
An algorithm is presented for fast construction of graphs of reads, where an edge
between two reads indicates an approximate overlap between the reads. Since the
algorithm finds approximate overlaps directly, it can process reads without error-
correction preprocessing steps.
Extensions of the algorithm, such as construction graphs of overlapping pairs of reads,
are discussed.
The algorithm can be used to construct graphs for assembly and for other related
applications such as error correction. Preliminary experimental results indicate that
the algorithm constructs graphs which lead to relatively long contigs even in the
presence of sequencing errors.

Building approximate overlap graphs for DNA
assembly using random-permutations-based search.

Roy Lederman†

Technical Report YALEU/DCS/TR-1470
December 18, 2012

‡ Applied Mathematics Program, Yale University, New Haven CT 06511

Keywords: DNA, alignment, assembly, random permutations.



1 Introduction

One of the classical problems in the study of genomes is the problem of assembling
many short reads into an accurate representation of a genome. Reviews of the assembly
problem and the existing algorithms for assembly are available in [2, 8, 11, 7].

Assembly algorithms are based on two classes of graphs: graphs of reads used in
overlap-layout-consensus algorithms (OLC), and de-Bruijn graphs (DBG) of short sub-
strings of reads.

OLC algorithms [9] require graphs of reads which indicate which reads overlap. Find-
ing overlaps between reads can be computationally expensive: the naive approach would
require O(N2) comparisons and alignments between reads (where N is the number of
reads). There are several algorithms for relatively fast calculation of graphs of reads
when there are no errors in the reads [12, 13, 1, 3]. However, these algorithms may
be vulnerable to sequencing errors. There are some extension for these algorithms, and
algorithms which have been proposed for approximate overlaps of reads with errors [14].

DBGs are often used for assembly because they can be constructed relatively fast.
Although there are fast algorithms for analyzing DBGs, DBGs may be more ambiguous
and not read-coherent because they are based on short substrings of reads. In addition,
DBGs can be large and may require considerable storage (RAM, disk space, and i/o
operations). Like OLC algorithms which use graphs of exact overlaps, DBG algorithms
are vulnerable to sequencing errors.

Several strategies have been proposed for dealing with the vulnerability of DBG
and OLC algorithms to sequencing errors. One of the strategies is an error-correction
procedure which locates and fixes some of the sequencing error before the algorithms
are used. In some cases, these error-correction procedures are the most computationally
expensive step in the assembly, and efficient parallelization of error-correction algorithms
can be difficult.

In [4] we introduced a new approach to read alignment, based on sorted arrays of
permuted strings. Here, we describe how permutations-based search can be use to rapidly
build graphs of reads without any error-correction preprocessing. We describe a simple
algorithm for analyzing graphs of reads, but note that more elaborate graph analysis
algorithms may be useful in applications.

2 Preliminaries

2.1 The assembly problem

In this paper we consider the following scenario: There is some long string W , which
represents the DNA which is being sequenced. The sequencing procedure produces a

2



library of short reads of length M . These reads are contiguous substrings of W , taken
from random locations in W . There are sequencing errors, which are modeled as random
substitutions of characters in the strings with some error probability.

In sequencing, the output can be substrings of W and reverse complements of the
substrings. To simplify the description, we ignore the possibility of reverse complements.
The reverse complements can be added to the model by adding the reverse complement
of each original read to the library of reads (as we did in the implementation described
below).

Given a large library of such short reads, we would like to estimate W . In general,
the problem need not have a unique solution even when there are no errors and even
under some reasonable assumptions on the length of W : the reads may not cover all the
characters of W , and there may be multiple valid assemblies. Errors further complicate
the problem.

Here we consider an initial step of an assembly procedure, which requires the as-
sembler to produce contiguous strings (“contigs”) which contain long substrings of W
(“corrected contigs”) with a small number of errors.

2.2 Graphs of reads

The framework for assembly which we describe in this paper involves creating graphs of
reads. Each read is a vertex in the graph, and the directed edges in the graph represent
possible extensions of the reads: if the read Xi overlaps with Xj, and Xj extends beyond
the end of Xi, then there is a directed edge from node i to node j.

Each overlap can has some shift: the first character in Xj can correspond to the
tenth character in Xi. The value of the shift can be positive, negative, or zero. We use
directed edges with positive values, a negative shift is represented by a directed edge in
the opposite direction. For simplicity, we ignore the cases of shifts by zero, reads that
contain each other and multiple possible shifts between reads, but these can be added.

When a correct graph is available, W can be estimated by traveling along paths in
the graph (and correcting errors by “voting” for the correct character in each position).
In practice, the graph may have false edges (ambiguity in extending the reads) and miss-
ing edges, therefore graph analysis algorithms are required. Here we focus on building
graphs of reads with low ambiguity and few missing edges for libraries of reads that have
sequencing errors.

2.3 Permutations-based search

Permutations-based search for biological applications is introduced in [4]. Given a library
of strings {Xi}Ni=1, all of equal length M , permutations-based searches allow to find the
best matches for a query string Y of length M with high probability.

3



The basic idea in permutations-based search is to create several libraries of randomly
permuted versions of {Xi}Ni=1 and sort each of these permuted libraries lexicographically.

We create the random permutation U (j), and permute all the reference strings using
this permutation. The library of permuted strings, {X(j)

i }Ni=1 is sorted lexicographically.
We then permute the query string Y to get the permuted version Y (j). If we are “lucky”,
the mismatches in Y are all moved to the end of the permuted version, so that when look
at the location in the sorted list where Y (j) should have appeared, we find a small subset
of {X(j)

i }Ni=1 that contains the correct best match. The procedure is repeated several
times to obtain any desired probability of error.

As shown in [4], the procedure is fast and accurate. There are several extensions that
reduce the memory size and make the procedure faster and more flexible [4, 6, 5].

2.4 Types of neighbors

In this manuscript we use the term “neighbor” two different ways. In this subsection we
define the different types of “neighbors” and the context in which they are used.

In the assembly problem, we assume that the reads are substrings of some long string.
We assume that many of the reads represent overlapping segments of the long string.
We refer to all the reads that overlap with the read Y as the “overlap-neighbors” of Y .
In graphs of reads, the overlap-neighbors of Y are connected to Y by edges.

One of the steps in permutations-based search algorithms is to look for the lexico-
graphical position of a permuted version of the query string in a sorted list of permuted
reference strings. We refer to the strings around the lexicographical position of the per-
muted query as the “list-neighbors” of the permuted query string. This search operation
is analogous to looking up a word in a dictionary, so the “list-neighbors” are analogous
to the words on the page where the query should have appeared.

3 Algorithm

Assume a library of N reads, each of length M . We denote the ith read by Xi. We
assume that the library contains the reverse complement of each of the reads, so for the
read Xi there is another read Xj which is the reverse complement of Xi.

We denote a substring of Xi which begins at the kth character of Xi by Xi(k). We

denote the permuted version of Xi(k) by X
(z)
i(k), where (z) identifies the permutation used.

We assume some some method of comparing reads to validate that they are “possible”
overlap neighbors and rank their compatibility. For example, a validation can require an
overlap of at least 40 with no more than 5 mismatches. A score function can be of the
form: α× (number of matches)− β × (number of mismatches).

4



We define the parameter J , the number of permutations to use. We also define the
parameter m1, where M−m1 +1 is the minimum overlap that we require between reads.

We construct a directed graph, where each edge has a positive shift. We ignore the
cases of overlaps with shift 0, reads which are contained in each other, and the possibility
of multiple valid shifts, but these cases are handled by the algorithm, and can be handled
more specifically according the desired specifications of the graph.

Step 1 of the algorithm creates sorted libraries of permuted reads for the search
procedures.

Step 2 of the algorithm finds candidate “overlap-neighbors” with a positive shift for
each of the reads.

Step 3 is a simplified graph analysis algorithm that proposed “contigs”.

Algorithm 3.1

Step 1: IndexReads

For k=2 to m1

Create J permutations of length m = M − k + 1: {U (m,j)}Jj=1.

For j=1 to J

Truncate the reads to length m.

Create a library of permuted truncated reads.

Sort the library lexicographically.

Store the sorted library as index Ar(m,j).

End For

End For

Algorithm 3.2

Step 2: BuildGraph

For i=1 to N (all reads)

For k=2 to m1 (all shifts)

Set m = M − k + 1
For j=1 to J (all indexes for the shift, or a random subset)

Find the list-neighbors of X
(m,j)
i(k) in Ar(m,j).

Validate the list-neighbors.

For each valid list neighbor w:
Add the edge (i, w) with distance k − 1.

End For

End For

End For

5



End For

Algorithm 3.3

Step 3: Analyze graph

Calculate scores for all edges.

For each vertex,

keep only the outgoing edge with the highest score.

End For

For each path in the graph,

calculate a consensus string and report as a proposed contig.

End For

3.1 Reducing the number of indexes and string operations

The simplified description of the algorithm requires a large number of indexes. The
number of indexes can be reduced significantly by choosing only a subset of the m1 − 1
possible lengths (or even only a single length). In addition, as shown in [5], the J per-
mutations for each possible length can be replaced with a small number of permutations,
which are applied to shifted version of the reads. When these modification are imple-
mented, only very few indexes are required and relatively few searches are required for
each read.

Other methods used in permutations-based algorithms can also be applied to reduce
the number of list-neighbor validations.

3.2 Using paired-end reads

To further reduce the number of validations and the number of invalid edges in the graph,
we can use the pairs of the reads. Suppose that the read Y1 has the paired read Y2. We
construct a list of possible overlap-neighbors for Y1 and a list of overlap neighbors for
Y2. Suppose that Z1 is an overlap-neighbor of Y1 and that Z2 is the pair of Z1. If Z2 is
not an overlap neighbor of Y2, we remove Z1 from the list of overlap-neighbors of Y1.

Many existing assembly algorithms ignore paired reads until late in the process. Using
the information about pairs allows this algorithm to eliminate many of the invalid paths
and can also accelerate the algorithm.

6



3.3 Indels

Permutations-based searches allow mismatch errors. However, the basic permutations-
based search is vulnerable to indels. Some sequencing technologies produce mainly mis-
matches and are therefore very compatible with permutations-based searches. Some
other technologies produce mostly homopolymer-length-error indels. In [6] we describe
a framework that allows to use permutations-type algorithms for reads which have
homopolymer-length-errors.

3.4 Analyzing the graph

The graph analysis described above can be replaced by better graph analysis algorithms.
Existing graph analysis approaches can be applied to the graph created by the algorithm
described here.

The construction of the graph can be done “on-demand” by searching for overlap-
neighbors with parameters given by the assembly algorithm. For example, when a path
terminates, the assembly algorithm may request additional searches to find additional
overlap-neighbors using more loose search parameters. Similarly, a greedy algorithm can
start at some read and request for valid extensions of the read recursively.

4 Implementation and results

We implemented a simple version of the algorithm in C. We tested the algorithm by
simulating reads with simulated errors from reference genomes.

We used the implementation to create graphs of simulated reads. For each read,
we kept only the outgoing edge associated with the “overlap-neighbor-candidate” that
obtained the highest overlap score, and removed all other edges. The resulting graph
had only a single outgoing edge for each of the reads.

To check the results, we then removed the false edges connecting reads which were
not true overlap-neighbors in the original reference. We did not restore any of the lower-
scoring edges which we previously removed, so a read that had a false outgoing edge was
left with no outgoing edges.

Finally, we measured the length of longest correct contig in which each position of
the reference appears.

Clearly, this analysis can allow regions to be covered by several contigs. However,
since we kept at most one outgoing edge for every read, long contigs imply long paths in
which ambiguities are correctly resolved consistently.

The reads were simulated from a bacterial reference genome and from a human chro-
mosome reference. In the human chromosome, we used the GRCh37 reference and re-

7



moved the nucleotides labeled with “N”, but did not remove other regions which are
considered repetitive. The simulated reads were paired-end, 100 characters long, with
an error rate of 1%. The reverse complement of each pair was added to the database.
The comparison was performed on a cluster node with (2) E5620 CPUs and 48GB RAM.
The program used only a single process.

For a bacterial reference DNA of E.coli of length 4.6×106 characters, we used 3×106

pairs of reads. 90% of the reference was covered by contigs of weighted average length
≈ 140× 103 characters. 50% of the reference was covered by contigs of weighted average
length ≈ 193× 103.

For a single chromosome of human DNA (chromosome 22, 35 million characters, not
diploid), we used 20× 106 pairs of reads. 90% of the reference was covered by contigs of
weighted average length ≈ 88× 103 and 50% of the reference was covered by contigs of
weighted average length ≈ 126× 103.

The analysis of the bacterial DNA took 9 hours (single process) and the analysis of
the human DNA took 85 hours (single process). Based on our experiments with more
advanced versions of permutations-based search, we estimate that it is possible to build
graphs for libraries of about 108−109 pairs of uncorrected reads in significantly less than
1 hour per million pairs (likely as little as several minutes per million pairs). Much of
the process can be parallelized.

This procedure does not require an error-correction procedure prior to assembly and
may produce graphs with relatively few ambiguities.

4.1 Applications

The algorithm can be adapted for use in applications such as:

• De novo assembly.

• Error correction.

• Alignment in the presence of significant mutations or errors.

• Structural variation discovery, analysis of copy number variation.

• Alternative splicing / Gene expression / RNA-Seq.

• Assembly of different paths in populations, using reads from multiple individuals.

• Mixture sequencing (analysis or assembly of mixtures of different cells)

• Assembly around points of interest (“Targeted assembly” [10]).

• Discovery of artificial splicing points (in experiments where segments are spliced
for sequencing).

8



5 Conclusions

An algorithm has been presented for the construction of graphs of reads for OLC algo-
rithms. The algorithm allows substitution errors in the reads, and therefore does not
require a computationally expensive error correction preprocessing steps. In fact, the
algorithm can be used to perform error correction.

The handling substitutions also allows to analyze diploid samples and populations in
the presence of SNPs (the desired policy for representing the SNPs should be determined
by the validation procedure and graph-analysis algorithm).

The algorithm uses information from entire reads and can be extended to use infor-
mation from both reads in the paired-end case. This allows the algorithm to eliminate
many ambiguities in graphs, accelerates the graph construction, and reduces the storage
requirements.

The current implementation uses a simple version of permutations-based algorithms.
It is possible to implement a version that is much faster and more memory efficient.

Algorithms for analyzing the graphs are not the main subject of this paper. We
demonstrated that simple graph analysis algorithms can produce good assembly results,
but propose to use more elaborate algorithms in applications.

The preliminary results presented in this paper refer to simplistic cases. We plan
to implement a faster, more efficient and more flexible version that can be compared to
other algorithms directly using real data.

References

[1] Hieu Dinh and Sanguthevar Rajasekaran. A memory-efficient data structure rep-
resenting exact-match overlap graphs with application for next-generation DNA
assembly. Bioinformatics, 27(14):1901–1907, July 2011.

[2] Paul Flicek and Ewan Birney. Sense from sequence reads: methods for alignment
and assembly. Nat Meth, 6(11s):S6–S12, November 2009.

[3] Giorgio Gonnella and Stefan Kurtz. Readjoiner: a fast and memory efficient string
graph-based sequence assembler. BMC Bioinformatics, 13(1):82, 2012.

[4] Roy Lederman. A Nearest Neighbors Algorithm for Strings. Technical report,
YALEU/DCS/TR1453, 2012.

[5] Roy Lederman. A random-permutations-based approach to read alignment. In
preparation, 2012.

9



[6] Roy Lederman. Homopolymer Length Filters. Technical report,
YALEU/DCS/TR1465, 2012.

[7] Zhenyu Li, Yanxiang Chen, Desheng Mu, Jianying Yuan, Yujian Shi, Hao Zhang,
Jun Gan, Nan Li, Xuesong Hu, Binghang Liu, Bicheng Yang, and Wei Fan. Com-
parison of the two major classes of assembly algorithms: overlaplayoutconsensus
and de-bruijn-graph. Briefings in Functional Genomics, 11(1):25–37, January 2012.

[8] Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-
generation sequencing data. Genomics, 95(6):315–327, June 2010.

[9] Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl
2):ii79–ii85, January 2005.

[10] P. M. Peterlongo and R. M. Chikhi. Mapsembler, targeted and micro assembly of
large NGS datasets on a desktop computer. BMC bioinformatics, 13(1):48, 2012.

[11] Michael C. Schatz, Arthur L. Delcher, and Steven L. Salzberg. Assembly of large
genomes using second-generation sequencing. Genome Research, 20(9):1165–1173,
September 2010.

[12] Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string
graph using the FM-index. Bioinformatics, 26(12):i367–i373, June 2010.

[13] Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes
using compressed data structures. Genome Research, 22(3):549–556, March 2012.

[14] Niko Välimäki, Susana Ladra, and Veli Mäkinen. Approximate all-pairs suffix/prefix
overlaps. Special Issue: Combinatorial Pattern Matching (CPM 2010), 213(0):49–
58, April 2012.

10


	Introduction
	Preliminaries
	The assembly problem
	Graphs of reads
	Permutations-based search
	Types of neighbors

	Algorithm
	Reducing the number of indexes and string operations
	Using paired-end reads
	Indels
	Analyzing the graph

	Implementation and results
	Applications

	Conclusions

