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Abstract

Modeling natural and artificial systems has a key role in various applications, and has long been

a task that drew enormous efforts. In this work, instead of exploring predefined models, we aim at

implicitly identifying the system degrees of freedom. Thisapproach circumvents the dependency of a

specific predefined model for a specific task or system, and enables a generic data-driven method to

characterize a system based solely on its output observations. We claim that each system can be viewed

as ablack boxcontrolled by several independent parameters. Moreover, we assume that the perceptual

characterization of the system output is determined by these independent parameters. Consequently, by

recovering the independent controlling parameters, we findin fact a generic modeling for the system.

In this work, we propose a supervised algorithm to recover the controlling parameters of natural and

artificial linear systems. The proposed algorithm relies onnonlinear independent component analysis

using diffusion kernels and spectral analysis. Employmentof the proposed algorithm on both synthetic

and real examples has shown accurate recovery of parameters.
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I. INTRODUCTION

Modeling natural and artificial systems has a key role in various applications, and has long been a task

that drew enormous efforts. Usually, a predefined model is developed for every type of task or system.

Then, the parameters of that model are estimated based on observations of the system output. In this work,

we take a different approach. Instead of exploring predefined models, we aim at implicitly identifying the

system degrees of freedom or modes of variability. This approach enables capturing the intrinsic geometric

structure of the system. Moreover, it circumvents the dependency of a specific predefined model for a

specific task or system, and provides a generic data-driven method to characterize a system based solely

on its output observations. We claim that each system can be viewed as ablack boxcontrolled by several

independent parameters. Moreover, we assume that the perceptual characterization of the system output

is determined by these independent parameters. Consequently, by recovering the independent controlling

parameters, we find in fact a generic modeling for the system.Thus, in this work, we aim at recovering

the controlling parameters of natural and artificial convolution systems.

Musical instruments are examples of such systems, as each musical instrument is controlled by several

independent parameters. For example, a flute is controlled by covering its holes. Formally, the parameter

space can be written as ad-dimensional binary space{0, 1}d, assuming the flute hasd holes and each

hole can be either open or covered. An important observationis that the output signal of the flute depends

on the blow of air (the input signal) and the covering of the holes. However, the audible music, or the

music tones, depends only on the covering of the holes. In other words, the played music depends solely

on a finite set of the instrument’s controlling parameters. Another example worth mentioning, is a violin.

The violin music is determined by the length of the strings. We note that unlike the controlling parameters

of the flute, the parameter space of the violin is continuous,and can be written as[0, ℓ]d, assumingd

strings of lengthℓ. In both examples, by recovering the independent controlling parameters of the musical

instrument, we may naturally characterize the music and identify the played tones.

Recently, Singer and Coifman [1] have proposed a nonlinear independent component analysis (ICA)

method based on diffusion kernels [2], [3]. They assume thatthe observable data is a nonlinear mapping

of few independent parameters. Moreover, the parameters are assumed to realize a specific variability

scheme, described by an Itô process. Based on estimation ofthe local distortions of the observations, an

intrinsic metric is computed. This metric is invariant to the nonlinear mapping, and conveys the distance

between the parameters. Using this intrinsic metric, a kernel between the observations is computed, and

a spectral ICA [4] is employed. The obtained spectral decomposition is used to build an inverse mapping
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of the observable data into the parametric space.

The spectral embedding proposed in [1] is computed for a given set of observations. However, in

practice, and specifically in supervised learning tasks, not all the data is available. Therefore, various

extension methods for the spectral decomposition have beenexplored [5], [6], [7], [8], [9]. Unfortunately,

none of these methods can be naturally employed in [1], sincethe metric used in the kernel relies

on estimates of the local distortions of the parameters in the observable space, which are unavailable.

Kushnir et al. [10] extend [1], and propose an efficient extendable spectral ICA algorithm. The authors

propose a different intrinsic metric between the observations, which depends only on estimates of the

local distortions of just a few reference points. The ability to extend the embedding enables an efficient

recovering of the independent parameters of observations which are not available in advance.

In this work, we exploit the nonlinear ICA method to recover the independent parameters of systems.

The main difference and challenge in this work compared to [1], [10] is that the output of a system is

not solely determined by the controlling parameters. For that reason, we restrict the scope of this work

and consider onlyconvolutionsystems, and propose a spectral algorithm, based on [1], [10], to recover

the independent parameters of a convolution system. The proposed algorithm is data-driven, nonlinear,

and not specifically-tailored for a certain task. These attractive features can make it useful in the design,

control and calibration of a variety of systems. We employ the proposed algorithm on both synthetic

and real examples. First, we show that the proposed method can accurately recover the poles of an auto-

regressive (AR) process. Second, we utilize the proposed algorithm to retrieve the controlling parameters

of acoustic channels in practical setups. It is worthwhile noting that acoustic channels are known to be

highly difficult to model and acquire, and play a key role in developing audio processing applications,

e.g., [11], [12], [13], [14], [15], [16], [17], [18].

This paper is organized as follows. In Section II we formulate the problem. In Section III, we present the

computation of a diffusion kernel. In Section IV, the proposed algorithm for recovering the independent

parameters is presented, including a synthetic example. Finally, the application to acoustic channels and

experimental results are shown in Section V.

II. PROBLEM FORMULATION

Throughout this paper, vectors are denoted by bold small letters, and matrices by bold capital letters.

In addition, accessing elements in vectors and matrices is written with a superscript index in parentheses,

e.g., theith element of a vectora is expressed asa(i).

Let θ ∈ R
d denote a vector of parameters that control a particular natural or artificial system of interest.
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We follow Singer and Coifman [1], and Singer et al. [19], and assume that the controlling parameters

evolve in time according to two evolution regimes: (1) a small fluctuations regime, representing fast

natural changes of the system; (2) perceptual slow system variations. In the violin example mentioned in

the Introduction, a perceptual system variation corresponds to setting different lengths of violin strings.

On the other hand, small fluctuations may correspond to different finger placements on the strings, aiming

to produce the same tone.

We restrict the scope of the work and consider only linear systems. Letx be a real-valued input signal,

hθ be a real-valued impulse response of a linear system, which varies in time as a result of the time

varying controlling parameterθ, andy be the corresponding observable output signal. We assume that

the input signalx is a zero-mean, wide-sense stationary (WSS) process. In practice, we only require that

the input signal is a quasi-stationary process (i.e., WSS process in short time intervals), which is a much

weaker assumption that holds for many natural signals such as speech and music.

We observe the output signal in short-term intervals of length N . We assume the interval length

is sufficiently short, such that in each interval, the linearsystem can be considered time-invariant.

Consequently, the controlling parameter of the system in each interval is assumed to be constant. In

the flute example, each time interval may correspond to different flute tone, which is configured by a

different cover of the flute’s holes. According to our assumption, the finger placement on the flute does

not vary during the entire short-term interval. We note thatwe discard intervals with varying parameters

as it exceeds the scope of this paper, and intend to address itin future work.

Let M be the number of time intervals, and letΘ = {θi}Mi=1 ⊂ R
d be the set of the controlling

parameters, such thatθi is the parameter vector controlling the system in theith interval. Letxi andyi

denote the corresponding input and output signals in time interval i. Thus, the relation betweenxi and

yi is expressed using linear convolution as

yi(t) = hθi
(t) ∗ xi(t) =

∞
∑

s=−∞

hθi
(s)xi(t− s)

wheret ands are discrete time indices.

We assumem short-term intervals are available beforehand. LetΘ̄ denote a subset ofm training

parameters corresponding to the available intervals. Eachtraining parameter̄θi ∈ Θ̄ is measuredL times.

Unfortunately, in practice we cannot repeat the measurement with exactly the same parameter. Thus,

for each training parameter̄θi, we have a set of additionalL intervals of the measured signal, with

corresponding parameters{θij}Lj=1.

With respect to the proposed temporal evolution model of thecontrolling parameters, a pair of
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parametersθi and θj , in time intervalsi and j, convey perceptually different system configuration,

e.g. different cover of the flute holes producing different tones. On the other hand, for each training

interval i, the parameters{θij} in the additional intervals are seen as small perturbationsof θ̄i, e.g.

different finger placements producing the same tone. See Appendix I for mathematical details of the

temporal evolution of the parameters, where we represent the slow and rapid variation regimes as drift

and noise coefficients of a stochastic differential equation.

Our goal in this work is to recover the inaccessible set of controlling parametersΘ given the output

signal observations. In practice, we would only recover theparameters up to scaling. In addition, we

assumem training observations and their corresponding parametersare given beforehand. These training

samples are utilized for calibration and training of the proposed recovering algorithm.

III. D IFFUSION KERNEL

In this section we construct an anisotropic diffusion kernel. We utilize an approximation of the

Euclidean distance in the parametric space (i.e., the controlling parameters domain) [1], [10], and build

a kernel between the given observations of the output signalof the linear system of interest.

A. The observations and covariance matrices

Let cy(τ) denote the covariance function of the output signaly(t), which is defined as [20]

cy(τ) = E [y(t)y(t+ τ)] = hθ(τ) ∗ hθ(−τ) ∗ cx(τ), (1)

wherecx(τ) is the covariance of the input signalx(t). Sincex is a WSS process,cx(τ) is time invariant,

and therefore (1) implies that the time variations ofcy(τ) depend solely on the evolution of the controlling

parametersθ of the linear system. Thus, we obtain a representation of theobservable output signaly

as a function of the (dynamics of the) controlling parameters θ. It is worthwhile noting, that the same

result could be obtained by observing the short-term power spectral density (PSD) of the output signal.

For simplicity, we preferred to observe the second order statistics of the signal directly, conveyed by

the covariance of the observable signal in the time domain, rather than using the predefined Fourier

transform.

Let c : Rd → R
D denote the (nonlinear) mapping of the parameter vectorsθ ∈ R

d to the firstD

covariance function elements of the output signal, given by

c = c (θ) (2)
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wherec ∈ R
D is a vector of lengthD consisting of the covariance function elements, i.e.

c(j) = cy(j) = E [y(t)y(t+ j)] .

In the remainder of this paper, we view the covariance function elements of the linear system output

asobservations. Moreover, these observations are interpreted as (nonlinear) mappings of the controlling

parameters via the functionc. In practice, the covariance elements are not available. However, they can be

estimated given the output signal as an empiric average of the cross-multiplication of the output signal

in each time interval separately. In each intervali, we calculate according to (2)D elements of the

corresponding covariance functionci = c(θi) based on the output signalyi. Let Γ = {ci}Mi=1 denote the

set of observations, and letΓ̄ = {c̄i}mi=1 denote the subset of observations corresponding to the training

parameters in̄Θ. See Appendix II for demonstration of the setting by observing an auto-regressive (AR)

process of order1.

Let Σ(c) denote the covariance matrix of sizeD ×D of the observationc, defined by

Σ(jk)(c) = Cov
(

c(j), c(k)
)

. (3)

It can be shown (see Appendix I for the derivation and mathematical details) that the covariance matrix

can be expressed as

Σ(c) = J(c)JT (c) (4)

whereJ is the Jacobian matrix of the functionc, whose elements are given byJ(ji) = cji , wherecji are

first-order partial derivatives of thejth coordinate of the mappingc with respect to the parameterθ(i).

The Jacobian of the functionc is of a key importance to the proposed algorithm as describedin Section

IV, but unfortunately is unavailable. However, (4) enablesto representJ(c)JT (c) via the accessible

covariance matrix of the observations.

We are able to compute the covariance matrices of only the training observations. Given measurements

of the output signal corresponding to the perturbations of the training samples{θij}, we compute their

corresponding observations{cij}. Now, based on the “cloud” ofL observations{cij}, we estimate the

local covariance matrixΣ(c̄i) for each training observation empirically via

Σ̂(c̄i) =
1

L

L
∑

j=1

cijc
T
ij (5)

using the fact that the input signalx is zero mean.
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B. Computation of the anisotropic kernel

The proposed parametrization method is based on the computation of an anisotropic diffusion kernel.

In order to obtain recovery of the independent parameters, the computed kernel is based on the Euclidean

distance between the parameters. Unfortunately, the parameters are available only via the nonlinear

observations. In [1], Singer and Coifman showed that the Euclidean distance between two samples in

the parametric space can be approximated by the observations. In this work, we adopt a similar strategy

to approximate the Euclidean distance between the parameters, as proposed by Kushnir et al. in [10],

which also enables a natural extension.

Let θj ,θk be two parameter samples, i.e., two system configurations inthe parametric space. According

to previous notation, we observe their nonlinear mapping via c : R
d → R

D. Let cj = c(θj) and

ck = c(θk) be the mapping ofθj andθk into the observable space. It is shown in [10] that a second-

order approximation of the squared Euclidean distance in the parametric space is given by (see Appendix

III)

‖θj − θk‖2 = 2(cj − ck)
T
[(

JJT
)

(cj) +
(

JJT
)

(ck)
]−1

(cj − ck) +O
(

‖cj − ck‖4
)

. (6)

We compute anM ×m affinity matrix A between the observations in̄Γ and the observations inΓ.

The affinity is based on a Gaussian kernel with scale parameter ε, and given by

A(kj) = exp

{

−‖J−1(c̄j) (c̄j − ck) ‖2
ε

}

. (7)

We observe the followingm×m matrix

W = S−1/2ATAS−1/2 (8)

whereS is a diagonal matrix containing the sum ofA along columns, i.e.S = diag{AT 1}. It is shown

[10] thatW(kj) corresponds to

W(kj) =
π

√

det((JTJ) (c̃))
exp

{

−(c̄j − c̄k)
T
[

JJT (c̄k) + JJT (c̄j)
]−1

(c̄j − c̄k)

ε

}

(9)

for c̄j , c̄k ∈ Γ̄ and c̃ = (c̄j + c̄k)/2. Based on Lemma 3.3 in [10],W is a Gaussian kernel based on

approximation of the Euclidean distance between the training samples in the parametric space. Moreover,

(8) implies that the affinity between the training samples inW is conveyed via the affinity between just

the training samples and all the other samples inA. In other words, two training samples are similar if

they are “seen” the same way by the rest of the samples. This property enables the possibility of naturally

extending the kernel to new samples as shown in Section IV.
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Substituting (4) and (5) into (9) yields

W(kj) =
π

√

det
(

Σ̂(c̃)
)

exp











−
(c̄j − c̄k)

T
[

Σ̂(c̄k) + Σ̂(c̄j)
]−1

(c̄j − c̄k)

ε











.

Thus, the desired affinity kernel based on the Euclidean distance between the underlying parameters is

given by the observations and their covariance matrices.

IV. FROM THE OBSERVABLE DATA TO THE L INEAR SYSTEM PARAMETERS

In this section we propose a supervised algorithm for re-parametrization of linear systems. The recovery

of the controlling parameters of the system relies on the kernel computed in Section III. Based on the

kernel eigen-decomposition, the observation are mapped into a new domain, which correspond to the

parametric domain up to scaling.

A. Inverse mapping

Let L be the normalized graph-Laplacian [21] defined as

L = D−1W− I,

whereD is a diagonal matrix withD(ii) =
∑d

j=1W
(ij). It can be shown thatL converges to the

backward Fokker-Planck operatorL on theparametric manifold[22], [23]

Lq = ∆q −∇U · ∇q,

whereU is the density potentialU = −2 log pΘ̄. Assuming uniform sampling (i.e., constant potential)

yields∇U = 0 and convergence of the graph-Laplacian to the Laplace-Beltrami operatorL → ∆.

There exist eigenfunctions{ϕi} of L that are monotonic functions of the parametersθ as guarantied

by the Strum-Liouville theory. These eigenfunction can be chosen as suggested in [4]. Thus, they can

be used to represent the data in terms of its independent controlling parameters. LetΦd : Γ̄ → R
d be a

map from the observations to the space spanned byd eigenfunctions ofL, given by

Φd : c̄i → [ϕ1(c̄i), . . . , ϕd(c̄i)]
T . (10)

Ideally, the mapΦd can be seen as the inverse map of the nonlinear functionc, up to scaling. Unfortunately,

in practice we have the eigenvectors ofL, which only approximate the eigenfunctions{ϕi} of L.
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Fig. 1. A diagram of the parametric and observable space. We illustrate the set of samples and the mappings.

B. Restriction and extension operators

Let Ã be a normalized affinity matrix̃A = AS−1/2, and let{ϕj}mj=1 and{ψj}Mj=1 be the left and right

singular vectors of theM×m matrix Ã. In addition, the vectors{ϕj}mj=1 ∈ R
m and{ψj}Mj=1 ∈ R

M form

an orthonormal basis ofRm andRM respectively. Accordingly, we have that{ϕj} are the eigenvectors

of W = ÃT Ã. It implies that {ϕj} establish re-parametrization of the training observations in Γ̄.

Accordingly, let Φd be an embedding of the training observations into the space spanned by thed

eigenvectors, given by

Φd : c̄i → [ϕ1(c̄i), . . . ,ϕd(c̄i)]
T . (11)

Clearly, (11) can be considered as an approximation of the map (10).

On the other hand,{ψj} are the eigenvectors of̃AÃT , which is anM ×M affinity matrix between

observations inΓ. As shown in [10],{ψj} provide re-parametrization of the observations. Moreover,

{ψj} are extensions of{ϕj} outside the set̄Γ. Let Ψd be an embedding of the observations onto the

eigenvectors ofW, given by

Ψd : ci → [ψ1(ci), . . . ,ψd(ci)]
T . (12)

Consequently, the mapΨd recovers the independent parameters of the convolution system corresponding
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to the observations, up to scaling. See illustration of the mapping in Fig. 1.

In order to obtain an estimate of the parameters, we interpolate the training samples according to

distances in the embedded space. LetNi consist of thek-nearest training embedded samples{Ψd(c̄j)}
of Ψd(ci) with the Euclidean metric, and let{γj} be interpolation coefficients between{Ψd(c̄j)} ∈ Ni

andΨd(ci), given by

γj(ci) =
exp

(

−‖Ψd(ci)−Ψd(c̄j)‖2/σγj

)

∑

Ψd(c̄k)∈Ni

exp
(

−‖Ψd(ci)−Ψd(c̄k)‖2/σγj

) ,

whereσγj
is set to the minimal distance betweenΨd(ci) and its nearest neighbor. Thus, an estimate of

the parameters is given by the following weighted sum of the training parameters

θ̂i =
∑

j:Ψd(c̄j)∈Ni

γj(ci)θ̄j . (13)

Accordingly, let errprm denote the re-parametrization error, defined by

errprm (ci) = ‖θi − θ̂i‖2. (14)

We note that in case that the parameters of merely few training samples are available, we can re-scale the

embedded samples{Ψd(c̄j)}. For that matter, we replacēθj with the re-scaledΨd(c̄j) in the estimation

(13).

C. Setting the algorithm parameters

We define an inverse mappingΦ−1
d from the parameter space to the observable space, which

approximates the mappingc, as follows

Φ−1
d (θ̄) =

∑

i:θ̄i∈Bθ

βi(θ̄)c̄i (15)

whereBθ is a set of the neighbors of̄θ, andβi are interpolation coefficients which are given as

βi(θ̄) =
exp

(

−‖θ̄ − θ̄i‖2/σβi

)

∑

j:θ̄j∈Bθ

exp
(

−‖θ̄ − θ̄j‖2/σβi

) (16)

whereσβi
is set to the minimal distance betweenθ̄i and its nearest neighbor in the parametric space.

In case the parameters of the training samples are unavailable, we can use the mappingΦd(c̄i) as

approximation ofθ̄i in (16).

Let errval(c̄i) denote the followingvalidation error

errval(c̄i) = ‖c̄i −Φ−1
d (θ̄i)‖2 = ‖c(θ̄i)−Φ−1

d (θ̄i)‖2, (17)
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Algorithm 1 Re-parametrization algorithm
Training stage:

1) Obtainm intervals of the system output corresponding to (known) training samples of the controlling

parameters{θ̄i}.

2) CalculateD elements of the covariance function of the measurements, which constitutem training

observations{c̄i}.

3) Given clouds of additional observations corresponding to perturbations of the training parameters,

estimate the local covariance matrices{Σ(c̄i)} of them training observations.

4) Compute the affinity matrixW according to (9), for an arbitrary kernel scaleε.

5) Employ eigenvalue decomposition ofW and obtain the eigenvalues{λj} and the eigenvectors

{ϕj}.

6) Construct the mapΦd according to (11) to obtain re-parametrization of the independent controlling

parameters of the training observations.

7) Construct the inverse mapΦ−1
d according to (15).

8) Find the optimal kernel scaleε that minimizes (17), by repeating 4–7 for different scales.

Testing stage:

1) Given a set of new observations{ci} corresponding to new controlling parameters, compute the

normalized affinity matrixÃ according to (7).

2) Calculateψj as a weighted combination ofϕj via

ψj =
1
√

λj

Ãϕj

3) Construct the mapΨd according to (12) to obtain re-parametrization of the independent controlling

parameters of the new observations.

4) Recover the independent parameters according to (13) andcompute the mean re-parametrization

error (14).

which conveys the accuracy ofΦ−1
d in estimatingc. We assume it provides a notion of the accuracy of

Φd estimating the inverse mapc−1.

The mean error of (17) is computed for all training samples. Then, the algorithm parameters are set

to minimize this error. A particular parameter of interest is the kernel scaleε. As discussed in [24],

[25], setting the scale conveys a tradeoff between integration of large number of samples (large scale),
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and locality (small scale). We note that this tradeoff is indeed emerged in our empirical testing. In [10],

the authors define a more general map for every sample. However, in practice we use this mapping for

setting the parameters in a training stage, where only the training observations are available. Therefore,

for this particular use, (15) is sufficient.

The complete description of the proposed method is summarized in Algorithm 1.

D. Example: autoregressive model

In this section, we recover the parameters of an auto-regressive (AR) system. Consider the following

AR process of orderd

y(t) = x(t)−
d
∑

l=1

α(l)y(t− l) (18)

wherex(t) is a zero-mean white noise with varianceσ2
x, andα are the AR coefficients. Such AR process

is commonly used in many signal processing applications. Inparticular, it is widely spread in modeling

the human vocal tract in speech recognition tasks [26].

An AR process can be viewed as a white noise going through a linear system, where the corresponding

transfer functionHθ(ω) is given by

Hθ(ω) =
1

1−
d
∑

l=1

α(l)e−jlω

. (19)

Alternatively, we can expressHθ(ω) in a canonical form as

Hθ(ω) =
1

d
∏

l=1

(

1− θ(l)e−jω
)

. (20)

whereθ(l) are the system poles. Consequently, according to (20), the system is controlled byd independent

parametersθ ∈ R
d.

Let Py(ω) be the PSD of the AR process, which is given by

Py(ω) = σ2
x

d
∏

l=1

∣

∣

∣
1− θ(l)e−jω

∣

∣

∣

−2
. (21)

We observe in (21), that the PSD depends only on the controlling parameterθ. Consequently, the variations

of the controlling parameters are conveyed by the PSD. Now, from (21), we can express the covariance

function of the output signal as

cy(τ) = F−1 {Py(ω)} , (22)
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whereF−1 denotes the inverse Fourier transform. For simplicity, we omit the explicit expression of

the covariance function. In (22) we represent the covariance of the observable signal as a (nonlinearly)

function of the controlling parameterθ. We assume that the poles satisfy0 < |θ(l)| < 1 to maintain

system stability.

Next, we examine the ability of the proposed algorithm to recover the parameters of an AR system

of orderd = 2. For training, we randomly generatem = 1000 uniformly distributed training samples in

a rectangularθi ∼ U [−0.8,−0.2] × U [0.2, 0.8]. Each realization represents a pair of AR poles, i.e. the

controlling parameters of an AR system of orderd = 2. Let Θ̄ denote the set of training parameters. For

each realization̄θi of the 2-poles inΘ̄, we create200 low variance Gaussian perturbationsθij to create

a local “cloud” in the vicinity ofθ̄i, such that

θij = θ̄i +
√
dtdw

with dt = 0.001, anddw is 2-D zero-mean unit-variance Gaussian noise.

The training parameters and their clouds are mapped to an observable space as follows. For each

systemhθ̄i
, we generate a white Gaussian excitation signalxi of length N = 16384, and measure

the corresponding output signalyi. It is worthwhile noting that this experiment was repeated with a

uniformly distributed excitation signal, and similar results were obtained. Based on the measured output,

estimates ofD = 8 elements of the covariance functionci are computed. Let̄Γ = {c̄i}mi=1 denote the

set of observations corresponding to the training parameters. In addition, based on the observations{cij}
corresponding to the cloud of points aroundθ̄i, the covariance matrix of each training observation is

computed asΣ(c̄i) via (5). In summary, we have a set ofm training parameters in a2-D parametric space,

and a corresponding set ofm observations in a8-D observable space. The observations are obtained via

a nonlinear mappingc : R2 → R
8 of the controlling parameters, i.e.,ĉi = c(θ̂i).

We follow steps 1-8 in Algorithm 1. Accordingly, we construct a 2-D embedding of̄Γ via

Φ2 : c̄i → [ϕ1(c̄i),ϕ2(c̄i)]
T .

Next, we determine the proper kernel scalingε. Figure 2 shows the mean validation error (17) obtained

by averaging over all the training samples as a function of the kernel scaleε. Accordingly, we choose

the scaleε = 0.008, which minimizes the mean error. In addition, the trade-offbetween a small scale

for better locality and a large scale for better sample integration is clearly emerged in the curve.

Figure 3 shows a scatter plot of the embedded training samples in R
2 via Φ2, where the color coding

corresponds to the values of the parameters. We observe thatan approximate rectangular shape is retrieved,
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Fig. 2. The mean validation error obtained for all training samples as function of the kernel scaleε.
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Fig. 3. Scatter plot of the embedded training samples. (a) Color coding according to the values of the first poleθ
(1). (b) Color

coding according to the values of the second poleθ
(2).

and that the coloring of the points is parallel to the axes. Hence, it implies that the embedding comprises

the independent controlling parameters of the AR system. Moreover,ϕ1(c̄i) andϕ2(c̄i) can indeed be

interpreted as a re-parametrization of the pair of polesθ
(1)
i andθ(2)i .

Additional 1000 samples are generated from the same distribution, and mapped to the observable space

as described above. LetΘ andΓ denote the sets of allM = 2000 samples in the parameter and observable

spaces, respectively. We construct the matrixÃ, which measures the affinity between the training samples

and the additional samples. The extended eigenvectors{ψj} are calculated, which correspond to the right

singular vectors of̃A. We construct a map using the extended eigenvectors as

Ψ2 : ci → [ψ1(ci),ψ2(ci)]
T .

In Fig. 4, we illustrate the embedding of the extended samples. Although the shape of the scatter plot

is slightly deformed, the general rectangular shape is maintained. Moreover, the coloring of the samples
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Fig. 4. Scatter plot of the embedded samples. (a) Color coding according to the values of the first poleθ(1). (b) Color coding

according to the values of the second poleθ
(2).
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Fig. 5. The mean validation error obtained for all training samples as a function of the kernel scaleε.

implies that the embedding of the extended samples comprises the independent controlling parameters

of the AR system as well. To demonstrate the ability to recover the parameters from the obtained re-

parametrization, we compute the parametrization error (14). The obtained mean error of the extended

samples is errprm = 0.0376.

We further illustrate the ability to recover theindependentcontrolling parameters of the system. We

extend the AR model by adding a pair of polesθ(1)θ(2) and−θ(1)θ(2). Thus, we obtain that the4th

order AR system is still controlled by just two independent parameters (the additional two poles are

determined byθ(1) andθ(2)). We note that model-based algorithms, such as the widely-used Levinson-

Durbin algorithm [20], provide estimates of the4 AR coefficients, but cannot detect the actual degrees

of freedom.

In Fig. 5 we show the mean validation error (17) as a function of the kernel scaleε. Accordingly,

the kernel scale for this experiment is set toε = 0.13. We note that a much larger scale is used in this
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Fig. 6. Scatter plot of the embedded training samples. (a) Color coding according to the values of the first poleθ
(1). (b) Color

coding according to the values of the second poleθ
(2).
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Fig. 7. Scatter plot of the embedded samples. (a) Color coding according to the values of the first poleθ(1). (b) Color coding

according to the values of the second poleθ
(2).

experiment compared to the previous one, which results in integration of more samples. In addition, the

mean error values in this experiment are higher than the meanerror values obtained in Fig. 2.

Figures 6 and 7 show the same trends as Fig. 3 and 4. We observe arectangular shape, and color lines

parallel to the axes. Consequently, we obtain that the mapΨ2 captures the actual degrees of freedom,

i.e., the two independent poles of the system. In this case, recovering the parameters yields mean error

(14) errprm = 0.0392. We note that the recovering error value is slightly higher that the mean error

achieved in the previous experiment, where the dependency of the observations in the parameters was

less complicated.
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V. ACOUSTIC CHANNELS

In this section we demonstrate the recovering of independent parameters of acoustic channels. We first

describe the simulation model and lay out theoretic background. Then we present some experimental

results.

A. The image model

The propagation of a sound wave within an enclosure can be considered linear in case the medium is

homogeneous and at rest. In this case, the propagation is governed by the wave equation. Accordingly,

the acoustic channel from a source to a microphone is obtained by solving the wave equation. However,

this solution can hardly ever be expressed analytically, and therefore, must be approximated. The most

common method for approximating the solution is theImage Method, presented by Allen and Berkley

[27]. This method efficiently computes a finite impulse response (FIR) that approximates the acoustic

channel between a source and a sensor in a rectangular room. To model an ideal impulse response

from a source to a sensor, all possible sound reflection pathsshould be resolved. These paths propagate

through the room and are reflected after every collision withthe room walls. The energy of the sound

in each such propagation path decreases as a consequence of the sound absorption of the air and of the

walls. To circumvent the calculations of all the reflectionsand collisions, the image method is based on

simulating virtual sources, called images, which are located beyond the room boundaries, such that the

direct propagation path between the virtual source and the microphone, approximates the reflected path.

Consider a rectangular room with length, width and height denoted byLx, Ly andLz. Let the sound

source be at a locationrs = [xs, ys, zs], and let the microphone be at a locationr = [x, y, z]. Both vectors

are with respect to the origin, which is located at one of the corners of the room. The relative positions

of the images measured with respect to the microphone position using the walls atx = 0, y = 0 and

z = 0 can be written as

rp = [(1− 2px)xs − x; (1 − 2py)ys − y; (1− 2pz)zs − z]

wherep = (px, py, pz) is a triplet consisting of binary elementspx, py, pz ∈ {0, 1} representing the8

different reflection directions. In order to consider all images, letrm = [2mxLx, 2myLy, 2mzLz], where

mx, my, and mz are integer values between−P and P , whereP represents the maximal order of

reflection taken into account. Accordingly, letri denote the position of an image

ri = r+ rp + rm.
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The corresponding distance between each image and the microphone is given byd = ‖ri−r‖ = ‖rp+rm‖,

and time delay of arrival of the reflected sound is expressed by τ = d/υ = ‖rp + rm‖/υ.

The finite impulse response can now be written as a superposition of all attenuated and delayed

reflections, given by

hr,rs,β(t) =
∑

p∈P

∑

m∈M

β|mx−q|
x1

β|mx|
x2

β|my−j|
y1

β|my|
y2

β|mz−k|
z1 β|mz|

z2

δ(t− τ)

4πd
(23)

whereP = {(px, py, pz)|px, py, pz ∈ {0, 1}}, M = {(mx,my,mz)| − P ≤ mx,my,mz ≤ P}, andβ =

(βx1
, βx2

, βy1
, βy2

, βz1 , βz2) are the reflection coefficients of the six walls. In discrete time simulations,

the delays do not always fall at the sampling instants. However, for simplicity, we assume that the

sampling frequencyfs is sufficiently high, such thatfsτ is an integer for each delayτ . Finally, in

order to simulate the signal picked up by the microphone, thesource signal can be convolved with the

corresponding impulse response. For more details regarding acoustic channels modeling and simulating,

we refer the readers to [28], and the references therein.

In order to approximate channels in typical rooms, we usually need to take into account delayed

reflections ranging between0.1 and 2 seconds. For example, for sampling frequencyfs = 16 kHz it

corresponds to impulse responses of length ranging between1600 and 32000. Consequently, typical

impulse responses consist of thousands of taps. In other words, each impulse response can be expressed

as a vectorhr,rs,β in a high dimensional space. However, the presentation of the finite impulse response

in (23) implies that the acoustic channel between a source and a microphone inside a rectangular room is

controlled by a set ofd = 12 parameters: (1) the six reflection coefficients of the wallsβ; (2) the location

of the sourcers; and (3) the location of the microphoner. It is worthwhile noting, that the dependency

between the impulse response of an acoustic channel and the controlling parameters, as conveyed in (23),

is highly nonlinear. Therefore, the task of recovering the controlling parameters from measurements of

the signal picked up in the microphone, is challenging.

Particular parameters of interest are the source coordinates. Locating the source is a problem that has

drawn enormous research efforts in the last few decades [29], [30], [31]. Usually, a beamformer based

on microphone array measurements is implemented [32], [33], [34], [35]. In this work, we show how to

recover the source location based on measurements from a single microphone relying on training.

B. Experimental results

In this section, we examine the ability of the proposed method to recover the controlling parameters

of acoustic channels, simulated using the image method, as described in Section V-A.
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In the first experiment, we recover thereflection coefficientsof two walls. We start by generating

m = 300 training channels. We equally distribute300 reflection coefficients of two wallsβx1
, βx2

in

the range[0.15, 0.55], creating a2-dimensional grid. All other4 coefficients are set to0.15. Then, we

simulate a room of size[Lx, Ly, Lz] = [6, 6, 3]. We place a microphone atr = [3, 1, 1], and a source

at [1.9, 3.8, 1], distant3m from the microphone, in the same altitude, and with azimuthangle5π/8. Let

θ = [βx1
, βx2

] denote the2 controlling parameters of the acoustic channel of orderd = 2, and letΘ̄

denote the set of parameters on the grid. For each parameterθ̄i, we createL = 20 low variance Gaussian

perturbationsθij to create a local “cloud” in the vicinity of̄θi. Now, using the image method, we simulate

m · L = 300 · 20 acoustic channels, each channelhθ̄i
corresponds tōθi.

The training channels and their clouds are mapped to an observable space as follows. For each parameter

vector θ̄i, we generate a white Gaussian excitation signalxi of length N = 24000, and measure the

output signalyi, of xi going through the corresponding acoustic channelhθ̄i
. Based on the measured

output, the firstD = 24 elementsci of the covariance function are calculated. LetΓ̄ = {c̄i}mi=1 denote

the set of observations corresponding to the training parameters. In addition, based on the observations

{cij} corresponding to the cloud of parameters aroundθ̄i, the covariance matrixΣ(c̄i) of each training

sample is computed.

Now, additional325 pairs of reflection coefficients are generated in the same range, and mapped to

the observable space as described above. LetΘ andΓ denote the sets of allM = 625 samples in the

parameter and observable spaces, respectively.

In summary, we have a set ofM = 625 parameter vectors of a2-D reflection coefficients space,

and a corresponding set ofM observations in24-D observable space. The observations are obtained

via a nonlinear mappingc : R2 → R
24 of the reflection coefficients, i.e.ci = c(θi). In this case, the

nonlinearity conveys the relation between the reflection coefficients and the acoustic channel, combined

with the relation between the acoustic channel and the observation.

According to Algorithm 1, and similarly to the constructionin Section IV-D, we obtain a2-D embedding

of Γ̄ via

Φ2 : c̄i → [ϕ1(c̄i),ϕ2(c̄i)]
T

using ε = 0.007. This kernel scale was chosen such that it brings the validation error to a minimum.

Figure 8 shows a scatter plot of the embedded training samples, where the color coding corresponds to

the values of the parametersβx1
andβx2

. We observe that the samples are organized on a rectangular

grid. In addition, the coloring of the samples is parallel tothe axes. Hence, the embedding represents the
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Fig. 8. Scatter plot of the embeddingΦ2. (a) Color coding according to the values of the azimuth angle. (b) Color coding

according to the values of the elevation angle.
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Fig. 9. Scatter plot of the extended embeddingΨ2. (a) Color coding according to the values of the azimuth angle. (b) Color

coding according to the values of the elevation angle.

two reflection coefficients up to scaling.

By constructing the matrix̃A, the extended eigenvectorsψj are calculated. Thus, we obtain embedding

of the entire observation set via

Ψ2 : ci → [ψ1(ci),ψ2(ci)]
T .

In Fig. 9, we scatter plot the embedded samples. From the coloring of the samples, we conclude that

the extended embedding captures the independent controlling parameters. The recovering of the reflection

coefficients based on interpolating the training samples according to the distance in the embedded space

(13) yields a mean error of errprm = 0.0067.

In the second experiment, we test the ability of the proposedmethod to recover thelocation of the

source. We simulate the same room dimensions and location ofthe microphone. We uniformly distribute
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Fig. 10. Scatter plot ofΦ2. (a) The color coding according to the azimuth angle. (b) Thecolor coding according to the

elevation angle.
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Fig. 11. Scatter plot ofΦ2. (a) The color coding according to the azimuth angle. (b) Thecolor coding according to the

elevation angle.

m = 300 source locations on a sector of a sphere around the microphone. The sphere radius is3m, the

sector azimuth and elevation angles range between[0, π/16]. Therefore, we have approximately a source

per 1◦ in both look directions. In this experiment, the independent controlling parameterθ is a pair of

azimuth and elevation angles. The rest of the experiment is performed similarly to the first experiment.

Figure 10 shows a scatter plot of the embedded training samples, where the color coding corresponds

to the parameters{θ̄i}. It implies that both the azimuth and elevation angles are accurately recovered. The

scatter plot takes the shape of a rectangular grid, where, according to the coloring, each axis represents

either the azimuth or the elevation angle.

In Fig. 11, we present the embedding of the additional points. From the coloring of the points, we

conclude that the extended embedding captures the independent controlling parameters, as the coloring
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scheme is maintained. In this case, recovering the originalparameters yields a mean error errprm = 0.0155.

This result is of particular interest, as we accurately recover the direction of arrival of a random source

in a room based on observations from asinglemicrophone, and training.

VI. CONCLUSIONS

We proposed a general algorithm for re-parametrization of linear systems using diffusion kernels. The

proposed algorithm is based on recent developments of spectral and nonlinear independent component

analysis techniques, anisotropic kernels, and classical results from statistical signal processing and Fourier

analysis. We claim that each system can be viewed as a black box controlled by several independent

parameters. By recovering these parameters, we reveal the actual degrees of freedom of the system and

obtain its intrinsic modeling. These attractive features are extremely useful for system design, control

and calibration. We employed the proposed algorithm on bothsynthetic and real examples. We showed

that the proposed method can accurately recover the poles ofan auto-regressive process and retrieve the

controlling parameters of acoustic channels. Acoustic channels are a fundamental component in frontend

speech processing applications, such as speech dereverberation, source localization, and echo cancellation.

Therefore, the parametrization of acoustic channels is highly important, especially since acoustic channels

are known to be challenging to model and acquire.

The characterization of an auto-regressive process is of particular interest, since it opens the door for

intrinsic modeling of audio signals. As described in the paper, we can view any audio signal as a product

of artificial or natural (e.g. human vocal tract) musical instruments. Thus, by capturing the instrument’s

intrinsic geometric structure, we are able to provide perceptual analysis. For future work, we aim at

exploring this new lead in order to obtain characterizationof, for example, different music tones, various

instruments, speech phonemes, or different speakers. Suchfeatures may enable us to naturally cluster,

classify, or even filter music genres, speakers, phonemes, and other similar tasks which are challenging

to perform using existing tools.

APPENDIX I

TEMPORAL EVOLUTION MODEL OF THECONTROLLING PARAMETERS

Following Singer and Coifman [1], we assume that the controlling parameters evolve according to a

stochastic differential equation. Specifically, the parameters are described as independent Itó processes

[36], [37], given by

dθ(i) = a(i)(θ(i))dt+ b(i)(θ(i))dw(i), i = 1, . . . , d (24)
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wherea ∈ R
d and b ∈ R

d are unknown drift and noise coefficients, anddw are independent white

noises (w are Brownian motions). As described in Section II, this implies that the controlling parameters

evolve according to two regimes: (1) small fluctuations regime conveyed by the Brownian motion and

the noise coefficientsb; (2) slow system variations dependent on the drift coefficientsa.

From (2), we have that the controlling parameters are observed via the nonlinear mapc : Rd → R
D.

The observed elementsc(j) satisfy the stochastic dynamics given by the Itô lemma [36], [37]

dc(j) =

d
∑

i=1

(

1

2

(

b(i)
)2

cjii + a(i)cji

)

dt+

d
∑

i=1

b(i)cjidw
(i), j = 1, . . . ,D (25)

wherecji andcjii are first and second-order partial derivatives of thejth coordinate of the mappingc with

respect toθ(i).

From (3), using (25), we obtain

Σ(jk)(c) =

d
∑

i=1

(b(i))2cji c
k
i . (26)

In matrix form, we can express (26) by the Jacobian matrixJ of the functionc as

Σ(c) = J(c)B2JT (c)

whereB is a diagonal matrix withB(ii) = b(i). The matrixB can be assumed to be the identity matrix

B = I, by applying change of variables on (24) such that

dθ̃
(i)

= ã(i)(θ̃
(i)
)dt+ 1dw(i), i = 1, . . . , d

where1 is a vector of ones of lengthd. In this case, using the Itô lemma we obtain

Σ(c) = J(c)JT (c).

APPENDIX II

AUTO-REGRESSIVEPROCESSEXAMPLE

We illustrate the settings from Section II by observing the following auto-regressive (AR) process of

order1

y(t) = x(t)− θy(t− 1) (27)

wherex(t) is zero mean white noise withσ2
x variance, and0 < |θ| < 1 is the AR coefficient. Clearly

in this example, the system is controlled by a single parameter θ ∈ R. However, observing the output

signal y(t) in the time domain, heavily depends on the random white noiseinput x(n). Consequently,

the evolution of the controlling parameterθ may be weakly emerged iny(t), and hence hard to recover.
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Fortunately, we are able to represent the AR process using convolution. By employing the Fourier

transform, (27) can be written in the Fourier transform domain with frequency indexω as

Y (ω) = X(ω)Hθ(ω)

whereX(ω) andY (ω) are the Fourier transforms ofx(t) andy(t), andHθ(ω) is the AR system transfer

function, given by

Hθ(ω) =
1

1− θe−jω
. (28)

Equation (28) can be seen as a sum of a geometric series, yielding the infinite AR system impulse

response

hθ(t) = θt, t = 0, 1, . . . . (29)

This impulse response demonstrates a nonlinear dependencybetween the system and the controlling

parameterθ. From (1), using (29) the corresponding covariance function of the AR process is given by

cy(τ) = σ2
x

θ−|τ |

1− θ2
. (30)

In (30) we represent the covariance function of the observable signal as a (nonlinear) function of the

controlling parameterθ. We note thatθ should satisfy0 < |θ| < 1 in order to get a stable impulse

response.

In this work, given the output signal measurements, we estimate their covariance function elements.

These elements are viewed as observations of the nonlinear mapping (30). Thus, the goal in this work

is to recover the controlling parameterθ from such observations.

APPENDIX III

EUCLIDEAN DISTANCES ON THE PARAMETRIC MANIFOLD

We briefly review the derivation of the approximation of the Euclidean distance in the parametric space

from [10]. Let θ,ϑ ∈ R
d be two parameter vectors (i.e., two system configurations inthe parametric

space). According to previous notation, we observe the nonlinear mappingc : Rd → R
D. Let c = c(θ)

andγ = c(ϑ) be the mapping ofθ andϑ into the observable space. Defineg : RD → R
d to be the

inverse map ofc : Rd → R
D. We have by the definition of the norm that

∥

∥

∥

∥

ϑ− θ
2

∥

∥

∥

∥

2

=

∥

∥

∥

∥

ϑ− θ + ϑ

2

∥

∥

∥

∥

2

=
∑

i

(

ϑ(i) − θ(i) + ϑ(i)

2

)2

. (31)
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Then, each coordinate ofg at ϑ = g(γ) can be approximated by a Taylor series at the middle point

(θ + ϑ)/2:

ϑ(i) = θ(i)+ϑ(i)

2 + 1
2

∑

j
gij
(

γ+c

2

) (

γ(j) − c(j)
)

+1
8

∑

k,l

gikl
(

γ+c

2

) (

γ(k) − c(k)
) (

γ(l) − c(l)
)

+O
(

‖γ − c‖3
)

(32)

wheregij andgikl are the first and second order derivatives ofg(i) with respect toc(j). Similarly to (31)

and (32), we approximateg at θ = g(c) and obtain

∥

∥

∥

∥

θ − ϑ
2

∥

∥

∥

∥

2

=

∥

∥

∥

∥

θ − θ + ϑ

2

∥

∥

∥

∥

2

=
∑

i

(

θ(i) − θ(i) + ϑ(i)

2

)2

. (33)

and
θ(i) = θ(i)+ϑ(i)

2 + 1
2

∑

j
gij
(

γ+c

2

) (

c(j) − γ(j)
)

+1
8

∑

k,l

gikl
(

γ+c

2

) (

c(k) − γ(k)
) (

c(l) − γ(l)
)

+O
(

‖γ − c‖3
)

(34)

Combining (31) and (33) yields

‖ϑ− θ‖2 = 2
∥

∥

ϑ−θ
2

∥

∥

2
+ 2

∥

∥

θ−ϑ
2

∥

∥

2

= 2
∑

i

(

ϑ(i) − θ(i)+ϑ(i)

2

)2
+ 2

∑

i

(

θ(i) − θ(i)+ϑ(i)

2

)2 (35)

and by substituting (32) and (34) into (35), we get

‖θ − ϑ‖2 = (c− γ)T
[

(

JJT
)−1

(

γ + c

2

)]

(c− γ) +O
(

‖γ − c‖4
)

. (36)

It is shown in [10] that

(

JJT
)−1

(

γ + c

2

)

= 2
[(

JJT
)

(c) +
(

JJT
)

(γ)
]−1

+O
(

‖γ − c‖4
)

. (37)

Now, substituting (37) into (36) yields a second-order approximation of the squared Euclidean distance

in the parametric space

‖θ − ϑ‖2 = 2(c− γ)T
[(

JJT
)

(c) +
(

JJT
)

(γ)
]−1

(c− γ) +O
(

‖γ − c‖4
)

.
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