
Yale University
Department of Computer Science

Hydra: A Functional Hybrid Modeling Language

Hai Liu

YALEU/DCS/TR-1356
May 2006

Hydra: A Functional Hybrid Modeling
Language ∗

Hai Liu†

Abstract

This is a summary of the design of Hydra, a language prototype for
Functional Hybrid Modeling. Hydra is used for non-causal modeling
specifications, and based on first-class signal relations, complex sys-
tems can be composed by components in a functional way. Reactiv-
ity is introduced in Hydra to handle event and discontinuity in such
hybrid systems. The experience in studying the semantics and im-
plementing Hydra allows us more insights into the much unexplored
field of functional hybrid modeling, so as to guide our future research.

1 Introduction

Systems that exhibit both continuous-time and discrete-time behavior
are called hybrid systems. Such system dynamism is often viewed as
discrete transitions between multiple modes, each of which describes
a continuous system state. Many areas about hybrid systems have
been studied, including modeling, simulation, sensitivity analysis,
and numerical optimization [6, 1, 4, 2, 23, 3].

A number of formalisms have been proposed to model hybrid sys-
tems [1, 4, 15, 2, 8, 6, 7], among which hybrid automata [Alur et al.
1993, Back et al. 1993, Galan and Barton 1998] is found most useful in
mathematical and numerical analysis. However, because hybrid au-
tomata has to explicitly specify all modes and the transitions between
them, it is often impractical to describe systems with very large or
even unbounded number of modes. Systems whose number of modes
cannot be practically predetermined are called structurally dynamic.

Special modeling languages have also been developed to facilitate
modeling and simulation. Languages such as Simulink [21] and Ptolemy

∗This material is based upon work supported by the National Science Foundation under
Grant No. CCF-0306046

†Department of Computer Science, Yale University, CT

1

II [14] employ a causal model of computation in which the direction
of signal flow is explicit, while languages such as Dymola [11] and
Modelica [22] adopt an non-causal approach to infer causality from
the interconnection of system components.

Non-causal modeling refrains users from committing the model to
a specific causality and hence improves the modularity and reusabil-
ity. But current non-causal modeling languages lack the flexibility
at reacting to system change as a response to extern signals. Func-
tional Hybrid Modeling (FHM) [18], a combined paradigm of func-
tional programming and non-causal modeling, has been proposed to
allow the description of structurally dynamic models. FHM is closely
related to the prior work of Functional Reactive programming, or FRP
[28], a framework embodied in a language call Yampa [17] as an ex-
tension of Haskell.

This paper examines the language design issues outlined by Hydra
and FHM. The rest of this paper is organized as follows. Section 2 re-
views the key design issues in FHM. Section 3 presents the language
syntax, semantics and types, and section 4 further explores the details
of equation systems and reactivity as the core of functional non-causal
modeling, and gives an more operational semantics for the language.
The end result is by no means a complete solution for FHM, but hope-
fully it will facilitate further studies of FRP in the field of non-causal
modeling.

2 Non-Causal Modeling

This is a review of non-causal modeling as signal relations, adapted
from the early work on FHM [18] at Yale.

2.1 Non-Causal Modeling

A causal language makes the cause-and-effect relationship explicit, or
in other words, it is a step-by-step computation from unknown quan-
tities to define known quantities. For example, a function in the C
programming language computes a return value based on given pa-
rameters. Consider the simple electrical circuit in Figure 1(a) (adapted
from [22]). A corresponding block diagram in Simulink is given in Fig-
ure 1(b).

It is important to note that the causality flow is fixed in the dia-
gram, i.e., the causal representation exactly defines how the model is
to be solved mathematically to arrive at the output from its inputs.
This has little structural resemblance to the physical circuit, because it
will require a completely different model if the current i is maintained
by the source, and uin is the unknown.

2

i

+

R1 R2

C L

G

uR1

uin i1

uC

uR2

i2

uL

(a) Electrical circuit

R2 1/L

1/C1/R1

i

-1

+1Σ

+1

-1Σ

+1

+1Σ

i2

uR2
uL

uin

uR1

uC

i1

(b) Causal model

Figure 1: A simple electrical circuit and its causal model.

In contrast, non-causal modeling allows structural composition of
a system by it components, because the causality is not embedded into
the model and only to be derived when a model is explicitly solved.
The non-causal model of the above example is given below as a sys-
tem of equations.

uR2 = R2i2
uL = uin − uR2

i2′ =
uL
L

uR1 = uin − uC

i1 =
uR1

R1

uC
′ =

i1
C

i = i1 + i2

Non-causal modeling allows the user to define models for compo-
nents and then create interconnected instances by structural combi-
nation. Modelica [22] supports object-oriented modeling by abstract-
ing common aspects of similar models into a superclass and defining
multiple sub-classes through inheritance. A model is then built by
inter-connecting various class instances (objects). For example, the
model in Figure 1(a) can be described in Modelica in the following
way (adapted from [22]):

connector Pin
Voltage v;
Current i;

end Pin;

partial class TwoPin

3

Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

class Resistor
extends TwoPin;
parameter Real R "Resistance";

equation
R * i = v;

end Resistor;

class Capacitor
extends TwoPin;
parameter Real C;

equation
C * der(v) = i "Capacitance";

end Capacitor;

class Inductor
extends TwoPin;
parameter Real L "Inductance";

equation
v = L * der(i);

end Inductor;

class VsourceAC
extends TwoPin;
parameter Voltage VA = 220 "Amplitude";
parameter Real f = 50 "Frequency";
constant Real PI = 3.141592653589793;

equation
v = VA * sin(2 * PI * f * time);

end VsourceAC;

class Ground
Pin p;

equation
p.v = 0;

end Ground;

4

model SimpleCircuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(AC.n, G.p);
connect(AC.n, G.p);

end SimpleCircuit;

where connect(pin1, pin2) can be expanded to

pin1.v = pin2.v
pin1.i + pin2.i = 0

After a non-causal model is built, we are free to solve its equa-
tion systems to get the desired output in any way that is permitted
mathematically without changing the model itself. The causality is
only analyzed during the equation solving process, which can be au-
tomated by the computer system and enables the user to deal with
very complex systems conveniently.

2.2 First-Class Signal Relations

A signal is a value changing with time, or conceptually, a function of
time. Signals are the basic elements in a dynamic system, and they
are bounded by the relationship under physical laws. Or abstractly,
they must satisfy a set of mathematical equations. We’ll view such
relationship as signal relations.

Conceptually, if we define signals as type Signal α ≈ Time → α,
i.e., a time function with the instance value of type α, we then intro-
duce a type SR α for a relation on a signal of type Signal α. For exam-
ple, the derivative relation, der, has the type der :: SR (Real, Real).
We can view it as a binary relation on two signals of Real value, i.e.,
one being the derivative of the other.

Signal relations can be applied to signals in similar ways to first-
class functions. We’ll use the symbol � to denote it. For example

der � (x, y)

5

has the same meaning as the differential equation: x′ = y, or we’ll just
use der(x) as a shorthand for y.

In fact, all equations can be regarded as a form of signal relation
application. One can also write f (x, y) = g(x, y) as

= �(f (x, y), g(x, y))

which can be further simplified by defining a relation = f ,g annotated
by function f and g, so that f (x, y) = g(x, y) becomes the same as

= f ,g �(x, y)

It is easily seen that every equation can be transformed into a re-
lation application form of r � x, where x is a vector (or tuple) of signal
variables.

Using the signal relation syntax, the example given in Fig. 1(a) can
be written as follows (adapted from [18])

twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, v) where

v = p.v− n.v
p.i + n.i = 0

resistor :: Resistance → SR (Pin, Pin)
resistor(r) = sigrel (p, n) where

twoPin � (p, n, v)
r · p.i = v

inductor :: Inductance → SR (Pin, Pin)
inductor(l) = sigrel (p, n) where

twoPin � (p, n, v)
l · der(p.i) = v

capacitor :: Capacitance → SR (Pin, Pin)
capacitor(c) = sigrel (p, n) where

twoPin � (p, n, v)
c · der(v) = p.i

vSourceAC :: Voltage → SR (Pin, Pin)
vSourceAC(u) = sigrel (p, n) where

twoPin � (p, n, v)
v = u · sin(2 · PI · 50 · time)

ground :: SR Pin
ground = sigrel (p) where

p.v = 0

6

y

mg

0

0

Figure 2: Ball over floor

simpleCircuit :: SR Current
simpleCircuit = sigrel (i) where

resistor(1000) � (r1p, r1n)
resistor(2200) � (r2p, r2n)
capacitor(0.00047) � (cp, cn)
inductor(0.01) � (lp, ln)
vSourceAC(220) � (acp, acn)
ground � gp
connect acp, r1p, r2p
connect r1n, cp
connect r2n, lp
connect acn, cn, ln, gp
i = r1p.i + r2p.i

where the connect-notation is a similar abbreviation as in Modelica.
Compared to the Modelica program, functional abstraction in the

above example is both simpler and more expressive. First-class signal
relations are analogous to first-class functions in the way that they can
be used to define new relations.

2.3 Modeling Reactivity

A hybrid system not only exhibits the continuous behavior of system
variables, but must also react to event changes, which is often intro-
duced as a certain kinds of discontinuity, either in variables or the
system structure.

Take the example of bouncing ball [16] as illustrated in Figure 2.
Suppose a ball with negligible radius drops from a place of height y0,
it will bounce off the ground as the consequence of a fully elastic col-
lision. The event of the ball hitting the ground triggers an immediate
change of sign in its velocity.

A simple free falling ball can be described as follows in Hydra

7

freefall :: SR (Real, Real)
freefall = sigrel (v, l) where

der(l) = v
der(v) = −9.8

The ball will hit ground when l goes from positive to 0, an event
that can be described by an (in)equality test. Hydra models this event
handling as follows

ball :: (Real, Real) → SR (Real, Real)
ball(v0, l0) = sigrel (v, l) where

init v, l by
ini(v) = v0
ini(l) = l0

in
freefall � (v, l)

once
cur(l) = 0

become
ball(−cur(v), cur(l)) � (v, l)

where ini and cur represent respectively the initial and current val-
ues of a signal and one can view them as similar signal relations just
like der.

The language construct init-by-in introduce clauses for variable
initialization purposes, while once-become would switch signal rela-
tion from one into the other once the event test becomes true. Because
the bouncing event is recurrent, it switches into the same signal rela-
tion except with different initialization values.

Having seen the examples of applying functional concepts in mod-
eling non-causal systems, we still need extra details on how to run
such programs, as a useful program not only has to describe the model
but also to give the intended output as results.

3 Syntax, Types and Modes

The syntax of Hydra is given in Figure 3. Most notably, Hydra only al-
lows function definitions over signal relations, but not over the usual
value domains. The use of mathmatical functions such as sin, cos, etc.
must all be pre-defined. There is also no support for nested definition
of functions or signal relations.

For simplicity, we’ll use x for variables, n for numbers, e for ex-
pressions, c for clauses, and f for functions that yield values, and g
for functions that yield signal relations.

The different kinds of clauses are explained as follows

8

Var := x|y| . . .
Vars := var1, . . . , varn

Exp := n | var | var(exp) | (exp1, . . . , expn)
Clause := exp1 = exp2 | var � exp | clause1 ; clause2

| clause1 once exp become clause2

| local vars in clause | init vars by clause1 in clause2

Sigrel := sigrel (vars) where clause
Decl := var = sigrel | var (vars) = sigrel

Program := sigrel | let decl in program

Figure 3: Hydra Syntax

e1 = e2 defines an equational constraint that the values of all vari-
ables.

g � e applies a signal relation function g to an expression e, which can
be a list of signal variables.

c1; c2 behaves as c1 followed by c2. This is like the concatenation of
two clauses.

c1 once e become c2 is a switch that behaves as c1 initially when e
evalutes to false, and as c2 (and keeps it that way) once e eval-
uates to true.

local x1, . . . , xn in c introduces new variables to be used locally in c.
init x1, . . . , xn by c1 in c2 initializes (or re-initializes) variables by eval-

uating c1 before continuing with c2.

This language supports relation declaration with arguments, but
not nested declaration or high order ones. Neither does it support or-
dinary function declarations, which means only pre-defined functions
can be used.

The eventual program is just a signal relation, which is defined by
using the sigrel-where syntax. A signal relation can be applied to a
list of variables to define other signal relations, which is like a function
except only applicable to signal variables. The let-in syntax makes it
possible have recursively defined signal relations.

3.1 Typing Rule

The typing rules for Hydra are given in Figure 4, in which α, µ, ν are
type variables. For the moment, we’ll use a blackbox type C to repre-

9

sent the type of clauses, the reason for which will be explained in later
chapters.

Γ ` true : Bool Γ ` false : Bool

Γ ` n : Real Γ ` x : α
x : α ∈ Γ

Γ ` e1 : α1 . . . Γ ` en : αn

Γ ` (e1, . . . , en) : α1 × . . .× αn

Γ ` e : α Γ ` f : α → µ

Γ ` f (e) : µ

Γ ` e1 : α Γ ` e2 : α

Γ ` e1 = e2 : C

Γ ` c1 : C Γ ` c2 : C

Γ ` c1 ; c2 : C

Γ, x1 : α1, . . . , xn : αn ` c : C

Γ ` local x1, . . . , xn in c : C

Γ ` c1 : C Γ ` c2 : C

Γ ` init x1, . . . , xn by c1 in c2 : C
x1 : α1, . . . , xn : αn ∈ Γ

Γ ` c1 : C Γ ` e : Bool Γ ` c2 : C

Γ ` c1 once e become c2 : C

Γ, x1 : α1, . . . , xn : αn ` c : C

Γ ` sigrel x1, . . . , xn in c : α1 × . . .× αn → C

Γ ` g : α → C Γ ` e : α

Γ ` g � e : C

Γ, g : µ ` u : µ Γ, g : µ ` v : ν

Γ ` let g = u in v : ν

Γ, g : α1 × . . .× αn → µ, x1 : α1, . . . , xn : αn ` u : µ Γ, g : α1 × . . .× αn → µ ` v : ν

Γ ` let g(x1, . . . , xn) = u in v : ν

Figure 4: Hydra Typing Rule

The only place where new variables are introduced are the local
and sigrel constructs, and because Hydra only allows top level sigrel

10

definitions, it is safe to assume there is no nested relations.

3.2 Modes

Aside from types, Hydra uses modes to enforce certain properties of a
given program, which is related to causality analysis. It is one thing
to assert that there exists a solution for a set of given equations, and
quite another to turn the specification into a compuation that even-
tually yield the correct solution. Functions have a fixed causality as
the inputs and outputs are already specified, which is certainly not
the case for relations. A causality analysis will certainly help us to
understand more about relations.

For example, equation x + y = 1 can be either regarded as a com-
putation x = 1− y or y = 1− x, where x is computed given the value
of y in the former and y is computed given the value of x in the latter.

A slightly more sophisticated example is a 2-equation set

x + y = 1
x − y = 1

which can be either translate into

x = 1− y
y = 1 + x

or

y = 1− x
x = 1 + y

where the mutual dependancy of variables x and y can be easily
dealt with by saying that the solution (x, y) is the fixed point of func-
tion f1(x, y) = (1 − y, 1 + x) or f2(x, y) = (1 + y, 1 − x). Note that
the least fixed point of either f1 or f2 is bottom, but nevertheless the
real solution (1, 0) is a non-bottom fixed point of both. The quest of
finding such a non-bottom fixed point is discussed in more detail in
later chapters.

It becomes apparent that for each variable it needs to be only com-
puted once, which corresponds to the necessary condition for solving
m equations with n unknowns, i.e., m = n. This is often called Single
Assignment property [cite as in Modelica]. By assigning a mode, either
input represented by ◦ or output represented by •, to every occurrence
of all variables, we’ll be able to verify this property for valid programs
and rule out invalid ones for which no sound solution exists. Mode
inference can also be viewed as causality analysis.

Formally, we’ll define

11

Mode = ◦|•
θ :ModeMapSet = {Var → Mode}
δ :RelSig = ((Var1, . . . , Varn), ModeMapSet)

The condition for a clause c to have a mode map set θ is that
∀m ∈ θ, dom(m) = FV(c). For convenience, we’ll just define dom(θ) =
FV(c).

The environment ∆ maps (a relation) variable to its signature RelSig,
which is represented by a list of formal variables and a ModeMapSet. A
relation signature ((x1, . . . , xn), θ) is valid iff θ isn’t empty and dom(θ) =
{x1, . . . , xn}. The signature maintains the list of formal variables as a
tuple instead of a set because the order is important for relation appli-
cations.

Mode checking rules are given in Figure 5.

SEQ
∆ `c c1 : θ1 ∆ `c c2 : θ2

∆ `c c1; c2 : θ1 ⊕ θ2

RAPP
∆ `r g : ((x1, . . . , xn), θ)

∆ `c g � (y1, . . . , yn) : θ[y1/x1, . . . , yn/xn]

SIGREL
∆ `c c : θ

∆ `r sigrel (x1, . . . , xn) where c : ((x1, . . . , xn), θ)

LET
∆, g : δ `r u : δ ∆, g : δ `r v : δ′

∆ `r let g = u in v : δ′

LOCAL
∆ `c c : θ

∆ `c local x1, . . . , xn in c : θ 	 {x1, . . . , xn}

ONCE
∆ `c c1 : θ ∆ `c c2 : θ

∆ `c c1 once e become c2 : θ

Figure 5: Hydra Mode Checking Rule

where the operator ⊕, 	 and substitution [/] are defined below

θ1 ⊕ θ2 = {m1]m2|m1 ∈ θ1, m2 ∈ θ2, ∀x ∈ dom(m1), m1(x) = ◦ ∨m2(x) = ◦)}
where dom(m1]m2) = dom(m1) ∪ dom(m2)

and (m1]m2)(x) =
{
•, iff m1(x) = • ∨m2(x) = •
◦, otherwise

θ 	 s = {m′|m ∈ θ, dom(m′) = dom(m)− s, m′(x) = m(x)}
θ[y1/x1, . . . , yn/xn] = {m′|m ∈ θ, m′(y) = if y = yi then m(xi) else ⊥}

12

4 From Signal Relation to Function Program

With the type information of a Hydra program, we are then ready to
transform the signal relation into a functional program. An simple
example is given below

sigrel (x, y) where
x + y = 5
x − y = 3

After transforming equation into relation, it becomes

r = sigrel (x, y) where
=+(, ,5) �(x, y)
=−(, ,3) �(x, y)

Then we can have a predefined type context

Γ =

=+(, ,5): (Real⊥, Real>) → C,
=+(, ,5): (Real>, Real⊥) → C,
=−(, ,3): (Real⊥, Real>) → C,
=−(, ,3): (Real>, Real⊥) → C

So that after type inference, the program can be type annotated as

r = sigrel (x, y) where
(=+(, ,5): (Real>, Real⊥) → C) � (x : Real>, y : Real⊥)
(=−(, ,3): (Real⊥, Real>) → C) � (x : Real⊥, y : Real>)

which is then transformed into a function (in Haskell syntax)

r (x, y) = let x = 5− y
y = x − 3

in (x, y)

because relations like =+(, ,5) and =−(, ,3) when annotated with modes
become just like mathematical functions that computes from unknown
to known.

Note that x and y are defined above in a mutually recursive way,
so the solution has to be a fixed point of r. Although its least fixed
point is bottom, we can compute a non-least fixed point (if it exists)
by using a different fixed point operator.

It becomes apparent to this point, at least intuitively, that a Hydra
program, or a signal relation, can be transformed into a function, a
fixed point of which is the meaning of the program.

13

4.1 ODE, DAE and Signals

Previous examples show that signal relations use equations to repre-
sent mathematical models. As signals are functions of time, we are
primarily interested in differential equations, but algebraic equations
are also part of the general concept of defining signal relations.

Differential equations involve both a vector of unknowns x and
its derivative x′. The simplest ordinary differential equation system, or
ODE, is

x′ + Ax = 0 (1)

where x, x′ ∈ Rn, A ∈ Rn·n. If the right hand side is a function of t
instead of a zero vector, it is would be called an inhomogeneous ODE.
Consider a system of

Ax′ + Bx = C(t) (2)

If A is invertible, multiplying both sides by A−1 will give us an
ODE. If A is not invertible, it is then a system of differential algebraic
equations, or DAEs. The most general form of DAE is

f (x′, x, t) = 0 (3)

To solve a linear ODE numerically is to initialize the vector x with
some initial value x0 at time t0, and then the value of x′ can be imme-
diately calculated, and then a numerical integration technique such
as Euler’s method can be applied to obtain the sequence of instance
values of x by time, and to any precisions as deemed necessary.

The usual mathematical integration works on a pair (x0, d), where
x0 is the initial value and d is the derivative function that describes
the change of v with respect to time. For instance, if we use Euler’s
method on a homogeneous ODE, the next instance value of x(tn+1)
can be obtained by

x(tn+1) ≈ xn+1 = xn + f (xn) · dt
where tn = t0 + n · dt

Hence function d can be defined as

d :: Time → V → V

d dt x = x + f (x) · dt

In other words, d can be viewed as a function that returns the vari-
able value at the next time interval. So the solution to such an ODE
becomes

14

x(t) = lim
n→∞

d′(. . . (d′︸ ︷︷ ︸
n times

x0) . . .)

where d′ = d (
t
n

)

Reactivity introduces discontinuity in function x, which means d′

may change anywhere during its n times application. Therefore, we
have to define a different type for d

d :: D = Time → V → (V, D)

which means the evaluation of the value at the next time inter-
val must not only produce the value itself, but also the next D func-
tion. Or in other words, the entire system, not just the variable value,
changes along time. The integration then becomes

x(t) = fst(lim
n→∞

d′(. . . (d′(d︸ ︷︷ ︸
n times

(
t
n

) x0)) . . .))

where d′(x, d) = d (
t
n

) x

fst projects the first element from a tuple.

The recursive type of d captures the essense of reactivity in Hydra,
which sees the future as a continuation of the present.

One may argue that the signal of Reals can be just represented by
its value and derivative (which in turn is another signal) as in Signal
Real = (Real, Signal Real), but this definition falls short when we intro-
duce reactivity, because the next value of x can no longer be computed
as in d dt x = x + f (x) · dt.

4.2 Semantics

To simplify the semantics definition, we’ll define signals in a slightly
different way

Signal V = (V, Time → Signal V)

Based on Euler’s method, the function that computes the next value
of x given its numerical derivative is

next x dx dt = x + dx · dt

15

As seen earlier, a type-checked and mode-annotated signal rela-
tion can be translated into a functional program, which treats signal
variables just as ordinary algebraic variables, and applies ordinary
arithmetic functions such as + or ∗ to them. It is indeed straight for-
ward to lift functions over algebraic value domain to over the signal
domain using the signal representation defined above.

mkTuple :: Signal α → Signal β → Signal (α× β)
mkTuple (x, dx) (y, dy) = ((x, y), λdt.(dx dt, dy dt))

fstS :: Signal (α× β) → Signal α
fstS (z, dz) = (fst z, f stS ◦ dz)

integrate :: α → Signal α → Signal α
integrate x (x’, dx′) = (x, λdt.integrate(next x x′ dt)(dx′ dt))

liftS :: (α → β) → Signal α → Signal β
liftS f (x, dx) = (f x, λdt. f (dx dt))

switch :: (α → Bool) → (Time → Signal α) → (Signal α → Signal α)
→ Time → Signal α

switch test d1 c2 dt = let (x1, dx1) = d1 dt
in if test x1 then c2 x1

else (x1, switch test dx1 c2)

Then the program for the Bouncing Ball example becomes

freefall :: Signal (Real, Real) → Signal (Real, Real)
freefall x@(x−,) = integrate x− (mkTuple g (fstS x))

where g = integrate -9.8 zero
zero = (0, λdt.zero)

ball :: (Real, Real) → Signal (Real, Real) → Signal (Real, Real)
ball (v0, l0) x = let c1 x@(, dx) = freefall ((v0, l0), dx)

c2 x@((v−, l−),) = ball (−v−, l−) x
(x−1 , dx1) = c1 x

in (x−1 , switch test dx1 c2)
where

test (v−, l−) = l− == 0

And the solution to the Bouncing Ball relation is just the fixed
point of function ball.

16

5 Conclusion and Future Work

This paper presents Hydra, a non-causal language designed for func-
tional hybrid modeling based on the concept of first-class signal re-
lations. As a language embedded in Haskell, Hydra enjoys both the
modularity of non-causal modeling and the freedom at expressing
dynamic hybrid models in a functional reactive programming style.
Hydra uses mathematical equations to specify signal relations, and an
event switch to capture the reactivity at its heart.

Because FHM is largely an unexplored research area, there are
still many open ended questions. Existing language systems such as
Haskell lack the functionality to fully support the implementation and
integration of the non-causal language.

Being a specification language, Hydra introduces variables in its
equation system without having to classify them as inputs or out-
puts, because the computation causality is only determined by the
solver instead of by the model. Signal relations exhibit different na-
tures when it is used for modeling systems and when it is used for the
purpose of simulation.

The discontinuity introduced by event switch requires re-initialization
of variable values, which is currently handled by explicit init-by-in
clauses. This is however, not entirely satisfactory. As the discontinu-
ity of one set of variable values may implicitly result in the discon-
tinuity of another set that is outside the local scope where the event
occurs. We may need extra language facilities to help in this regard.

Though we have much confidence, the soundness of Hydra type
system is yet to be proved, and the correctness of the steps during Hy-
dra program translation and compilation process needs formal inves-
tigation too. Our current type system doesn’t fully explore the type of
clauses and currently just leave it as a blackbox type C. The study if
its internals is left for future work.

The mode analysis on Hydra programs has a close relationship to
the mode systems studied in logic programming languages, and ours
is much simpler because it doesn’t deal with complex data structures.

As we have mentioned, the final solution is a fixed point of the
resulting Haskell program, which requires a non-trivial fixed point
solver to get a non-bottom result whenever there exists one. The usual
fix f = f (fix f) wouldn’t work for even trivial cases like f x = 1− x.
Interval arithmetic is one possible approach, while a conventional
symbolic approach based on Gaussian Elimination could be more ef-
ficient. Other alternatives are yet to be explored.

The numeric solver used for Hydra does not meet the demand of
simulations for real systems. Issues such as stability, discontinuity,
and sensitivity have been subjects left aside. Linear DAEs are also
insufficient to model systems of moderate complexity. The often cited

17

pendulum example [24, 22, 18] requires a DAE of higher index. The
performance of the techniques used for solving linear systems and
integrating DAEs are not suitable for system of large scale. We may
also need a solution for multi-step integration, because fixed time step
tends to accumulate numerical errors and makes the simulation less
useful for most practical purposes.

References

[1] Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P. 1993. Hy-
brid automata: An algorithmic approach to the specification and
verification of hybrid systems. In [Grossman et all. 1993]. 209-
229.

[2] Avraam, M. P., Shah, H., and Pantelides, C. C. 1998. Modeling
and optimization of general hybrid systems in the continuous
time domain. Comput. Chem. Eng. 22, Suppl. S221-S228.

[3] Barton, P. I., Banga, J. R., and Galan, S. 2000. Optimization of Hy-
brid discrete/continuous dynamic systems. Comput. Chem. Eng.
24, 9-10, 2171-2182.

[4] Branicky, M. S., Borkar, V. S., and Mitter, S. K. 1998. A unified
framework for hybrid control: model and optimal control theory.
IEEE T. Automat. Contr. 43, 1, 31-45.

[5] Bundy, A., Welham, B., 1981. Using meta-level inference for se-
lective application of multiple rewrite rule sets in algebraic ma-
nipulation. Artificial Intelligence 16, 189-212.

[6] Cellier, F.E. 1986. Combined continuous/discrete simulation ap-
plications, techniques and tools. In Proc. of the 1986 Winter Simu-
lation Conf. J. Wilson, J. Henriken, and S. Roberts, Eds. 24-33.

[7] Cuijpers, P.J.L., Reniers M.A., 2003. Hybrid Process Algebra.
Journal of Logic and Algebraic Programming, 62(2):191-245.
February 2005.

[8] David, R. and Alla, H. 2001. On hybrid Petri nets. Discrete Event
Dyn. S. 11, 9-40.

[9] Wittenberg, D., 2004. CLP(F) Modeling of Hybrid Systems. Ph.D.
thesis, Brandeis University, MA, USA.

[10] Diaz, D., 2002. GNU PROLOG: A Native Prolog Compiler with
Constraint Solving over Finite Domains, 1.7 edn.

[11] Elmqvist, H., Cellier, F. E. and Otter, M. 1993. Object-oriented
modeling of hybrid systems. In Proceedings of ESS’93 European
Simulation Symposium, page xxxi-xli, Delft, The Netherlands.

18

[12] Elmqvist, H., Otter, M., and Cellier, F. E. 1995. Inline integra-
tion: A new mixed symbolic/numeric approach. In Proceedings
of ESM’95, European Simulation Multiconference, page xxiii-xxxiv,
Prague, Czech Republic.

[13] Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. 1992. The
CLP(R) language and system. ACM Trans. Program. Lang. Syst.
14, 3 (May. 1992), 339-395.

[14] Lee, E. A. 2001. Overview of the ptolemy project. Technical
memorandum UCB/ERLM01/11, Electronic Research Labora-
tory, University of California Berkeley.

[15] Monsterman, P. J. 1997. Hybrid dynamic systems: A hybrid bond
graph modeling paradigm and its application in diagnosis. Ph.D.
thesis, Vanderbilt University, Tennessee.

[16] Nilsson, H., 2003. Functional automatic differentiation with
dirac impulses. In Proceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programming, page 153-164, Up-
psala, Sweden.

[17] Nilsson, H., Courtney, A. and Peterson J., 2002. Functional re-
active programming, continued. In Proceedings of the 2002 ACM
SIGPLAN Haskell Workshop (Haskell’02), pages 51-64, Pittsberge,
Pennsylvania, USA.

[18] Nilsson, H., Peterson, J. and Hudak, P. 2003. Functional Hybrid
Modeling. In Proceedings of PADL’03: 5th International Workshop
on Practical Aspects of Declarative Languages, 376-390.

[19] Timothy J. Hickey. CLP(F) and constrained ODEs. In Proceedings
of the workshop on Constraints and Modelling. 1994.

[20] Timothy J. Hickey. Analytic constraint solving and interval arith-
metic. In POPL’00 ACM SIGPLAN-SIGACT Symposium on Princ-
ples of Programming Languages, pages 338-351, 2000. published as
vol. 27 of SIGPLAN notices.

[21] The MathWorks, Inc. Using Simulink Version 4, June 2001.

[22] The Modelica Association. Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling: Language Specification ver-
sion 2.0, July 2002.

[23] Otter, M., Elmqvist, H., and Mattsson, S. E. 1999. Hybrid mod-
eling in Modelica based on synchronous data flow principle. In
Proc. of the 1999 IEEE Symposium on Computer-Aided Control Sys-
tem Design, CACSD’99. IEEE Control Systems Society, 151-157.

[24] Pantelides, C. C. 1988. The consistent initialization of
differential-algebraic systems. SIAM Journal on Scientific and
Statistical Computing, 9(2):213-231.

19

[25] Sterling, L., Shapiro, E., 1999. The Art of Prolog: advanced pro-
gramming techniques, 2 edn. MIT Press series in logic program-
ming. The MIT Press.

[26] Turner, D., 1982. Recursion equations as a programming lan-
guage. In Functional Programming and Its Application, Cambridge
University Press.

[27] Wadler, P., 1987. List comprehensions. In The Implementation of
Functional Languages, Prentice Hall.

[28] Wan, Z. and Hudak, P. 2000. Functional reactive programming
from first principles. In Proceedings of PLDI’01: Symposium on Pro-
gramming Language Design and Implementation, 242-252.

20

