does not arise, we will expansion properties of the graph.

The following lemma is from [14].
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Lemma 13. There is a constant C such that with probability 1− n−Ω(
√

d) every pair A,B ⊂ [n]
satisfies (at least) one of

(a) e(A,B) ≤ µ(A,B)

(b) e(A,B) log e(A,B)
µ(A,B) ≤ C|B| log n

|B|

(c) |A|, |B| and e(A,B) are all at most C
√

d

Here, e(A,B) is the number of edges from A to B, and µ(A,B) = |A||B|d
n is the expected value

of e(A,B).
In what follows, we will assume d is much larger than C. Now we shall prove the following

lemma.

Lemma 14. Let, V be a subset of vertices of the input graph. For large enough value of d, and c1,
if |V | ≤ n

c1
√

d
, then

e(V, V ) ≤ |V |
√

d

10
Proof. It is easy to see that if cases (a) or (c) is true in lemma 13, we are already done. So we will
deal with case (b).

Let, |V | = nα

c1
√

d
where 1 ≥ α ≥ c10

log n , for some appropriate constants c1 � C and c10. All
possible sizes of V are covered by this, except very small sizes for which the theorem is trivially
true. Now,

e(V, V )
µ(V, V )

log
e(V, V )
µ(V, V )

≤ C|V |n
|V ||V |d

log
n

|V |

=
Cc1√

d
n1−α log (n1−αc1

√
d) (8)

Now we claim,

e(V, V )
µ(V, V )

≤ c1

10
n1−α

Because if not,

e(V, V )
µ(V, V )

log
e(V, V )
µ(V, V )

>
c1

10
n1−α log (

c1

10
n1−α)

Which will fail to meet condition 8 if c1 and d is large enough (basically due to
√

d being much
larger than log d). Hence,

e(V, V ) ≤ c1

10
n1−α d

n
|V ||V |

≤ c1

10
n1−α d

n

nα

c1

√
d
|V |

≤
√

d

10
|V |
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This completes the proof of the lemma.

Now we introduce some more terminology. As only a small fraction of vertices are miscalssified
in P ′

i ; i = 1, 2, it makes sense to define Pi as the correct bipartitioning (one that respects cluster
boundaries) “closest” to P ′

i . Let

Eri = {v : v ∈ Tr ∧ v 6∈ P ′
i ∧ Tr ⊂ Pi}

In other words, the subset of Tr that should be in P ′
i , but have been misplaced. Or, the subset of

Tr mistakenly placed in P ′
i that don’t belong in it.

The following lemma proves that after the first stage of the cleanup, there are no vertices
mistakenly placed in P2.

Lemma 15. Assume Tr ⊂ P1. After Stage one of algorithm 4, Er1 is empty ∀r. Moreover, no
vertex of Tr is misclassified during Stage two.

Proof. Consider Er1 before cleanup starts. From lemma 12, Er1 fulfils the conditions of lemma 14
(as ε is small). Hence,

e(Er1, Er1) ≤ |Er1|
√

drr

10
≤ |Er1|

√
d

10
Now,

e(Er1, P
′
2) < |Er1|(

d

2
− c0

√
kd) + |Er1|

√
d

10

< |Er1|(
d

2
−
√

d)

And,

e(Er1, P
′
1) ≥ e(Er1, Tr − Er1)|Er1| ≥ (

d

2
+ c0

√
kd))|Er1| − |Er1|

√
d

10

≥ |Er1|(
d

2
+
√

d)

Now from an averaging argument, there has to exist atleast one vertex x ∈ Eri such that
e(x,P ′

1)
e(x,P ′

2)
> d/2+

√
d

d/2−
√

d
> 1+2/

√
d. Hence x will moved from P ′

2 to P ′
1. Once that happens, we now have

a new Er1 and the whole argument applies again and we a second vertex moves. Proceeding in this
way, it is clear that all vertices of Er1 will move to P ′

1.
Now, in stage two, it is clear that no vertex belonging to Tr can be re-misclassified as it will

have majority of its edges in P ′
1.

The following lemma proves that after the second stage of the cleanup, there are no vertices
mistakenly placed in P1.

Lemma 16. Assume Tr ⊂ P2. After Stages one and two of algorithm 4, Er2 is empty ∀r.
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Proof. This might seem very similar to lemma 15, and it is, but an important difference exists.
We know that Er2 satisfies the condition of lemma 14 before cleanup phase starts. But does it
still satisfy the condition after stage one? Or, in other words, can Er2 grow substantially during
stage one? We claim the answer is no, which we prove below. Given that the rest is an argument
identical to lemma 15.

Let Fr2 be the set of vertices belonging to Tr that get misclassified in the course of stage one.
We argue that, |Fr2| < |Er2|, which proves our claim (as this implies that the size of Er2 can atmost
double during stage one).

For contradiction assume |Fr2| ≥ |Er2|. Now consider the execution of stage one until |Fr2| =
|Er2|. During this phase, let a vertex x ∈ Tr moves from P ′

2 to P ′
1. Then e(x, P ′

1 ∪ Fr2) ≥
(1 + 2/

√
d)e(x, P ′

2 − Fr2). Let e(x,Er2 ∪ Fr2) = γd. Then we get,

e(x, P ′
1 ∪ Fr2) > e(x, P ′

2 − Fr2)
⇒ e(x, P ′

1) + e(x, Fr2) > e(x, P ′
2)− e(x, Fr2)

⇒ d

2
− c0

√
kd + γd ≥ d

2
+ c0

√
kd− γd

⇒ 2γd ≥ 2c0

√
kd

⇒ γ ≥ c0

√
k/d

Now this is true for every x ∈ Fr2. Hence,

e(Eri ∪ Fr2, Er2 ∪ Fr2) ≥ e(Fr2, Er2 ∪ Fr2) =
∑

x∈Fr2

e(x,Er2 ∪ Fr2)

> γd|Fr2| ≥ c0

√
kd|Fr2| =

c0

2

√
kd|Er2 ∪ Fr2|

But this contradicts lemma 14 (the assumption of the lemma still holds, as the size increased by
only a factor of 2).

Lemma 17. After the cleanup phase, all vertices are correctly classified.

Proof of theorem 10

Proof. Clear from lemmas 15 and 16.

7 Conclusion

Our first model depends crucially on the independence of all the entries in the probability matrix.
Both the random matrix bound of Lemma 3, and the technique of partitioning the matrix randomly
to create O(log n) identical submatrices exploit the row-wise as well as column-wise independence.
It is an interesting question, whether the technique generalizes for models with limited indepen-
dence. Further, the second eigenvector technique has provable guarantees for the worst case also.
Thus it will be useful to see if we can claim some bounds for the semi-random model too, where
a random perturbation is applied to an adversarial input. For the sparse case, it is an interesting
question how to use a required optimization function (in a general manner) to get more levarage
in finding a valid clustering.
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