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ABSTRACT
Iterative Methods for Large, Sparse, Nonsymmetric Systems
of Linear Equations
Howard C. Elman

Yale University, 1982

In this dissertation, we consider iterative methods for solving
large, sparse, nonsingular, nonsymmetric systems of linear equationms.
Such systems occur frequently in scientific computing, as in the
discretization of non—self-adjoint elliptic partial differential
equations. Until recently, few iterative methods were of practical use
for solving nonsymmetric systems. We give an overview of recent
developments in iterative methods for solving such systems, present new
convergence results for a subset of these methods, and examine the

performance of the methods in a set of numerical experiments.

Most of the techniques that we consider are similar in form to the
conjugate gradient method for symmetric, positive-definite problems.
They choose solution iterates from a Krylov space based on the
coefficient matrix, and require no a priori estimates of scalar
parameters. We show how these methods have been developed from the
minimization and orthogonality properties exhibited by the conjugate

gradient method, and we present new theoretical results that show that

some of them are convergent for problems where the coefficient matrix
has positive—definite symmetric part. We compare these methods with
several alternatives, including the conjugate gradient method applied to
the normal equations and the nonsymmetric Chebyshev algorithm, and we

introduce a hybrid gradient/Chebyshev method.

We also consider the use of preconditioning in conjunction with
these techniques. We discuss several preconditionings based on the
incomplete factorization of the coefficient matrix. For two—cyclic
problems, we examine the construction of a reduced linear system. For
discretized non—self-adjoint elliptic problems, we consider fast direct
methods as preconditionings and show that the convergence of several
iterative methods with these preconditionings is independent of mesh

size,

Finally, we examine the performance of various combinations of
iterative methods and preconditionings in computing the numerical
solution of some non-self-adjoint elliptic partial differential

equations.
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CHAPTER 1

Introduction

In this dissertation, we consider iterative methods for solving

linear systems of the form
Ax=f, (1.1)

where A is a large, sparse, nonsingular, nonsymmetric matrix of order N.
Such systems arise oftem in scientific computing, and their solutiom

frequently requires a large amount of numerical computation.

1.1 Background

Techniques for solving linear systems are classified as either
direct methods or iterative methods. In the absence of roundoff error,
direct methods compute the exact solution x := A—lf with a finite number
of numerical operations. Iterative methods compute a sequence of

approximate solutions that converge to the exact solution.

Direct methods generally use some form of Gaussian
elimination [41]., When the rows of the matrix A are ordered

appropriately, A is factored into the product

A=LT,

where L is a lower triangular matrix and U is an upper triangular

matrix. The solution is then computed by solving successively
Ly=1¢ and Ux=y.

These methods are most suitable for solving dense systems and densely
packed sparse systems (such as banded systems), but they have drawbacks

that 1limit their usefulness for general sparse systems.

The main difficulties stem from the fact that the factors L and U
tend to have many more nonzeros than the coefficient matrix A, Thus,
more storage is required for the factors than for the original matrix,
and the storage requirements may exceed the resources of any given
computing enviromment. The number of arithmetic operations needed to
compute the factorization, while not as serious a limitation on the size
of problems, can also become larger than is desirable. Although
progress has been made in the development of orderings for the unknowns
that decrease the complexity of direct methods for solving sparse
problems [32, 58, 59, 66], many large sparse problems cannot be solved

by direct methods on present-day computers.

Jterative methods [38, 73, 78] compute a sequence of approximate

solutions (xi] to x by an algorithm of the form

Xi41 = Fi(xo,....xi) ,



where Xy is an arbitrary initial guess., F; may be linear or nonlinear;
typically, it consists of a small number of matrix—vector products,
scalar-vector products, inner products, and vector additions. Since
matrix-vector products are relatively inexpensive for sparse problems,
iterative methods tend to have low computational cost per iteration.
Usually just a small number (independent of i) of vectors of length N
must be stored in order to compute Xie1° Thus, the storage requirements
depend essentially on the number of nonzeros in A, and are lower than

those of direct methods.

In order to be effective, an iterative method must converge
rapidly. Many iterative methods require the estimate of scalar
parameters (for example, the extreme eigenvalues of A) for fast
convergence. Such methods include the successive over—relaxation (SOR),
Chebyshev, and alternating direction implicit (ADI) methods
(see [73, 78]1), and the strongly implicit procedure (SIP) [68]. The
parameters can sometimes be estimated dynamically during the early
stages of the iterative procedure [38, 78], but in general the need for
parameter estimates is a drawback of iterative methods. Moreover, this
problem is more difficult for nonsymmetric problems than for symmetric,

positive—definite ones [78].

In contrast, the conjugate gradient method is an iterative

procedure for solving symmetric, positive—definite systems that requires

no estimates of scalar parameters, and in exact arithmetic converges in
at most N steps. Moreover, CG is in some sense optimal over a class of
iterative methods, in that the approximate soluti;n x; computed at each
step minimizes a certain norm of the error over a translate of an
i-dimensional subspace. At the same time, CG is relatively inexpensive
per step. These properties make CG more robust, easier to implement,
and more rapidly convergent than other iterative methods for solving

symmetric, positive-definite problems [4, 12, 15, 40, 56].

The convergence of some of these methods (most notably, the
Chebyshev method and CG) can be speeded by preconditioning techmiques.

Roughly speaking, preconditioning consists of solving a problem
f (1.2)

that is equivalent to (1.1), where Q is an approximation of A so that
(1.2) is in some sense "easier” to solve than (1.1). Preconditionings
that have been effective for symmetric, positive—definite systems
include the incomplete factorization of A [50, 51], the modified
incomplete factorization of A [19, 35], the SSOR preconditioming [78],
and, for linear systems arising from elliptic partial differential
equations, fast direct methods [6, 7, 14, 18, 70] and reduced

systems [12, 57].




1.2 Iterative Methods for Nonsymmetric Problems

Although any iterative method can be formally applied to
nonsymmetric problems, in most cases there is no guarantee that the
sequence (xi) will converge to the solution. We now discuss the recent
progress made in methods that are rigorously applicable to nonsymmetric

problems.

Until recently, the only iterative method known to converge for
general nonsymmetric problems was the conjugate gradient method applied

to the normal equations [40]

ATA x = aTs .

The drawback of this technique is that, while the coefficient matrix is
T
symmetric and positive—definite, the convergence rate depends on A"A
rather than A, When A is symmetric and positive-definite, convergence
tends to be significantly slower than when CG is applied directly to

Ax=f.

The first gradient method for nonsymmetric problems that avoided
the use of the normal equations was the generalized conjugate gradient
method (GCG), introduced by Concus and Golub [13] and Widlund [75].
This method is applicable to matrices of the form A = I — R, where R is
skew—symmetric, although it can be used with preconditioning to solve

more general problems.

A large collection of CG-like methods for more general problems

that share a common heuristic has been developed by Axelsson [2],
Eisenstat, Elman, and Schultz [22], Jea [43], Saad [60], Vinsome [74],
and Young and Jea [80, 81]. Each of these methods originates from a
technique that computes x; so that some condition (such as norm
minimization or orthogonality) relative to an i~dimensional subspace is
imposed. Such conditions are imposed inexpensively by CG in the
symmetric, positive-definite case, but the cost‘for nonsymmetric
problems increases with each iteration. The heuristic for cutting
expenses is to relax the condition, forcing it to hold only with respect
to a k-dimensional space (for some fixed k) at each step. The resulting
methods have fixed computational cost per step. We have shown that some
of these "truncated” methods are convergent when the symmetric part of A

is positive-definite [22]. We present these results in Chapters 5 - 6.

Another generalization of CG is the biconjugate gradient method,
proposed by Fletcher [28]. This method is related to the Lanczos
biorthogonalization method for nonsymmetric eigenvalue problems [76] and

has been examined by several authors (see [42, 53, 61, 77, 80]).

Foremost among the methods not inspired by the conjugate gradient
method is the adaptive Chebyshev algorithm developed by
Manteuffel [46, 48, 49]. Like the Chebyshev method for symmetric,
positive-definite problems, it requires estimates of the extreme
eigenvalues of the coefficient matrix. The problem of computing these

estimates is more difficult for nonsymmetric matrices, in part because



the eigenvalues may be complex. Manteuffel’s method includes an
adaptive procedure for computing such estimates based on information

acquired during the iteration.

Gay [31] has considered Broyden's method [10], a quasi—Newton
method for solving nonlinear equations, as a technique for solving
linear systems. He showed that this method computes the exact solution
to nonsingular linear problems in at most 2N steps. Further analysis of
this method has been dome by Gerber and Luk [33]. In its usual form,
the method builds a sequence of approximations to the inverse of A.
These matrices are dense, so that the usual formulation is not suitable
for sparse problems. However, Engleman, Strang, and Bathe [26] have
observed that these matrices can effectively be reconstructed at each

step by a sequence of inner products.

The efficiency of these iterative methods can also enhanced by
preconditioning techniques. Most preconditioning techniques for
symmetric, positive—definite problems, including incomplete
factorizations [23, 24, 361, fast direct methods, and reduced systems,
extend naturally to nonsymmetric problems, We discuss these ideas in

Chapter 10.

1,3 Outline of the Dissertation

In this dissertation, we survey most of these methods for solving
nonsymmetric problems, present new theoretical results on convergence
properties and interrelationships among the methods, and describe their
behavior in a set of numerical tests. The emphasis is on CG-like

methods and preconditionings that can be used with them.

In Chapter 2; we establish definitions and conventions of notation

and describe a sample problem used to test the methods presented.

In Chapter 3, we review the conjugate gradient method and a related
technique, the conjugate residual method, for symmetric, positive—
definite problems. We discuss error bounds for these methods and
highlight their properties of minimization and orthogonality and their
relationship to the symmetric Lanczos algorithm [76] as three qualities

that have been generalized to CG-like methods for nonsymmetric problems.

In Chapter 4, we discuss the conjugate gradient method applied to
the normal equations. We present an error bound that illustrates the
limitation of this technique and give a bound for the condition number

of ATA that introduces a class of problems for which it may be suitable.

In Chapters 5 and 6, we discuss a class of CG-like methods for
nonsymmetric problems that genmeralize the minimization properties of CG.
These include Orthomin [74], and methods introduced by Axelsson [2] and

Young and Jea [80, 811. We present error bounds that show that most of



these methods are convergent for problems with positive—definite
symmetric part. In Chapter 7, we discuss a set of CG-like metho&s for
nonsymmetric problems based on the orthogonality property and the
relationship with the Lanczos method. These include GCG [13, 75],
Orthores [81], and Saad’s projection methods [60]. We give error bounds

for the "untruncated” versions of these techniques.

In Chapter 8, we describe several techniques for sparse problems
that were not inspired by the conjugate gradient method. These include
Manteuffel’s adaptive Chebyshev method [46; 48, 49] and the version of
Broyden'’s method developed for linear problems with sparse coefficient
matrices [26]. The adaptive Chebyshev technique requires an estimate of
the eigenvalues of the coefficient matrix, and it may converge slowly
(or even diverge) until its adaptive procedure provides good estimates.
To overcome this difficulty, we introduce several hybrid methods in
which some of the CG-1like methods are used to compute estimates of the

eigenvalues of A prior to execution of the Chebyshev method.

In Chapter 9, we discuss the issues associated with preconditioning
and present preconditioned versions of most of the iterative methods
discussed. In Chapter 10, we survey some preconditioning techniques.

We describe the incomplete [50, 51] and modified incomplete [19, 35, 361
factorizations of the coefficient matrix and the SSOR
preconditioning [78]. For discretized elliptic problems, we comsider

the use of separable approximations of the coefficient matrix as

10

preconditionings for which fast direct methods can be used [18, 701; we
show that the convergence of several iterative methods with these
preconditionings is independent of mesh size. For two—cyclic problems,
we consider the use of cyclic reduction to produce an alternative linear
system of smaller order (a reduced system), to which any of the

previously described solution techniques can be applied.

Finally, in Chapter 11, we describe the performance of the various
iterative methods and preconditionings in computing the numerical
solution of some non—self-adjoint elliptic partial differential
equations, and in Chapter 12, we summarize our observations and discuss

issues for further research.






CHAPTER 2

Preliminaries

2.1 Introduction

In this chapter, we discuss some conventions used throughout the
dissertation. In Section 2.2, we describe the mathematical notation and
some conventions that we use for describing algorithms., In Sectiomn 2.3,
we describe a model problem used to test the numerical methods

presented.

2.2 Notation

Given a square matrix A, let o(A) denote the set of eigenvalues of
A, and let A(A) demote any eigenvalue of A. The eigenvalue A(A) with
smallest (respectively largest) absolute value is denoted by lmin(A)
(respectively l-ax(A)). The spectral radius of A, p(A), is defined to
be |ln‘x(A)|. If A is nonsingular, then the condition number of A is

defined to be

.= -1
k(4 := lall, s~ 0, .

g, W1
If A is symmetric, then K(A) = T
min

11

12

ArAT
The symmetric part of A is given by M := 5 and the skew—
T
symmetric part by R := - Q%A—. Thus, A= M - R. The Jordan canonical

form for A is denoted by J := AT,
If A is symmetric and positive—definite, then the A-norm of a
vector v is defined to be

Ioll, := (v.an /2 .

Given a set of vectors S = (Vl.....vi), let <v1,...,vi> denote the
space spanned by S, If v is some vector and i is a nonnegative integer,

then
(v,Av,....Aiv)

is said to be a Krylov space based on A.
The unit vectors in R™ are demoted by e where
[ei]j 1= sij , 1¢i,j&m,

and Si is the Dirac delta function. We will also have occasion to

3
allow the indices of e, to begin at i =0 (so that, for example, [°i)?=0

span ™1y,

The algorithms that we consider in this dissertation are iterative

methods for solving linear systems of the form
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where A is a square matrix. Whenever we present an algorithm, we will
describe its work per step and storage requirements. We measure the
work by the number of real (i.e. floating point) multiplications and
divisions, with both operations referred to as "multiplications.” Most
of the methods require matrix—vector products of the form Av. Since the
number of multiplications in this operation depends on the number of
nonzeros in A, we count it separately. We denote the cost of a matrix-—
vector product by mv. All of the algorithms depend explicitly on A and
f, so we omit any storage required for these objects from the storage

count.

For all the algorithms that we consider, the iterate x, has the

form
X, =x s, (4) (xx¢) ,

where s, is a real polynomial of degree at most i such that s;(0) = 0.

Equivalently, the residual r; = f - Ax; has the form

;= qi(A)to » (2.1)

where a4, is a real polynomial of degree at most i and qi(O) =1, We
denote the set of these i—degree polynomials (qi) by Pi' and we call any

algorithm that satisfies (2.1) a polynomial-based method.

14

2,3 A Sample Problem
An important application of the methods of this dissertation is the
numerical solution of elliptic partial differential equations. A

prototypical problem in two dimensions is the following:

- (B\lx)x - (Cuy)y + Du, + (Du) + Euy + (Eu)y + Fu = G
in 0 CR? , : (2.2)

u=H onadg,

where 2 is a rectangular domain, B(x,y), C(x,y), D(x,y), E(x,y), F(x,y),

and G(x,y) are functions defined on 2, and B, C > 0, F > 0 on Q.

If (2.2) is discretized by the five—point operator on a uniform

n x n grid, then the result is a system of linear equations

Az=f
of order N = nz. If D(x,y) = E(x,y) = 0, then (2.2) is self-adjoint and

A is a symmetric matrix. Otherwise, (2.2) is non-self-adjoint and A is

nonsymmetric.
If
B = B(x) , c=C(y) , D = D(x) ,
E = E(y) , F =F(x) + Fp(y) ,

then (2.2) is said to be a separable problem. We will say that the
discrete operator A is separable if the corresponding continuous

operator is separable.



CHAPTER 3

The Conjugate Gradient and Conjugate Residual Methods

3.1 Introduction

Consider the system of linear equations
Ax=f, (3.1)

where A is a symmetric, positive-definite matrix of order N. In this
chapter, we review the conjugate gradient (CG) and conjugate residual
(CR) methods for solving (3.1). These methods are known to be effective
for solving large sparse problems [4, 12, 15, 40, 56] and have motivated
efforts to develop similar methods that are applicable to nonsymmetric

systems, Our purpose here is to survey their most important properties.

In Section 3.2, we present several formulations of the conjugate
gradient method and outline some of its properties and error bounds. In

Section 3.3, we present the conjugate residual method.

15

16°

3.2 The Conjugate Gradient Method

The conjugate gradient method [40] is an iterative procedure that
computes a sequence of approximate solutions {xi} to (3.1), starting
with an arbitrary initial guess Xge In the absence of roundoff error,
the exact solution x = Aflf is obtained in at most N steps, so that CG
can be viewed as a direct method. In practice, though, a sufficiently
accurate solution is usually obtained in far fewer steps, so that CG is

treated as an iterative method [56].

CG is a polynomial-based clgoritﬁn with a strong minimization
property. Let {ri = f - Axi] denote the residuals of the CG iterates,

and consider the i—dimensional Krylov space

i-1

Si i= (to,Azo....,A > . (3.2)

At each step, CG computes the point X; 8 x9+ si that minimizes the

error functional
E(x) i= (x-xpuAex) Y2 = lxxl
1(xg) i= (x=x, Alx—x; L
Because of the form of Si, r; can be expressed as
;= q;(A)rg

where q; ¢ Pi’ CG is thus the polynomial-based algorithm that is
optimal with respect to El' Hence, it converges at least as rapidly as
other polynomial-based methods, such as Richardson’s method and the

Chebyshev method [73, 78]. Moreover, unlike most other iterative
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methods (see [73, 78]1), CG does not require the estimation of scalar

parameters for fast convergence.

There are several mathematically equivalent formulations of CG
(see [12, 25, 54, 56]1). The most efficient ome with respect to number

of operations per step is the following:

Algorithm 3,1: The conjugate gradient method.
Choose X9 -
Set T, = f - Axo .
Set Py =T -
FOR i = 0 STEP 1 UNTIL Convergence DO
. - (ri.ri)
i (pg.4p)

x =

i+l xi+ a

iPi
Tiep = Ty T aghpy
b = (ri1:7541)
T Tz,
i Tty
P41 = Tye1 * 0525 -

The work per iteration is 5N multiplications plus one matrix-—
vector product. Like most iterative methods, CG has modest

storage requirements. Storage is needed for four vectors of length
N: x, r, p, and Ap. Also, CG does not actually require an explicit
representation of A or f. The’only reference to A is in the form

of a matrix—vector product Av, so that a routine that performs this
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operation is sufficient; the right—hand side f is used only to compute

ro.

The steplength a, in Algorithm 3.1 minimizes El(xi+1) as a function

of 2, and the directioms (pi] are "A-orthogonal,” that is

(Pi,Apj) =0, it

Because of this particular choice of directions, the ome—dimensional
minimization actually produces the minimum for E1 over x; +

<p0,...,pi> [12, 40], from which the optimality of CG follows.

The optimality of CG is the basis for error bounds. Using the ith

Chebyshev polynomial [30] as a particular choice for 4;, ome can derive

the following bound on the error at the 1th step [4, 16]:

1 - VK i
Bl(‘i) <2 [—1-171771117—] El(xo) . (3.3)

Then an approximate upper bound on the number of iteratioms required to

make the relative error El(xi)/El(xO) L e is [4]
i=[1m?]Am . (3.4)

Moreover, CG automatically takes advantage of special distributions of
the eigenvalues of A. Stronger bounds are applicable, for example, if
most of the eigenvalues lie within an interval [a,B] but a small number

of eigenvalues are much greater than B (see [4]).

In addition to optimality, CG satisfies the Galerkin comdition
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(Axi,v) = (f,v) for all ve S; .
This is equivalent to the orthogonality relation for the residuals

(ti,t

j) =0, it (3.5)

which determines a second formulation of CG that relates it to other

iterative methods. Consider the iteration
Tiad = Xpog Y oglegrg toxg - xig) (3.6)

where X, = 0, and oy and wi4q 8TE real scalars., This is a general form
for several iterative methods, including the Chebyshev semi—iterative
method and the Richardson second—-order method [73, 78]. For the

(ti'ri)
particular choices a, = T;;:Z;;)' w, = 1, and

o e
® =[1_.—-_____-—_] , forixl,
e ay ey g2 0
i-1 1r3-1f2 9y
the residuals generated by (3.6) satisfy (3.5), and the resulting
algorithm is equivalent to CG [25]. This formulation, while more
expensive than Algorithm 3.1 [56], is of use in the development of

methods for nonsymmetric problems (see Chapter 7).

Both the optimality property and the Galerkin condition
characterize CG in the class of polynomial-based methods. We state this

formally as follows (see [79], Sections 5 and 7, for a proof):
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Theorem 3,2: The iterates generated by the conjugate gradient method

are uniquely determined by the following combinations of requirements:

r, = qi(A)ro , q; € Pi , (polynomial-based)

and either
x; minimizes E1 R (optimality)
or
(ri.rj) =0, i3] (orthogonality) .

A third formulation of CG shows its relation to the symmetric
Lanczos algorithm (see [54]1). Let v, be a vector such that v ll, =1,
and let Vo = 0. The Lanczos algorithm, which is of use in the
computation of eigenvalues of positive—definite matrices [761,

i-1

constructs an orthonormal basis for the Krylov space (vl,Avl,.,,,A Vi

as follows:
ﬁj+1vj+1 = Avj - agvy - ijj—l , i<i, (3.7)

where ° = (vj,Avj) and ﬁj+1 is chosen so that "vj+1“2 =1,

T
0
Suppose now that vy = H?;“é’ where L is the residual of some guess

X0 for the solution to (3.1). Then (vl.....vi) is the Krylov space Si
of (3.2). Hence, by Theorem 3.2, the point in x, + <v1”"'vi> that

minimizes E;, is the CG iterate x The coefficients of {vj]j=1 that

i
determine x; can be obtained by solving a symmetric tridiagonal linear

system of order i with coefficient matrix
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T, :=[ B e, B ] The most efficient implementation of CR with respect to number of
i” i i Pi+l ¢

operations per step is as follows:
This observation is the basis for SYMMLQ, a generalization of CG

applicable to symmetric indefinite problems [54]. A similar idea has Algorithm 3,3: The conjugate residual method.
been used to develop methods for nomsymmetric problems (see Chapter Choose Xy -
7, [60, 611). Set I, = f - Axo .

Set Pg = Tp -+
In summary, the conjugate gradient method is a polynomial-based
FOR i = 0 STEP 1 UNTIL Convergence DO

jterative method for solving symmetric, positive-definite limear (ri'Ati)

a, = s
problems that has the three properties of optimality, orthogomality, and i (Ap;,Ap;)
a connection to the Lanczos algorithm, without requiring parameter 41 T X + a;p;
estimates. Ty = T3~ 8;Apy

(r., .,Ar, )
i+l i+l

3.3 The Conjugate Residual Method b, = (ri‘A'i)

The conjugate residual method [67] is closely related to the
Piy1 = Tiap ¥ D3Py
conjugate gradient method, differing mainly in the imner product and
Apjyq = Aryyy *+ bjhpy .
error functional associated with it. CR is an iterative, polynomial-

based algorithm whose iterates {xi) minimize the error functiomal CR is slightly more expensive than CG. The work per loop is 6N

1/2 multiplications and ome matrix—vector product. It requires 5N storage
Ey(x;) := (Alx-x;),Alx-x;))""° = llt-Ax;ll,
for x, r, p, Ap, and Ar.

over the translated i—dimensional Krylov space
The CR steplength a, minimizes Ez(‘i+1) as a function of a, and

i-1 s
xg + (ro.Aro,....A ro) . the directions satisfy
Like CG, CR computes x in at most N steps and requires no parameter (Api.Apj) =0, it
estimates.

This choice of directions forces i to minimize E2 over xg +
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<Po....,pi> [12]. Alternative formulations of CR based on (3.6) with a

Galerkin condition [25] and the Lanczos process (3.7) [54] also exist.

Error bounds for the conjugate residual method are analogous to

those for CG. For example, the analogue of (3.3) is

1 - W i
Byxp <2 [3547 I Byixp) o

so that
[jwi]a®

is an approximate upper bound on the number of steps needed to make

E,(x;)/Ey(xy) £ 8.







CHAPTER 4

The Conjugate Gradient Mothod Applied to the Normal Equations

Consider the system of linear equations

where A is a nonsingular, nonsymmetric matrix of order N. This problem

is equivalent to the normal equations

ATax =aTe, (4.1)

and to the related system

AATy =f, x = ATy . (4.2)

Since the coefficient matrices of (4.1) and (4.2) are symmetric and
positive-definite, a natural way to use CG to solve nonsymmetric
problems is to apply it to either of these two problems. In this

chapter, we consider the advantages and disadvantages of this approach.

When CG is used to solve (4.1), the iterate x; minimizes the

residual norm “21"2 over the translated Krylov space
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25
T T,\aT T,,i-1,T
xo + <ATTg, (A A)A Toseses(A A)" A > .

We denote this method by CGNR, the conjugate gradient method applied to
the normal equations with minimum residual [40]. Although ATa figures
in the development and analysis of this method, it need not be formed

explicitly.

Algorithm 4,1: The conjugate gradient method applied to the normal
equations (CGNR).

Choose x, -

Compute z f - Axo .

Compute Py = ATro .

FOR i = 0 STEP 1 UNTIL Convergence DO
T T
(A'r,A ri)
i (Ap,.Ap,)

X4l = X3 Y oaypy

Tieg T Ty T 8y
T
A5y 1A T
b, = ———
i T, T
(A'r ,A7r))

_ T
Piyg = ATy ey -
‘CG can be implemented to solve (4.2) without reference to y or the
approximations {yi} of y. This implementation was proposed by

Hestenes [39] and is also known as Craig’'s method [27]. The iterate x,

minimizes the error norm "x—xill2 over the translated Krylov space
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T T, i—-1
xo + <ry,(AA )zg,..., (AA )T x> .

We denote this method by CGNE, the conjugate gradient method applied to
the normal equations with minimum error. Again, AAT need not be formed

explicitly.

Algorithm 4,2: Craig’s method (CGNE).
Choose X -

Compute T, = f - Axo .

Compute Py = ATro .

FOR i = 0 STEP 1 UNTIL Convergence DO

(ri'ti)
a, = ————
i (pyopy)
T T Xt 8Py
T

i41 = Ty T 8jhny
T G Y
i Zti,ti)

T
Pyyg = ATy *bypy .

We refer to CGNR and CGNE together as CGN, the conjugate gradient
method applied to the normal equations. For both versions of CGN, the
work per loop is 5N multiplications plus two matrix—vector products. In
both cases, 4N storage is required for the vectors x, r, p, and Ap. ATt

can share storage with Ap.

Since o(ATA) = a(AAT). the convergence properties of the two
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algorithms are essentially the same. The only important difference is

in the norm minimized. Using (3.3) and the fact that K(ATA) = K(AAT) =
h

K(A)z. an upper bound for the error at the it step is
1 - 1/K(A) i
EGxp) <2 [T5imm | Eap . (4.3)
where
llo-Ax, ll, for CGMR ,
E(xi) 1=
“x—xiﬂz for CGNE .

Hence, an approximate upper bound on the number of iteratioms required

to make the relative error E(xi)/E(xo) e is

i=[3m?]ew . (4.4)

These bounds illustrate the main drawback of CGN. The upper bound
(4.4) is larger by a factor of VE(A) than the analogous number for CG
applied directly to a problem with symmetric, positive—definite
coefficient matrix (see (3.4)). This suggests that if A is poorly
conditioned, then the. convergence of CGN could be slow. Indeed, this
difficulty motivates our examination of the conjugate gradient—1like

methods described in subsequent chapters.

Nevertheless, CGN may be suitable for some problems. The following
result bounds K(A) in terms of the extreme eigenvalues of the symmetric
and skew-symmetric parts of A, and thereby suggests a class of problems

for which CGN may be suitable.
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Theorem 4,3: If the symmetric part M of A is positive—definite, then
T 2,
xmin(A A) 2 lmin(u) H
T 2
Apax A A LD D+ p®T .
Hence,
p(R)
K(A) < K(M) + oD ¢ (4.5)
min

Proof: Let S denote the unique symmetric positive—definite square root

of M, i.e., % = M. Then

ATAx,x) = (Ax,Ax) = (S(S - S R)x,S(8 - §IR)x)

= ous - sRx (s - SR
But for any real y,
(My,y) 2 A . () (y,5)
and
(Ry,y) =0,
so that

WTax,x) 22, 00 (s - SR, (5 - ST'RIX)

Ay 0D [(Sx,50) - 2 (Rx,x) + (S Rx,87'Rx)]

Apia) [z, x) + (87'Rx, 87 Ra)]
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2
zx.m(u) (x,x) .
Therefore,
A, T = min 1ATD) on?
‘min —1:#:01 (x,x) 2 gy D7 -

T
For the upper bound on A _ (A 4),

A (ATH) = 1R ¢ [l + i, P = Dy, 00 + pF

max

where we have used the fact that ||R||2 = p(R) since R is skew—symmetric

and hence normal [73].

Finally, inequality (4.5) follows from the fact that

k(4 =vraTy -

T
2'mux(A L
R
}'m:hl(A L

Q.E.D.

Thus, if M is not ill-conditioned and xﬂg)(—m is small, then K(A)
min

is small and CGN will converge rapidly. We will return to this

observation in Section 10.4.






CHAPTER 5

Generalizations of the Conjugate Residual Method I

5.1 Introduction

Consider the system of linear equations
Ax=1f, (5.1)

where A is a nonsymmetric matrix of order N with positive—definite
symmetric part. In this chapter we present a class of methods for
solving (5.1) that are modelled after the conjugate residual method and

that exhibit minimization properties like those of CG and CR.

Recall that for symmetric positive—definite problems, the conjugate
residual method computes a sequence of approximate solutions by an

iteration of the form

x +a

iv1 T % iPi »

and the steplength a; minimizes E(xi+1) = “f—A(xi+aipi)“2 as a function

of .i' The direction vectors (pil are computed by a two—term recurrence

of the form
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Pip1 = Tiap * bRy o (5.2)
and they satisfy

(Api.Apj) =0, it . (5.3)

As a result of the ATA—orthogonnlity (5.3), the choice of a, minimizes

“ti+1“2 over the translated Krylov space x, + (tb'Ato""'AitO)'

Note that the bilinear form <v,w> := (Av,Aw) induces a norm even if
A is not symmetric. Thus, this type of iteration is a candidate for a
descent method for nonsymmetric problems. In this chapter, we comsider
a class of descent methods for nonsymmetric problems that combine the CR
solution update with a modification of (5.2). The approximate solution
obtained at each step minimizes the residual norm over some subspace of

a Krylov space based on A.

In Section 5.2, we present the methods and give an overview of
their properties. In Sections 5.3 and 5.4, we present convergence

proofs and error bounds.

5.2 Four Descent Methods
We consider four methods that have the general form given in

Algorithm 5.1.

The choice of a, minimizes “ri+1“2 at each step, so that the
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Algorithm 5,1: Prototype for variational methods.
Choose X -
Compute T,-= f - Axo .
Set Py = Ty .
FOR i = 0 STEP 1 UNTIL Convergence DO
(r.,Ap,)
I U (5.4)
i~ (Apy,Apy)
Xie1 = X3 * o8Py (5.5)
Tieg = Ty - 8jhpy (5.6)
Compute Piy1 - (5.7)

residual norms comprise a nonincreasing seqnence.. We wish to compute

directions {p ]} that produce significant decreases in {"11"2}, with as

little expense as possible.

In the nonsymmetric (positive—~definite) case, a set of directions
that satisfy (5.3) can be computed for use in Algorithm 5.1 as follows:

3 p

B A =" B I (5.8)

»

The two expressions for a, in Algorithms 3.3 and 5.1 are equivalent
(see Theorem 5.2), but we have found (5.4) to be less sensitive to
roundoff error.
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where

b(i) o (Ari+1,Apj)
j (Apj.Apj)

[

i~
'
.

(5.9)

We refer to the method given by Algorithm 5.1 and (5.8) - (5.9) as the
generalized conjugate residual method (GCR). Again, "ri+1"2 is
minimized over X, + <to,Ax°....,A1ro>, and GCR gives the exact solution

to (5.1) in at most N iterations (see Section 5.3).

The work per step and storage requirements of GCR may ﬁe
prohibitively high when N is large. A modification of GCR that is
significantly less expensive per step is derived by limiting the number
of direction vectors used to compute p, ., allowing only k (2 0)
directions. We consider the use of the most recently computed
directions {pj};=1—k+1' with p;,, chosen to be ATA-orthogonal to these

vectors:

i .
+ 5 h(x)p

, (5.10)
jeike1 4

Pj+1 = Tin
[bgi)]~dof1ned as in (5.9).. We refer to this method, due to
Vinsome [74], as Orthomin(k) (see also [80, 81]). Only k direction

vectors need be saved. Both GCR and Orthomin(k) for k > 1 are

.The first k directions [pj)ﬁ;é are computed by (5.8), as in GCR.
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mathematically equivalent to the conjugate residual method when A is

symmetric and positive—definite.

Another alternative is to restart GCR periodically: every k+l
iterations, the current iterate xj(k+1) is taken as the new starting
guess.. At most k direction vectors have to be saved, so that the
storage costs are the same as for Orthomin(k). However, the cost per
iteration is lower, since in general fewer than k direction vectors are

used to compute Piype We refer to this restarted method as GCR(k).

For the special case k = 0, Orthomin(k) and GCR(k) are identical,

with

Piv1 T Ty4p ¢

This method, which we refer to as the minimum residval method (MR), has
very modest work and storage requirements, and in the symmetric case
resembles the method of steepest descent (see [45]). Because of its

simplicity, we consider it separately from Orthomin(k) and GCR(k).

In Table 5-1, we summarize the work and storage costs (excluding

storage for A and f) of performing one loop of each of the methods. We

.Here j is a counter for the number of restarts. The jth

cycle of
GCR(k) produces the sequence of approximate solutions

j(k+1)
=35 (5-1) (k1) 42

35

| GCR Orthomin (k) GCR(k) | MR
Work/ | (3(i+1)+4)N | 4N
Loop | + 1 mv + 1 mv + 1 mv | +1 mv

(2k+3)N

$ o ——

|
(3k+4)N : ((3/2)k+4)N
i

G o e——
[ S SR R— )

Storage | (2(i+2)+2)N (2k+3)N | 3N

Table 5-1: Work and storage requirements of one loop of GCR and
variants.

assume that Ap is updated by

Mooy = Ar 4 3 b(PA
Pivg T M T 200y TRy
i

where ji = 0 for GCR and ji = max(0,i-k+1) for Orthomin(k). The storage

i+l
§=0°

For GCR, Ar can share storage with Api+1. The entries for Orthomin(k)

cost includes space for the vectors x, r, Ar, {p ]i+1, and {Ap,]
J"j=0 i

correspond to the requirements after the kth iteration, The work given
for GCR(k) is the average over k+l iterations. The cost of MR is the

same as the cost of Orthomin(0) or GCR(O)..

.Severnl other implementations are possible. In GCR and in
Orthomin(k) and GCR(k) with large k, it may be cheaper to compute Api+1

(i)
b

can be computed as —(ATAr ,p.)/(Ap.,Ap.), and the previous {Ap,} need
i+1°%j 3" i
not be saved.

by a matrix-vector product. With a third matrix-vector product,
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5.3 Convergence of GCR and GCR(k)

In this section, we giv; convergence proofs for GCR and GCR(k). We
show that GCR is optimal among polynomial-based algorithms with respect
to the norm of the residual and that GCR gives the exact solution in at

most N iterations, and we present error bounds for GCR and GCR(k).

We first establish a set of relations among the vectors generated
by GCR. (See [40] for an analogous result for the conjugate gradient

method.)

Theorem 5,2: If [xi], [ri}, and {Pi] are the iterates gemerated by GCR

in solving the linear system (5.1), then the following relations hold:

(p;.hp) =0, i (5.11)
(ti,Apj) =0, i>3j; (5.12)
(r;,Apy) = (r;,Ar)) ; (5.13)
(ry.ar) =0, >33 (5.14)
(Apg,ar) =0, i>3§; (5.15)
(Ap,,Ar;) = (Ap,,Ap)) ; (5.16)
(zy.8p;) = (zg.Apy) » i (5.17)
(Bgreeesdyd = xguhrgse.  AlTg> = Cxgauiinryd (5.18)
if r, # 0, then 1 $£0; (5.19)

X1 minimizes E(w)['= ||f—Avl2 over the affine space

xo + (po,....pi> . (5.20)

Proof: The directions {pi] are chosen so that (5.11) holds.
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Relation (5.12) is proved by induction on i. It is vacuously true for
i = 0. Assume that it holds for i { t. Then, using (5.6) and taking

the inner product with Apj,
(rt+1’Apj) = (rt.Apj) - at(Apt.Apj) .

If j < t, then the terms on the right-hand side are zero by the
induction hypothesis and (5.11)., If j = t, then the right—hand side is

zero by the definition of a,. Hence (5.12) holds for i = t+l.

For (5.13), by premultiplying (5.8) by A and taking the inner product

with T,

i-1

= < 5 (i-1)
(ri,Api) = (ti.Ati) + jio bj (r

i’Apj) = (ri,Ati) »

since all the terms in the sum are zero by (5.12).

To prove (5.14), we rewrite (5.8) as

$G-n
rj=Pj_t§obt P, -

Premultiplying by A and taking the inner product with T (i> 3,

(!1’AI

i1 (4
P = (el - tzb bV (a0 =0,

by (5.12).
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Similarly, for (5.15) and (5.16),

(Ap.,Ar,) = (Ap,,Ap,) - jil b (ap L ap.)
Pio j Pi’ Pj =0 t pi' Pt

_ (Api’APi) B for j =i
0 » for j < i,

by (5.11).

Relation (5.17) is proved by induction on j, for j  i. It is trivially

true when j = 0. Assume that it holds for j = t < i. Using (5.6),
(ri,10-80)) = (r,Ap;) — a (Ap,,Ap;) = (rg,4p))
by the induction hypothesis and (5.11).

Relation (5.18) is proved by induction on i. The three spaces are
jdentical when i = 0. Assume that they are identical for i { t. Then

t
{pj}j=0 C<ryseeesyyq>. But by (5.8),

pt)

+
=0 3

Pra1 = T Py

so that <p;,...,p 1> is a subspace of (TgseeesTiyq>. By (5.11), the

vectors {Pj}sié are linearly independent. Hence, the dimension of

<t0....,rt+1> is greater than or equal to t+l, which implies that

+
{rj)§=$ are linearly independent and <P0"'°'pt+1> = (ro,....rt+1).

Similarly, by (5.6) and (5.8),
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T )
Peeg = Tg = AR jo 4 47

t+1 r

t
By the induction hypothesis, r., Ap,, and {pj)j=0 8 <{ro,Arg,...,A 07>

so that (po""’pt+l> is a subspace of (ro.Azo.....At+1to>. Again, the

two spaces are equal because the (pj] are linearly independent.

The proof of (5.19) depends on the fact that the symmetric part M of A

is positive—definite, If T # 0, then by (5.13),
(ri'Api) = (rl,Azi) = (ri,uri) >0,

so that (ti,Api) # 0, whence P # 0.

For the proof of (5.20), note that

i
xi+1 = xq + jéo ijj .

Thus, E(xi+1)2 is a quadratic functional in a = (°0""‘"i)T° Indeed,
using (5.11) to simplify the quadratic term,

B, )% = lle, = 3 a.ap,I2
*i+1) T 1% s Pyl

= (ro,ro) -2

I IVl

i
5 .2

a. (r,,Ap,) + 2 a (Ap.,Ap.) .

Pt el Jed L N R M

Thus, E(w) is minimized over X, + (po,...,pi> when

. - (ro.Apj) _ (rj,Apj)
K] (Apj.Apj) (Apj;Apj)
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by (5.17).

Q.E.D.
Corollary 5,3: GCR gives the exact solution to (5.1) in at most N
iterations.
Proof: If r, = 0 for some i { N-1, then Axi = f and the assertion is
proved. If r, # 0 for all i { N-1, then P; # 0 for all i { N-1 by
(5.19). By (5.11), (pi]?;é are linearly independent, so that
(po,...,pN_l) = RN. Hence, by (5.20), N minimizes the functional E
over RN, i.e., xy is the solution to the system.

Q.E.D.

This result does not give any insight into how close x, is to the

solution of (5.1) for i < N. We now derive an error bound for GCR that
proves that GCR converges as an iterative method. Recall that J = IrlAT

is the Jordan canonical form of A.

Theorem 5.4: If {r;} is the sequence of residuals generated by GCR,

then

(M)
lell, ¢ min Naywlly Regly < [1 - 22 ——]"2 Mg, . (s.20)
94 e Py : Mpax (A4

Hence, GCR converges. If A has a complete set of eigenvectors, then

e ll, < x(T) M Hggll, . (5.22)
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where

M, := min max !qi(l)l . : (5.23)
9, & P; A e o(A)

Moreover, if A is normal, then

5.2
e, <y Beglly - (5.20)

Proof: By (5.18), the residuals {ri} generated by GCR are of the form

T, = qi(A)ro for some q; & P;. By (5.20),

- 5.25)
“rinz min ||q1(A)1'0||2 . (
9 & Py

The first inequality of (5.21) is an immediate consequence of (5.25).

To prove the second inequality note that ql(z) =1 + az 8 Pl’ and

min la, (ol ¢ Nay )l < g W

9 8 Py

But
aA)x, (I+aA)x)
] (A)“Z - max ((X+ »
4 2 140 x.x
(x,Ax) 2 (Ax,Ax)
=':;; [1 + 2a :,x te X,x ] .

Moréovet.

T
(Ax,Ax) _ (x,A Ax) T
:,x = ?x,xf £ gy (A LA

and, using the positive-definiteness of M,
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(x,Ax) _ (x,Mx)
(x,x) ~ (x,x) 2 Ag (D >0

Hence, if a < O,

Mo, (B2 < 1+ 23, (e + 2, (ATMG? .

A (M)
This expression is minimized by a = - __Eie—i__' and with this choice of
A _(A7A)
max
a,
2
A (M)
i
oy lly ¢ [1 - =21/
Apax (474

which concludes the proof of (5.21).
To prove (5.22), we rewrite (5.25) as

= -1
"riﬂz = min |IT G T roﬂz
q; s Pi

~1
<l B, min  lg (D, lixgll, .
q; s P1

Since A has a complete set of eigenvectors, J is diagonal, so that

min Ilqi(nll2 = min max Iqi(x)l )
q; 8 P, q; & P, A & o(A)

whence (5.22) follows.

If A is normal, then T can be chosen to be an orthonormal matrix, which

proves (5.24).
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Since the symmetric part of A is positive-definite, the spectrum of
A lies in the open right half of the complex plane (see [41]1). Thus,

the analysis of Manteuffel [49] shows that min "qi(A)H2 and M; approach
q. & P,
i i

zero as i goes to infinity, which also implies that GCR converges.

Theorem 5.4 can also be used to establish an error bound for

GCR(k).

Corollary 5.5: If (ri] is the sequence of residuals generated by

GCR(k), then

J
ey eyl <L min g (WU, sl (5.26)
91 ® Pray
so that
2

Ao (M)

e, ¢ [1 - 22 T2 lisgh, . (5.21)
il2 ~ T ol2
max

Hence, GCR(k) converges. Moreover, if A has a complete set of

eigenvectors, then
3
e anylly € [ROD My 1 Bl (5.28)
and if A is normal, then

J
e ey lly & Oty p)? Bmglly (5.29)

Proof: Assertions (5.26), (5.28), and (5.29) follow from Theorem 5.4.
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To prove (5.27), let i = jk + t where 0 { t < k. Then

2
A (M)
ey lly < [1 - 2282 e
Jk+t"2 T jx"2
;'mnx(A A)
by (5.21), and
Aaga @ 1o
e ylly ¢ [1 - 22— P2 g,
A (A7A)
max

by (5.26) and the second inequality of (5.21).

Q.E.D.

Finally, note that the requirement that M be positive—definite is
necessary. If M is indefinite, then for some i < N, (p.]; o may be
i’ j=
j i
linearly dependent while {AJrolj=o are independent. The result is that
T # 0, but a; = 0 and Pi41 = 0, so that GCR breaks down. This occurs,

for example, in the following symmetric indefinite system [81]:

HIEENHE

With initial guess X, = (1, 2)T, GCR breaks down on the first iteration.
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5.4 Convergence of Orthomin(k)

In this section, we present convergence results for Orthomin(k) and
an alternative error bound for GCR and GCR(k). We also present an
analysis of Orthomin(k) in the special case when the symmetric part of A

is the identity matrix.

The vectors gemerated by Orthomin(k) satisfy a set of relations

analogous to Theorem 5.2.

Theorem 5,6: The iterates {xi]. (ril.Annd (pi] generated by Orthomin(k)

satisfy the relatioms:

(Apj,Apj) =0, j=ik..il, i2k; (5.31)
(r,Ap) =0,  j=ik-l..,d71, Q2K (5.32)
(r;,Ap)) = (r;,Ar,) (5.33)
(r;,Ary 1) =0; (5.34)
(Ap,Ar;) = (Ap;.Apy) (5.35)
(tj’Api) =(r; 4.809) » = i-K,ee0nd i)k ; (5.36)
if T # 0, then p; 0 ; (5.37)

for i 2 k, i1 minimizes E(w) over the affine space

X gt <pi-k""‘pi> . (5.38)

We now prove that Orthomin(k) comverges. Since the analysis
applies as well to GCR, GCR(k), and MR, we state the results for all

four methods. We first prove two preliminary results:
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Lemma 5.7: The direction vectors {p,} and the residuals {r;} genorated

by GCR, Orthomin(k), GCR(k), and MR satisfy

(Ap;,Ap;) & (Arg,Ar)) . (5.39)

Proof: The direction vectors are given by
- 3 4 (i-1)
Py =1 +2b ey,

where the limits of the sum are the same as in (5.8) for GCR and GCR(k),

and (5.10) for Orthomin(k). Therefore, by the A?Arorthogonality of the

{p,} and the definition of bgi_l),

(o Ao = (hrpar) +2 368 D e ap) + 3 05502 (p 00
= (Ari,A: ) -3 iffi:fflli
i (Apj.Apj)
< (Arg,Ary)
0.E.D.
Lemma 5.8: For any real x # 0,
::;ﬁl) uin (5.40)

3
A'min(u)klmx(m + p(R)

Proof: Letting y = Ax,

-1 -1, ,-T -1_,-T
(x,Ax) _ (y,Ay) _ 1 (y,(A "+A T)y) A THA
(Ax,Ax) = (v,y) 2 (y,y) 2 A0 =) .
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A laa T
—z

Thus, it suffices to bound Ami ( ). Conmsider the identity

n

B £ 26 350 N { Nl (5.41)

which holds for any nonsingular matrices X and Y, provided that X+Y is

also nonsingular. With X = 2A and Y = 2A?, (5.41) leads to

tenTeneo1? =t - &H ¥ie - o1t

o+ S imt

For any x # 0,

(x, M + B IR)x) = (x,Mx) + (Rx,M 1Rx) > 0,

-1, ,-T
so that M + RTM—IR is positive-definite. Therefore A——%é—— is positive—

definite and

A A—le—T’ = : Toig, °
min o~
Agap M + RMIR)

(x,Mx) (x.nTM‘lkx)]
X, X) (x,x)

A M + RTM_IR) = max
max x#0

-1
(Rx, W 'Rx) (Rx,Rx)

RS xmax(M) + mex (Rx,Rx) (x,x)

x#0,Rx#0

~1, el
SA () + A () 113 R||2

max

_ 2
= Apa 00 + p(RZ/2 0D
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Hence

A lea T 1

min 2

5 .
Apa 0 + PR/, 00
Q.E.D.

The following result shows that Orthomin(k) converges and provides

another error bound for GCR, GCR(k), and MR.

Theorem 5,9: If [ri) is the sequence of residuals generated by GCR,

Orthomin(k), GCR(k), or MR, then

2
Ay OO
ey ¢ [1 - 22— T2 el (5.42)
A _(A7A)
max
and
Apin 00
in
e i, < [1 - = 12 tegn, (5.43)

2
Apin 02, 00 + p(R)

Proof: By (5.4) and (5.6),

= 2
||riﬂﬂ = (r,r,) - 2a;(r;,Ap;) + aj(Ap;,Ap;)

2 2
(r,Ap,) . (r;,Apy)
(Api.Api) (Ap;,Ap,)

2
“tinz 2

2 (ri.Api)2
=le W] - 70— .
i'2 (Api,Api)
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Therefore,
2

ey lly  (ryode) (rihey) (1- (r;,Ar) (r;,Ar)

I “2 (’1”'1) (Api,Api) (ri.ri) (Ari.Ati)

by (5.13)/(5.33) and Lemma 5.7. But

(ti.Ari)
(ry,ry) 2 A3, 00
and
(ri,Ari) . (ri.ti) (l‘i.Ati) N )'minm)
(Ar ,Ar)) T (r,,r.) T,,
F St § (ri.A Ari) i*71 ).mu(A A)
so that
1/2
2 & =0, ,
cry <[ - M] z

which proves (5.42). By Lemma 5.8,

(ry,Ar) N Apin (M)
(Ar,Ar;) 2
f S § A in DAy, () + p(R)
so that
2
AL (M)
min i/2
ey, M, < 1 - N il LA P

Mg in DA () + p(R)
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which proves (5.43).

0.E.D.

In general, the two error bounds given in Theorem 5.9 are not

comparable., They are equal when M = I, and (5.43) is stronger when

A___(A)-a_. (A)
R =0, When R = 0, the constant [ max min ]1/2 in (5.43)
A _(A)
max
A _(A)-A_ . (A)
resembles the constant [—m—“——-—-—lil——]llz in the error bound for the
l’max(A)ﬂ'min(A)

steepest descent method (see [45]). Thus, we believe that the bounds in

Theorem 5.9 are not strict for k > 1. See Table 11-8 for a comparison
ey,

of these bounds with observed maximum values of .
e M,

If M = I, then Orthomin(1) is equivalent to GCR, and we can improve

the error bounds of Theorem 5.4 and Theorem 5.9.

Theorem 5,10: If A= 1I - R with R skew-symmetric, then Orthomin(1l) is
equivalent to GCR., Moreover, the residuals [ri} generated by

Orthomin(1) satisfy

2

e ll, ¢ — e ll, (5.44)
2% cpmnd + e 02
where
C(r) := 1+)’A +1 .
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Proof: To prove that Orthomin(1l) is equivalent to GCR, it suffices to
() _ o in (5.9) for j € i~1. But the numerator of b;” is

show that bj

a

(At“l.Apj) = (r1+1'Apj) - (Rriﬂ,Apj) .
By (5.12),

(ri+1’Apj) =0 = - (ri+1.Apj) .
Hence, by the skew—symmetry of R,

’ _ 2

(Ariﬂ.Apj) = - (r1+1'Apj) + (ri+1’RApj) = - (r1+1'A Pj) .

But by (5.6),
2 _1 _ =

(ri+1‘A pj) = T (ri_._l.A(tj rj+1)) 0
for j ¢ i-1, by (5.14).
Since A= 1 - R is a normal matrix,

Iz ll, <y lizglly
by Theorem 5.4, where l(j is as in (5.23). But

M, ¢ min max lqj(1+1u)| .
77 q e py lnlsom)

A bound for Hj is obtained using the particular choice

T, (w/p(R))
9(1+ip) = TT, G730 T



where Tj(Z) is the jth Chebyshev polynomial [30]. It is well known

(see [75]) that

T, (w/p(B) L
max TT, (i7p®NT T TT, (i/pEN ]
lnlgpry 50 HP Findd

2
£ —3 ?
Clp(m)I + [-c(p(r))1 7

where

2
e = {1+;.’L +1

Inequality (5.44) follows.
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0.E.D.



CHAPTER 6

Gonirllizltions of the Conjugate Residual Method II

6.1 Introduction
In this chapter we discuss two other generalizations of the

conjugate residual method for solving linear systems of the form
Ax=f, (6.1)

where A is a nonsingular, nonsymmetric matrix of order N. Like the
methods of Chapter 5, these methods minimize the residual norm over some
subspace of a Krylov space based on A, Each has a variant analogous to
GCR that displays N-step convergence if a complete set of vectors is
retained, and each can be restarted or truncated to produce a less
costly variant at the expense of finite termination, and in one case,
robustness, They differ from the methods of Chapter 5 in the form of

either the solution update or the direction update.

In Section 6.2, we present a generalization of CR introduced by
Axelsson [2] that is applicable to systems where the coefficient matrix
has positive-definite symmetric part and show that it satisfies the same

error bounds as those established for Orthomin(k) in Chapter 5. Imn
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Section 6.3, we present an alternative computation of direction vectors
introduced by Young and Jea [81] for use with Algorithm 5.1 that can

also be applied to indefinite problems.

6.2 Axelsson's Generalization of the Conjugate Residual Method

There are two vector updates in the conjugate residual method that
can be modified to produce a method applicable to nonsymmetric problems.
We derived the generalized conjugate residual method by replacing the
two-term recurrence for the direction vectors in CR with (5.8) - (5.9).
Axelsson [2] has proposed an alternative modification that uses a more
complicated update for [xi] with essentially the same update for the

direction vectors. This technique is shown in Algorithm 6.1.

The computation of the steplengths (‘gi))}so requires the solution
of a least squares problem:
minimize Il B(i);(i) - "2 ) (6.2)
where B(1) := [Apy....,Ap;1. The choice of {a§i—1))j;% forces

e ll, = min lla;arzl,
9 e P1

to be satisfied, so that this method is equivalent to GCR. Ve refer to

this method as LSGCR, for the "least squares generalized conjugate

residual” method. When restarted every k+l steps, the resulting method

is equivalent to GCR(k).




55
Algorithm 6,1: Axelsson's generalization of the conjugate residual
method.
Choose X -
Compute £, = f - Axo .
Set Py =1y -
FOR i = 0 STEP 1 UNTIL Convergence DO
N S
T s T e I (6.3)
where {a{P}}_ are chosen to minimize lr;, Il
j §=0 i+1'l2
1
< (i)
T =r, - A
R N Rt (6.4
(Ar;,q042y)
b, = = ————

i (Api.Api) (6.5
Pi41 = Ty4p * P3Py (6.6)
Apjyq = Aryyy + bylp; . (6.7

In the truncated version of Algorithm 6.1, (6.3) is replaced by
i
(i)
g =Xt 2 a P (6.8)

jeimker 4 37

(i)
where k > 1 and (lj }§=i—k+1 are chosen to minimize “ri+1“2 [2]. This

requires the solution of a least squares problem:

(1)
minimize [l B**'a ) _ r, “2 R (6.9)
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for g(i) = (ai—k+1""'°i)T' where B(1) ;= [Api-k+1""'Api]' We denote

this method by AXEL(k). For k =1, it is equivalent to Orthomin(1).

1

| LSGCR | AXEL(k) |
| | 3Gi+1)+)N | |
| Work/ | + 1 mv | (3k+4)N |
|Iteration| 2 | + 1 mv |
| I+ 0@ | |
| Storage | (2(i+2)+2)N | |
| | 2 | (2k+3)N |
| | + 0(i%) | |

Table 6-1: Work and storage requirements of ome loop of Axelsson’s
methods.

The costs of LSGCR and AXEL(k) are given in Table 6-1. If the
least squares problems (6.2) and (6.9) are solved using the normal

equations

B(i)TB(i)‘a_(i) - B(i)l‘ti (6.10)

then the high-order terms for this step are i+2 (respectively k+l1)

inner—products to update B(i)TB(i) and compute B(i)Tri for LSGCR

(respectively AXEL(k)) and, for LSGCR, 0(12) multiplications to update

(DTG ()

the factorization of B and solve for g The storage cost

includes space for x, r, Ar, (pj], and [Apj}. For LSGCR, we also

(i)TB(i)

include storage for the factors of B and note that Api+1 can

overwrite Azi+1.
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Theorem 6.2: The iterates {xi}, (ri], and {pi} generated by AXEL(k)

satisfy the relations:

(Ap;,Ap, 1) =0 ; (6.11)
(ri,Apj) =0, j=ik,...,i1, iYk; (6.12)
(ri.Api) = (ti.Ari) H (6.13)
(ti,Atj) =0 ; j=i-k+1l,...,i-1 , i) k ; (6.14)
if r, # 0, then Py $0; (6.15)
if T # 0, then [Pj};=i—k+1 are linearly independent, (6.16)

so that B(i) has full rank ;
for i ) k, X minimizes E(w) = nf-Alﬂz over the affine (6.17)

space x, + <p1—k+1""'Pi) .

Proof: The proof that (6.11) - (6.15) and (6.17) hold parallels the
proof of Theorem 5.2. For (6.16), assume that [pj);=i—k+1 are linearly
dependent, so that p; & S := <pi-k+1”"'pi-1>‘ Then by (6.6), T, e S.
But by (6.12), (ri,As) =0 for all s & S, which, in conjunction with the

positive—definiteness of M, implies that r, = 0,

i
Q.E.D.

This result shows that AXEL(k) does not break down. Assertion

(6.16) shows that the vector of steplemgths g(i)

is uniquely defined.
The possibility that Tivl and p; may become collinear, cited as a

potential difficulty in [2], is precluded by (6.12).
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The following result shows that AXEL(k) converges.
Theorem 6,3: The residuals generated by AXEL(k) satisfy
2
AL (M)
_ ‘min i/2
e, < [1 R (ATA)] llegll,
max
and
2
AL (M)
i
e ll, < 2 - zin 12 gl
Anin(")lnlx(u) + p(R)
~ ~ ~ (ry,4p))
Proof: For any i, let X4 5 X t a.p;, where a, := 7+—— . That

i (Api.Api)'

is, ;1+1 is generated from x; and p, by one step of Orthomin(1). The

~

residual is given by Ti41 =T 'iApi' and “ri+1"2 < “ri+1“2 by the

(1)

choice of {aj }=1—k+1. Note that

(Ap;,Ap)) < (Ary,Ar)) ,
as in Lemma 5.7, so that

Iz "2 (r,,Ap,) (r ,Ap;) (r,,Ar;) (r,,Ar;)
i+172 i i i i i i i i

=1- £1- B
ﬂriﬂi (ry,r) (Ap;,4Ap,) (rg,ry) (Arg,Ar))

by (6.13). Therefore, as in the proof of Theorem 5.9,

2
AL (M)

~ min 1/2

0, <[ - =22 =0,

A _(ATA)
‘max
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and

2
lnin(“)

~ _ 1/2
I, < [2 T2 e,

Ain DA, 0D + p(R)
O.E.D.

6.3 Orthodir

Orthodir, proposed by Young and Jea [80, 81], is similar to GCR in
that the recursion for the direction vectors in CR is replaced by a more
expensive computation while the rest of CR is held intact. Unlike GCR,
Orthodir is guaranteed to converge even if the symmetric part of A is
not positive-definite. However, although the iteration can be truncated
as in the derivation of Orthomin, the truncated algorithm is not

necessarily convergent.

In Orthodir, Algorithm 5.1 is combined with the following Lanczos-

like method for computing a set of AFhrotthogonll direction vectors:

i
Pisp = Apy jfo"j 2. (6.18)
where
2
(AP, ,Ap.)
(i) _ _ (Apy.Apy
bJ (Apj,Apj) ’ 1L,

In Orthodir(k), the truncated variant of Orthodir, (6.18) is replaced by
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i
Ap, + > p{d

i jeiker d Py . (6.19)

P4 ~

The costs of Orthodir and Orthodir(k) are given in Table 6-+2. They are

identical to those of GCR and Orthomin(k), respectively.

|  oOrthodir | Orthodir(kx) |
| Work/ | (3(i+1)+4)N | (3x+4)N |
| Loop | + 1 mv | + 1 mv |
| Storage | (2(i+2)+2)N | 2k+3)N |

Table 6-2: Work and storage requirements of ome loop of Orthodir
and Orthodir(k).

If M is positive—definite, {;i] is the set of direction vectors
generated by GCR, and Py = ;0, then p; = Yisi for some scalar 75
(see [80, 81]). Thus, Orthodir is equivalent to GCR. Moreover,
{Pgseeespy? = (ro,Ato.....Aito) even when M is indefinite, so that

Orthodir converges for general nonsingular A [80].

For symmetric matrices, (6.18) reduces to the three—term recurrence
given by Orthodir(2). When used with Algorithm 5.1, the resulting
variational method is equivalent to the c;njngate residual method [12].
If A=1- R with R skew-symmetric, then Orthodir(2) is equivalent to
Orthodir. (The proof of this fact parallels the proof of the analogous
result for Orthomin(1); see Theorem 5.10.) However, we know of no
theoretical results that guarantee the convergence of Orthodir(k) for

more general nonsymmetric problems. Indeed, we have encountered several



linear systems for which Orthomin(k) fails to converge. For example,

consider the problem

1 -1 0 O
0 1 -1 o
0o 0 1 -1
0 0 0 1

which has solution x =

=OoO0O

1, 1,1, T,

With initial guess x, = 0,

0
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Orthomin(2) generates the following sequence of relative residual norms:

.

ﬂriﬂzlﬂroﬂz

1.0000
0.7071
0.5774
0.5000
0.2132
0.2013
0.1951
0.1949

SN MAhWNEO

i

8

9
10
11
12
13
14
15

"rinzlﬂtouz

0.1949
0.1949
0.1949
0.1949
0.1949
0.1949
0.1949
0.1949 .

The computed value of 15 is (0.8358, 0.8349, 0.8405, 0.8079)T.






CHAPTER 7
Generalizations of the Conjugate Gradient Method: Galerkin and

Lanczos Methods

7.1 Introduction

In this chapter, we consider generalizations of the conjugate

gradient method for solving linear systems of the form
Ax=f, (7.1)

where A is a nonsymmetric matrix of order N with positive-definite
symmetric part. Because the bilinear form (v,w)> := (Av,w) is not an
inner product, the minimization properties of CG do not lead naturally
to methods for nonsymmetric problems. However, the Galerkin condition
and the relationship between CG and the Lanczos method have led to

generalizations of CG applicable to monsymmetric problems.

The second formulation of the conjugate gradient method presented

in Chapter 3 is derived by imposing a Galerkin condition on the basic
iteration
x

141 T Xgog oy leT tx —xg ) (7.2)
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We consider two generalizations of this formulation of CG for solving

nonsymmetric linear systems.

The first is the generalized conjugate gradient method (GCG) of
Concus and Golub [13] and Widlund [75]. In Section 7.2, we introduce
GCG as a method for solving systems where the symmetric part of A is the
identity matrix, and we present error bounds. In Section 7.3, we derive

an equivalence between GCG and CGNE.

The second gemeralization of (7.2) is Orthores, proposed by Young
and Jea [80, 81]1. Like GCR and Orthodir, Orthores displays N-step
convergence if a complete set of vectors is retaimed, and it can be
modified to produce a less costly method with the loss of the finite
termination property (and possibly robustness). We discuss Orthores in

Section 7.4.

A generalization of the Lanczos method for computing the
eigenvalues of nonsymmetric matrices is Arnoldi’s method, which replaces
the 3-term recurrence of the Lanczos method with an i-step recurrence at
step i [1], Saad [60, 61] has shown that Arnolhi's method can be used
to develop methods for solving nonsymmetric linear systems, and he has
also considered heuristics for truncating the iteratiom to cut expenses.

We consider these techniques in Section 7.5.
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7.2 The Generalized Conjugate Gradient Method = wt+1(1 - at)(rt.rt) ,

The generalized conjugate gradient method was the first CG-like by the induction hypothesis and the skew—symmetry of R. Thus, if

method developed for nonsymmetric matrices that was not based on the o, = 1, then (ft+1"t) = 0. Similarly,

normal equations. We present it as a method for solving systems in
= - ) + (Rr_,r__.) ,
which the symmetric part of the coefficient matrix is the identity (Fragoreg) = -0 ) (regore ) +op (Rer )

matrix, i.e., A= I - R with R skew symmetric. We consider its use for which is zero when

more general systems in Chapter 9.
- _ (Rrp,r._,) ]-
Concus and Golub [13] derived GCG by choosing the real scalars {ai} Ye41 = [1 (rt~1’rt—1)
and [mi+1] to force the residuals of the iterates generated by (7.2) to
To complete the induction, note that for j & t-2,

satisfy
(ri,rj) =0, i<y, (7.3) (rt+1.rj) = “t+1(R’t"j) = —wt+1(rt.Rrj) .
This approach resembles the classical construction of orthogonal and

polynomials [17].

Rtj e <rj-1"j”j+1> >

The residuals of (7.2) satisfy

by (7.4), so that (rt,Rrj) =0.
Tisl T Tiog POy (aghny - my -x ) Finally, the computation of w,,  can be simplified using the
=(1 - “i+1)ri—1 + w1 - a)r, + w;,q10,RT; . (7.4) observation that
Relation (7.3) trivially holds for i = 0. Assume that it holds for Rri-l = %;Ti tv

i<t. By (7.4),
for some v e (ri-l‘ri—2>' so that

(r ) =1 -w ), 4,r) +o, (1 -a)(r,,r ) - -1
t+1° Tt t+1’ Fe-17T¢ t+1 t’ T Ty - (Rry,r, ) = (r,Rry ) = wi(ri-ri) ,

0410 (RE,T,)
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by the skew-symmetry of R and (7.3). Thus, the generalized conjugate

gradient method is as follows:

Algorithm 7,1: The generalized conjugate gradient method
(6c6) [13; 751.

Set x ;3 =0.

Choose X -
FOR i = 0 STEP 1 UNTIL Convergence DO

T, = f - Axi
ny = (ry,r;)

1, if i

L]
o

Vi1 T

v
[

-1
[1+(n1/ni_1)/wi] , if i)
Til T T Pl v r oox )

The work per loop of GCG is 2N multiplications plus one matrix—
vector product, Storage is required for Xis Xy g0 and r; x;4p Can
overwrite X1 If the matrix-vector product Rr can be computed easily,

then the residuals could be updated by

Tyl = (1 - 09)7 g ¥ wyqRey .

The work per iteration would then be 3N multiplications plus one matrix—
vector product by R, Since a, = 1, GCG is less expensive than the

three—term version of CG.

Note that <r0""’t1> (:(ro,Axo....,Air0>. Moreover, the {ri} are
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linearly independent by (7.3), so that this inclusion is actually an

equality. Hence, (7.3) is equivalent to the Galerkin condition

(Axi,v) = (f,v) for all v & (ro,Aro,....Ai—lto) .

The following result establishes an error bound for GCG analogous

to the bound for Orthomin(1) (see Theorem 5.10).

Theorem 7,2: The error at the ith step of GCG satisfies
2 .
x—=x I, < Ix-x I, ,
12 % ot + [-cpm1™t T 02
where

2
cah) = Yt + 1 .
A
This result, due to Eisenstat [21], is somewhat stronger than the
original bound presented by Widlund [75] and was first proved for the
even iterates by Hageman, Luk, and Young [37]. It implies that GCG will

converge rapidly if p(R) is not too large.

Finally, we remark that GCG, like CG, is related to the Lanczos
method. Given a vector Vi such that "vlﬂ2 =1, an orthonormal basis for
the Krylov space Si := (vl,va,...,Ri_1V1> can be computed by a two—term

recurrence of the form

Bjsrvier = BY; *a5vi .
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(The proof of this fact is essentially the same as the derivation of GCG
T,
0
given above.) Let vy o= “;;“i‘ and let x; be the point in xo + Si whose
residual is orthogonal to Si‘ Then x; is the 1th GCG iterate. This

observation is due to Widlund and is the basis of an altermative

derivation of GCG [75].

7.3 A Relationship between CGN and GCG

Again assuming that the symmetric part of A is the identity matrix,
we now show that there is an equivalence between GCG and CGNE (Craig's
method). This result was first proved in a different manner by Hageman,

Luk, and Young [37].

Let {xi] denote the iterates gemerated by GCG, and let [;i} denote
the iterates generated by CGNE. We show that if X = ;0' then Xy; < ;i
for i 2 0. Following Hageman et. al., we refer to this relationship as
"virtual equivalence.” We establish it by showing that the even
‘iterates of GCG satisfy the orthogonality characterization of CG given

by Theorem 3.2, for the coefficient matrix AT = I- Rz.

Theorem 7.3: If A= I — R, then the even residuals [tZi) generated by

GCG satisfy
r,., =4 (I—Rz)r (1.5)
2i i 0’ *
(rZi’ij) =0, i+3, (7.6)

where q; s Pi' Thus if xg = ;0' then ;= ;i’ the iR iterate

generated by CGNE.
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Proof: We need omnly prove (7.5), since GCG was derived so that
(7.6) holds. We show that the residuals {ri) generated by GCG satisfy
= 4R 1.1
where Ei is a real polynomial of degree i, Ei(l) =1, and
- even, if i is even
a4 is
odd, if i is odd .
Assertion (7.5) follows with a,(t) = 321(/1:?) .
VWe prove (7.7) by induction. It is clearly true when i = 0. Assume
that it holds for i { j. Since a, = 1, (7.4) reduces to
Ty = (1 - uj+1)rj_1 + mj+1Rrj
=[Qa - mj+1)qj_1(R) + “j+1k qj(k)] T, - (7.8)
The conclusion is a straightforward consequence of (7.8).
Q.E.D.

The work per step of two iterations of GCG is 4N multiplications
plus two matrix—vector products. This contrasts with 5N multiplications
and two matrix-vector products for CGNE (see Algorithm 4.2). GCG
requires 3N storage, compared with 4N for CGNE. Thus, GCG is a more

efficient method than CGNE for solving problems where A = I — R,
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7.4 Orthores
Young and Jea [80, 81] have proposed a gemeralization of the three—
term formulation of CG (7.2) similar in spirit to GCR and Orthodir in

i
which r1 and ﬁxj}j=0 are used to compute X410

Algorithm 7.4: Orthores [80, 811,
Choose X - .
Compute T, = f - Axo .

FOR i = 0 STEP 1 UNTIL Convergence DO

(Ar,r))
(i) i’
a.1 ﬂ(t—‘T‘;—, J=0,...,1
I
i
be (Faw
j=0
e =vat L gm0,
i
5 (1
X =byr o+ jiocj x
T = -b,Ar , + i c(i)r
i+l St SN
The scalars [I;i))}=o, b;, and {c;i)]}=o are determined so that

(rox) =0, 143, (7.9)
and

§ NE I
j=0 4 '
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We omit the derivation, which is straightforward. The requirement that
M be positive—definite is necessary: Orthores breaks down on the first

step for the problem (5.30) given in Chapter 5.

As in GCG, <ro,...,ri> = (ro,Aro....,Alto) and (7.9) is equivalent

to the Galerkin condition
(Ax;,v) = (£,v)  for all v e <rg.Arg.....A  Trp> . (1.10)

In the truncated version of Orthores, demoted by Orthores(k), the
(i)

scalars ‘j are defined to be zero for 0 { j { i-k. The update for the

solution then has the form

i
=bx, + 3 cgi)xj . (7.11)
jik+l

The three—term recurrence from which Orthores is derived corresponds to

Orthores(2), and when A = I — R, Orthores(2) is equivalent to GCG.

The work and storage costs of Orthores and Orthores(k) are given in

Table 7-1.
| Orthores | Orthores(k) |
| work/ | (3(i+1)+3)N |  (x+3)N |
| Loop | + 1 mv I + 1mv |
| storage | (2(i+2)+1)N |  (x+1)N |

Table 7-1: Work and storage requirements of one loop of Orthores
and Orthores(k).
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As a result of the orthogonality/Galerkin conditions (7.9)/(7.10),
Orthores satisfies error bounds similar to those for GCR given in
Theorem 5.4. The following result gives the analogue of the first part

of (5.21).

Theorem 7,5: Orthores computes the solution to (7.1) in at most N

steps. The iterates gemerated by Orthores satisfy

heoe l, ¢ 2 o, (ol Nx—x,l
x—x { — min liq,(A) x-x, . (7.12)
i"2 kmin(“) q, 8 P i 2 072

Proof: The first assertion follows immediately from the orthogonality

relation (7.9).

For the second assertion, note that

ex 2 ¢ —L —(z ,xx,) . (7.13)
if2 >R TR

Let S, := <r0.Aro.....A1_1to>. For any v ¢ S,
Xy = xmxg - V- (xi-x0 -v) = x5 -V + w,

where w ¢ Si. Hence, using (7.10) and the Cauchy-Schwarz inequality,
(riox—x) = (r,xx5 - ¥) ¢ Bzl Bx-x, - vll, .

so that

(ri,x~xi) < "A“2 "x-xinz min "x-xo - v"z . (7.14)

v e Si
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But for any v ¢ Si,
v = si—l(A)ro = As;_,(A) (x-x()
for some real polynomial Si-1 of degree i-1, so that
X, - v = qi(A)(x—xo) , (7.15)
with q; 8 P,. Combining (7.13), (7.14), and (7.15),
x| I, " 1
x-x.ll,{ —%—~  min q, (&) (x-x ), ,
i"2; Anin 9 ¢ P, i 0772
whence (7.12) follows.
Q.E.D.

Ve know of no result that proves that Orthores(k) is convergent.

7.5 Projection Methods

Saad [60, 61] has considered a class of oblique projection methods
for solving (7.1). Let Ki and Li be two i—-dimensional subspaces of RN.
Following Saad [61], we define an oblique projection method as onme that
computes an approximate solution x; 8 x + xi to (7.1) whose residual T
is orthogonal to Li' All the techniques we have considered are oblique
projection methods. For example, GCR is such a method with

Ki = (po,...,pi_1> and Li = <Ap0""‘Api—l>' In this section, we focus

on one technique that is a generalization of the conjugate gradient
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method.‘
Consider the following generalization of the Lanczos method for
nonsymmetric matrices:
h A § h 16)
41,541 T AV & tjve * (7.

where by, = (vi,Av,) for t < j and by, ; is chosen so that llv, ,ll, = 1.

This method is due to Arnmoldi [1]. By the choice of {h ]j

tji t=0"
(vj.vt) = sjt ) (7.17)
so that {vj};=1 is an orthonormal basis for <v1.Av1....,Ai_1v1>. The

construction (7.16) can be written in matrix form as

T
AV = ViBy *+ By, 15410 ¢ (7.18)

where v, = [vl....,vi], and H; is the upper-Hessenberg matrix whose

nonzero elements are {htj). Relations (7.17) and (7.18) imply that
H, = viAv (1.19)
i 1774 ¢ ¢
This construction is the basis for a class of oblique projection

methods for solving (7.1). Given an arbitrary initial guess xy with

*
Saad presents several other examples. One is another algorithm that
is equivalent to GCR. See [22, 61].

15

T
0
residual Ty, let vy = “;5“; and let Ki = Li = (vl,...,vi). Then the
oblique projection method computes
x, = x,t Vig(i) such that V'fri =0 . (7.20)

(i)

These can be combined into the single equation for ¢ :

T (i) _ T
ViAv.e' = vieg (7.21)

Relation (7.17) and the definition of vy imply that

T
Vizg = lxgllyey

which, with (7.19), implies that (7.21) can be written as
(i) _
He' " = lzgllyey (7.22)

That is, the computation of x, requires the solution of an upper
Hessenberg system of equations of order i. We denote the method defined

by this choice of x; as the full orthogonalization method (FOM) [60].

The truncated analogue of Armoldi’s method (7.16) is given by

i
h Av I N (1.23)

3T T T N

Hi is now a banded upper—Hessenberg matrix with bandwidth k. The matrix
equation (7.18) still holds, but Vi is no longer orthonormal. Defining

Ki and Li as above, it is possible to define an oblique projection
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method as in (7.20).°

As a less expensive alternative, Saad [60] suggests a relaxation of
the conditions of oblique projection with respect to Ki and Li‘ The
approximate solution x, is chosen to satisfy (7.22) and the first
condition of (7.20), but not the second condition of (7.20). Following
Saad, we refer to this method as IOM(k) for the incomplete

orthogonalization method.

If A is symmetric and positive-definite, then (7.16) reduces to the
three—term Lanczos recursion, so that Hi is tridiagonal and FOM is
equivalent to IOM(2). In this case, X, is equal to the approximate
solution computed after i steps of the conjugate gradient method

(see [54]).

By (7.18), (7.20), and (7.22), the residual r, in both FOM and

IOM(k) satisfies

_ T (i)
Ti= bBieg,i%8 Vi o (7.24)

so that

L4 T
Although ViAVi does not have a special structure in this case, Hi can

(i).

still be used in the computation of ¢ The actual computation

(i) _
requires the least squares solution of Vis = hi+l,ivi+1 as a

correction for "’0“2311°1- See [60].

11

(i)
el = B,y ,lelP (7.25)

Thus, an implementation of FOM and IOM(k) that uses (7.25) in the test
for convergence is given by Algorithm 7.6. If tj =1 for all j in
(7.27) - (7.28), then this algorithm is FOM; if tj = max(1, j-k+1), then
it is IOM(k).

Algorithm 7.6: Projection methods: FOM and IOM(k).

Choose x

0 °
Compute T, = f - Axo .
Compute v, = ro/llroll2 . (7.26)

FOR j = 1 STEP 1 UNTIL Convergence DO

htj = (Avj.vt) » t= tj,....j (7.27)
B i
w = Avj - tit htjvt (7.28)
j
b,y = I, (7.29)
Vier = Wi g (7.30)
) - Ilrollzngle1 (7.31)
(§))
eyl = by legdl . (1.32)
Set i = j
iy
Compute x; = x5+ jﬁlcj vj (7.33)
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For FOM, the cost of i steps of the immer loop (7.27) - (7.32) is

i
3 [(2j42)N + 0()) +1 mv]l = (143N + 0(i3) + i mv
)

(where O(j) is the cost of updating the factorization for Hj and
computing g(j)). The outer steps (7.26) and (7.33) require (i+1)N

multiplications. Thus, the work for ome complete step of FOM is
2 2
(1 + 4i + 1)N + i mv + 0(i°) .

Assuming that i >> k, the cost of IOM(k) is i(2k+2)N + O(ki) + i mv for

i inner loops and (i+1)N for the outer steps, for a total of
(i(2k+3) + )N+ i mv .

For both methods, storage is required for x, Av, (vj];:i, and H.,, with w

J
overwriting Avj. The total storage required is

06, for FOM ,
(i+3)N +

0(ik), for IOM(k) .

In IOM(k), (vj);;} can be saved in secondary storage until they are

needed for (7.33),

Finally, using an LU-decomposition of Hi’ FOM and IOM(k) can be
implemented without an inner/outer iteration [62]. That is, a new
approximate solution X;4q con be computed from each new vector vi.‘ Let

.
To make this algorithm formally similar to those in other sectionms,

we let the indices begin at i=0 in this discussion. Thus, € denotes
the unit vector with zero—component equal to 1.
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Hi be the Hessenberg matrix computed after i steps of (7.16) or (7.23),

and let Hi have the LU-decomposition
H1 =LU, , (7.34)

where Li is lower—triangular with a single nonzero sub—diagonal and U is

unit upper—triangular. Using (7.22),
() _ -1 -1,-1
Ve = Mgl v,E e = Heglly V0 L e o

" - -1
let P, := V.U, and let a : lltollzLi eg- Then

i i'i
i-1
= x, +
X =% jﬁb’jpj ’

where pj is the jth column of Pi and 'j is the jth entry of a. But Py
and a, can be computed directly from Vi. Li' and Ui’ as shown in

Algorithm 7.7. The costs of these methods are summarized in Table 7-2.
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Algorithm 7.7: Projection methods with directions: DFOM and DIOM(k).

prox | DproM(x) |
Choose T - + + + +
| wWork/ | (3Gi+1)+2)N |  (3x+2)N |
Compute rj = f - Axg . | Loop | +1mv | +1mv |
N | | +0(i) | +0(x) |
Compute v, = + + + +
0 [P
To'l2 | | (2(i+1)+1)N | |
FOR i = 0 STEP 1 UNTIL Convergence DO | Storage | ) | @k+2)N |
| I +o00i% | |
hji = (Avi'vj)’ J=igeeead + + + +
Update the factorizatiom Hi = Liui Table 7-2: Work and storage requirements of ome loop of projection
methods with directions.
i-1
py=v; - 2 B44P;
=i It follows from (7.16), (7.17), and (7.24) that DFOM satisfies
1/L00 , if i=0 orthogonality/Galerkin conditions analogous to (7.9)/(7.10). Hence,
a, =
i —Li i—lai-ln‘ii , if i 2 1 DFOM is equivalent to Orthores, and the error bound of Theorem 7.5 holds

for both FOM and DFOM,
Tieg T Xt 8Py

i Theorem 7,8: The iterates generated by FOM or DFOM satisfy
w=Av, - > h

i 3175
=3
I, lla, A, Bems,
b, = “'“2 "x—xiﬂz CTn min g, (W, Bx-xyll, .
min q; ¢ Pi
ripqlly = iy, 400yl
Viel = '/hi+1,i . See [60] for an alternative error analysis. We do not know whether

I0M(k) and DIOM(k) are convergent for general nonsymmetric systems.

If ji = 0 for all i, then this algorithm is DFOM; if

iy = max(0,i-k+1), then it is DIOM(k).




CHAPTER 8

Nonvariational Methods and Hybrid Methods

8.1 Introduction
Consider the system of linear equatioms

Ax=1f, (8.1)
where A is a nonsingular, nonsymmetric matrix of order N. In this
chapter, we discuss the Chebyshev algorithm and Broyden's method, two
polynomial-based iterative methods for solving (8.1) not inspired by the
conjugate gradient method. In addition, we consider a class of hybrid
methods that combine the Chebyshev algorithm with some of the CG-1like

techniques of previous chapters.

The Chebyshev polynomials are used in many areas of numerical
analysis [30]. Their usefulness as the basis of an iterative method for
linear problems stems from the facts that they are generated by a short
recursion and they have a strong optimality property. Their main
drawback is that they depend on knowledge of the eigenvalues of A in
order to be effective. Manteuffel [46, 48, 49] has devised an adaptive
procedure that provides estimates of the eigenvalues of A to be used

with the Chebyshev polynomials for solving linear systems. We discuss
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this method in Section 8.2.

The initial performance of the Chebyshev algorithm may be poor if
little is known about the eigenvalues of A. As we mentioned in Section
7.5, the projection methods FOM, IOM(k), DFOM, and DIOM(k) are based on
Arnoldi's method for computing eigenvalues. In Section 8.3, we show
that each of these methods, as well as GCR, can be used as a
preprocessor for the Chebyshev algorithm to provide it with eigenvalue

estimates.

A second method not inspired by CG is Broyden’s method [10], a
quasi—-Newton method applicable to nonlinear systems of equationms.
Recent interest in this technique has been provoked by the observation
that it computes the solution to linear problems in at most 2N
iterations [31]. TIn Section 8.4, we discuss an implementation of
Broyden's method due to Engleman, Strang, and Bathe [26] that is

suitable for sparse problems.

8.2 The Chebyshev Algorithm for Nonsymmetric Systems

The Chebyshev polynomials are defined by
T (2) = cosh(ncosh 1(z)) , zeC.

This definition is equivalent to the recurrence
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[
-

To(2) =
Tl(z) =z (8.2)

Toe1(2) = 22T (2) - T-1(2) .

We consider an iterative method based on these polynomials for solving
linear systems (8.1) in which the eigenvalues of A lie in the open right
half of the complex plame. The development of this section follows

Manteuffel [48, 49].

Recall that the residuals generated by polynomial-based methods

satisfy
T, = qi(A)to ,
where q; & Pi' Hence
e M, < N,z

and "tiuz will approach zero rapidly if llqi(A)ll2 decreases quickly., If
A has a complete set of eigenvectors, then this is the case if and only
if lqi(l)l —> 0 for all A & o(A). If A lacks a complete set of
eigenvectors, then an additional requirement is that for all eigenvalues
A with invariant subspace of dimension m > 1, the jth derivatives
qgj)(l) —> 0 as i ——> », for j { m. The scaled and translated
Chebyshev polynomials satisfy these requirements, and they are nearly

the optimal choice among polynomials satisfying the first

requirement [48].
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We briefly discuss the optimality properties of the Chebyshev
polynomials. Given any closed and bounded infinite set E in the complex
plane, there exists a unique polynomial ti e Pi that satisfies

max |t1(z)| = min max |si(z)‘ .

z e E s. e P, z¢ekE

i i
Since o(A) is contained in the open right half plane, there exists an
ellipse E that contains o(A) in its interior, and whose closure does not
contain the origin. E is described by its center d and its foci d+c and
d-c, where ¢ and d are complex nunbets; Moreover, since A is real, the
eigenvalues of A occur in complex conjugate pairs. Hence, E can be
chosen to be symmetric with respect to the real axis, i.e., d is real
and positive and ¢ is either real or pure imaginary. Manteuffel’'s
nonsymmetric Chebyshev algorithm is based on the scaled and translated
Chebyshev polynomials
T, ((d~z)/e)

q,(z) = ——33737;7—— .
If ¢ is real (i.e., the semi-major axis of E is the real axis), then for
each i, 9, is the optimal polynomial for E. If c is imaginary, then
these Chebyshev polynomials are not optimal in gemeral for E, but they
approach the optimal polynomials asymptotically as i ——) =, and the

convergence to the optimal polynomial is rapid [49].

Given ¢ and d, and using the recursion (8.2), the Chebyshev

algorithm can be implemented by a set of recursive formulas:
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Algorithm 8,1: The Chebyshev algorithm with fixed parameters.

Choose X9 *

Compute T, = f - Axo .
=1

Compute Ao =3d% *

FOR i = 0 STEP 1 UNTIL Convergence DO

el T YA
Tier = F AT,
2a/(2a%-¢Y if i=0
a =
it a - /2t if i1

Bivg = dagyy -1

Aii1 T @549T541 * By -

The work per loop of this method is 2N multiplcations plus one
matrix-vector product. 3N storage is required for x, r, and A, with Ax

overwritten by r.

This algorithm requires values for ¢ and d, and will be most
effective if the ellipse containing the eigenvalues is as small as
possible. Manteuffel has devised an adaptive procedure for computing
good values of ¢ and d by estimating the convex hull of the eigenvalues

of A. This technique is based on the following two facts.

1. Let the scaled and translated Chebyshev polynomials {qi) be

determined by some particular values of ¢ and d. Then there
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exists a linear operator S(A) such that qi(A) = S(A)i. so
that the residuals produced by the Chebyshev algorithm

satisfy T Z syir .

2. Given a set H in the right half plane, the parameters c and d
that define the smallest ellipse containing H are given by

the solution to the minimax problem

min max r(z) , (8.3)
c,d z e H
where

(a-z) + Ya-z)2-c2

r(z) = .
d +V¥d ¢

By the first fact, if the Chebyshev algorithm is performed with
some g;ven values of ¢ and d, then the residuals generated represent the
vectors produced by the power method for S(A), from which estimates of
the extreme eigenvalues of A can be obtained. Letting H denote the
convex hull of these estimates, the minimax problem (8.3) can then be
solved to obtain improved values for ¢ and d. fhus, given initial
values for ¢ and d, and taking {d+c,d—c} as the initial guess for the
convex hull of the eigenvalues of A, the adaptive Chebyshev algorithm is
given by Algorithm 8.2, The details of steps 2tand 3 of this procedure
are given in [46, 48, 491, Heuristics for keeping the cost of step 2

down are given in [46, 48, 64].
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Algorithm 8,2: The adaptive Chebyshev algorithm,
REPEAT UNTIL Convergence

1. Perform several (say, ten to twenty) steps of
Algorithm 8.1;

2. Use the computed residuals and S(A) to obtain
estimates for the extreme eigenvalues of A, and
update the estimate of the comvex hull of o(A);

3. Solve problem (8.3) to compute new values for ¢ and
d.

We remark that the eigenvalue estimates obtained in step 2 lie in
the field of values of A {AeC | A=%§f%§z, zeCN}, but not necessarily in
the convex hull of o(A). This does not present a serious problem if the
symmetric part of A is positive-definite, but it may lead to eigenvalue
estimates with negative real part if the symmetric part is indefinite.
In this case, the enclosing ellipse contains the origin and the
Chebyshev polynomials are not effective. Thus, the requirement that
o(A) lie in the open right half plane is not stromg enough to guarantee
the convergence of the adaptive Chebysh;v algorithm, but the stromger

requirement that the symmetric part of A be positive—definite is

sufficient [46].
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8.3 Hybrid Methods

The Chebyshev algorithm is sensitive to the parameters ¢ and d.
The associated ellipse should contain o(A) but be as small as possible.
If it is too large or too small (i.e., does not contain o(A)), then
Algorithm 8.1 may converge slowly or diverge. The residuals gemerated
in such a situation can be used by Algorithm 8.2 to compute improved
parameters, but the initial set of itoration; may not improve the
solution to (8.1). Thus, if little is known about the spectrum of A,
then the adaptive Chebyshev algorithm has a potentially high start-up

cost.

In this section, we discuss a way to avoid this difficulty. Some
of the conjugate gradient—like methods that we have discussed can be
used to estimate eigenvalues of A, and these values can be used to
compute initial values for ¢ and d. Thus, we propose a hybrid method in
which a gradient method that computes estimates for the extreme
eigenvalues of A is followed by the Chebyshev algorithm. Since the
gradient methods are more expensive per step than the Chebyshev
algorithm, they can be viewed as preprocessing techniques, performing
only enough steps to generate reasonable values for ¢ and d. Unlike the
adaptive Chebyshev algorithm alone, the hybrid method produces these
parameters simultaneously with improved solution estimates. (See [52]

for a hybrid CG/SOR method for symmetric, positive—definite problems.)

The CG-like methods that we consider are GCR, FOM, and IOM(k). We



90
first discuss the properties shared by these methods that make them
useful for estimating eigenvalues. At little or no extra cost, all
three methods generate upper—Hessenberg matrices that are associated
with nearly invariant subspaces of A, That is, on the ith iteration,
there is an upper—Hessenberg matrix Hi of order i and vectors
{v],.00sv4,,) such that

AV, = V.H, + v, e% (8.4)
i ii +1%1 ° *

where Vi = [vl""'vi]‘ For small i, the eigenvalues of Hi can be

computed easily [76] and used as estimates for the eigenvalues of A.

T

If the trailing term Vi+1%3

did not appear in (8.4), then the
eigenvalues of Hi would be eigenvalues of A, This is a heuristic
explanation for this choice of eigenvalue estimates. A more rigorous
justification applicable in the cases of GCR and FOM is as follows [63].
The vectors {vi] associated with both these methods are orthonormal.

Let n; denote the projection operator from CN into <V1,....vi), and

consider the projected operator
A1 i= A, ,

which induces a linear operator from <v1""'vi> into itself. Given an

eigenpair (A,w) of Hi, let v = V;w. Then

_ _ _ T
Aiv = mAmViw = mAViw = nm (V;H, + vi+1°i)'

= AmVow+ WiMiVigg = AV,
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since Vi+l is orthogonal to <v1....,vi>. Thus, the eigenvalues of H;
are the eigenvalues of the projected operator Ai' See [63] for an

analysis of the quantitative relationship between the eigenvalues of A

and Ai’

We have described the construction of Hi for FOM and IOM(k) in

Chapter 6 we mow discuss the analogous construction for GCR. Using

(5.6), (5.8), and (5.18), the directions and residuals generated by GCR

satisfy
= Ar,,, - % vV = - aalp, +w, (8.5)
Rt Rt T SN B it P

Ap
i s
where w € (Apo,...,Api>. With vy = "K;;“;’ (8.5) is equivalent to the

matrix equation (8.4), and by (5.11), Vi is orthonormal, so that
T
Hi = viAvi' or

- (Apj,A(Apk))
ix T W, Tap, T,

But
2 1
A Py = ;:(Ark - A’k+1) B
so that
N ~ 1 (Apj.Ark) - (Apj:Afk.H_)
jk ay “Apj“ZHApkﬂz

llap,ll, [(Apj,Atk) - (Apj.Ary,y)

- . (8.6)
“Apjnz (ry.Apy) ]
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All the quantities in (8.6) are computed during the execution of
GCR. The quantities (rk,Apk) and [“Apjuzl are obtained during the

computation of {aj}. For j ¢ k, the inner products in the numerator are

b;k—-l) (k).

the numerators of and bj

(k)
i

(Apk+1,Azk) =0 by (5.15), and (Apy,,,Ary,,) = (Ap,,;.Apy,q) bY (5.16).

For j = k, (Apj,A1k+1) is the

numerator of b and (Apk,Ark) = (Apk,Apk) by (5.16). For j = k+1,

As the number of steps increases, GCR and FOM become considerably
more expensive than the Chebyshev algorithm, so that they are cost-
effective only if just a few iterations are performed before switching
to the Chebyshev algorithm., An alternative is to base (8.4) on IOM(k)..
The work per step and storage costs are lower, and the upper—Hessenberg
matrix H, is sparse, so that more steps can be taken with relatively
modest expense, Unfortunately, the matrix Vi generated by IOM(k) is not
orthogonal, and we know of no result that proves that the eigenvalues of

Hi converge to those of A.

*orthomin(k) does not lead to a relation of the form (8.4) with an
upper—Hessenberg Hi,
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8.4 Broyden’s Method
Broyden's method [10] is an iterative method for solving nonlinear

systems of equations of the form
F(x) =0 , (8.7)

where F:RN——)RN is continuously differentiable. It is an example of a
quasi—-Newton method: the approximate solutions are computed by an

iteration of the form

x =

-1
i+l - @ Flxy) ,

i
where Q;li: an approximation of the inverse of the Jacobian matrix
F'(xi)’ The philosophy behind such methods is to achieve nearly as

rapid convergence as Newton’'s method (where Qi = F'(xi)) without the

expense of computing and inverting the Jacobian (see [10]).

Typically in quasi—Newton methods, the {Q;ll are built up by an

update of the form
-1 -1
Qi =+ T,
where Ui is of low rank and the secant condition
QL (Flx, ) F(x)) = x,,, - x
i+1 i+l X3 i+l i

holds. The initial approximation 061 is arbitrary. In Broyden's

method, Q;il is obtained from Q;l by a rank-one update.
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Algorithm 8,3: Broyden's method for nonlinear systems.

Choose X -

Choose 081
Compute p, = —QalF(xo) .
FOR i = 0 STEP 1 UNTIL Convergence DO

Tivl T X3t Py

vy = F(xi+1) - F(xi)
-T
Q;'py

Vi

T -1
LA
~1 —1 -1 T
Qi =Q7 + (p; - Q;7y;)vy
_ 1
Pis1 = " Flxy) -

If F is linear, then (8.7) is equivalent to the linear system of
equations (8.1). Gay [31] has shown that if A is nonsingular, then
Broyden’s method computes the solution to (8.1) in at most 2N steps (see
also [33]). The matrix update is not suitable for large sparse
problems, however, because Q;il is typically a dense matrix. We now
present an alternative implementation for linear problems due to
Engleman, Strang, and Bathe [26] in which the explicit formation of Q1+1

is replaced by a sequence of inner products.

For linear problems, the notation for Broyden'’s method can be made
to conform to that of most of the other methods we have considered, as

follows:

Ty = Flx) = f- Ax, ,

-1
Pis1 = QiaTieg 0

Api =y, = A(xi+l - xi) .

The update for Q 41 cen then be written as

~1 T
(py - Q@ Ap.)p;

1 -1
Qi+1“[I+ To1a ]Qi .
P;%y APy

For any i, let

T T W W O

J i
Starting with v(i+1) = qo Ti1® the (v§i+1)}§:i satisfy
—~1 T
VD [r ; - 4 Api)pj]v(i+l)
Yia1 Ta71a i)
P;Q; Ar;

by (8.8). The direction vector is given by

—1 _ (i+1)
Pie1 = Qa1Tie1 < Vil

Moreover,

1 -1 (3
Qrhey = Qilry = rgyy) = ey - vyt

so that vgiil) can be computed without the use of Q}l as
(j+1)p
JLitl) [I _________;L__.  (it1)
j+1 T (j"’l) ) i
-v; .
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(8.8)
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v§i+1) » Broyden'’s method for solving linear systems

Letting wy o=

is as follows:

Algorithm 8.4: Broyden’s method with direction update, for linear
systems.
Choose X -
Choose Q;l .
Compute Py = Q;lto .
FOR i = 0 STEP 1 UNTIL Convergence DO
Ty T X3 PPy
Tiep T Ty~ Apy
(i+1) ~-1
Yo =% T
FOR j = 0 STEP 1 UNTIL i DO
IF (j=i) THEN
_ (i+1)
YiT vy
T
by = 1/p;(py-vwy)

j+1

(i+l) _ _(i+1) T_(i+1)
Vi TRy

_ (i)
Pi+v1 = Vin

The work per loop is [2(i+1) + 1IN + 1 mv and one solve Qalr (which
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_. -
is a null operation if Qol is the identity matrix). Storage is

required for x, r, [pj]}:é' {v§i+1))}:$a and {'j);=0' for a total of
[3(i+1) + 1IN. Ap can share storage with v51+1).

An inductive argument shows that if Qal = I, then the residuals

generated by Broyden’s method satisfy
T, = qi(A)ro, q; ¢ Pi .

Compared with the expenses of GCR (see Table 5-1), the work per loop is
somewhat lower but the storage requirements are greater. Since GCR
computes the optimal polynomial with respect to "11"2, we suspect that

Broyden's method offers little advantage over GCR.

‘If 051 # I, then the use of le in Algorithm 8.4 actually corresponds

to preconditioning by Q,. See Chapter 9.



CHAPIER 9

Preconditioning

9.1 Introduction

Consider the system of linear equations
Ax=f, (9.1)

where A is a nonsingular, nonsymmetric matrix of order N. In this
chapter, we consider the use of preconditioning techniques in

conjunction with the iterative methods of Chapters 4 — 8.

Let Q = 01Q2 denote a nonsingular matrix. The solution to

(9.1) can be obtained by solving any of the problems

left: Kx=[01A] x1=01¢=7; (9.2)
right: K ¥ =A@ Y] [@x] =£=7; (9.3)
split: K ¥ = [Q]7AQ;"] [0,x1 = gl = F . (9.4)

The use of such an auxiliary matrix is known as preconditioning. We say
that (9.2) - (9.4) are three different ways of applying the
preconditioning, although left and right preconditioning can also be

considered as special cases of split preconditioning. (For example,
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left preconditioning reduces to split preconditioning with Ql = Q and
Q= 1.)

The goal of preconditioning is to decrease the computational effort
needed to solve (9.1). If Q is in some sense a good approximation of A,
then the coefficient matrices of (9.2) — (9.4) are in turn closer (in
some sense) to the identity matrix than A, and the iterative methods of

Chapters 4 — 8 will converge more rapidly than when applied to (9.1).

For preconditioning to be effective, the faster convergence must
overcome the costs of applying the preconditioning, so that the total
cost of solving (9.1) is lower. The preconditiomed coefficient matrix X
is usually not explicitly computed or stored. The main reason for this
is that although A is sparse, X may not be. The extra work of
preconditioning, then, occurs in the part of the preconditioned matrix-—
vector products involving 071 (or Q;l and Q;l). The main storage cost
for preconditioning is for Q, which must be stored so that the operation
Q—lv (or Qzlv and Q;lv) can be performed efficiently. In addition, most
of the iterative methods require ome extra vector of length N to handle

the preconditioning operation.

In this chapter, we discuss some of the issues of implementing the
various preconditioned iterative methods. In Section 9.2, we discuss
preconditioned versions of CGN. In Section 9.3, we discuss
preconditioned GCR and Orthomin(k) as representative of the

preconditioned methods of Chapters 5 — 8. In Section 9.4, we discuss
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some alternative implementations applicable when Q is symmetric and
positive—definite. One example of this special case is the

preconditioned generalized conjugate gradient method (see Section 7.2).

9.2 Procondltioning for the Normal Equations

We showed in Chapter 4 that there are two types of normal equations
to which the conjugate gtadiené method can be applied, and that the norm
minimized by CG differs for the two problems. When preconditioning is
used, the norm minimized depends on both the choice of normal equations
and the technique of applying the preconditioning [55]. In Table 9-1,
we list the quantities minimized for the various combinations. The
first three columns correspond to the three choices of preconditioning
techiques (9.2) — (9.4), the fourth column to the special case in which
Q is symmetric and positive—definite. In the latter case, the
algorithms can be implemented so that the norm is independent of the

factorization of Q (see Algorithms 9.3 and 9.4 below).

e e | ||

| Left Right Split Split
oo | owte, | ey | e, | eyl |
| e | | | | |
I conm hex,l, | Mo, | Hoyexxpll,| Mexylly |

Table 9-1: Error norm minimized by preconditioned CGN methods.
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In the interest of brevity, we pteseﬁt implementations of just four
of the methods given in Table 9~1 (cf. [44, 55]). CGNR/Right and
CGNE/Left are noteworthy because the norms they minimize depend only on
the original problem (9.1), and not on the preconditioning. (The Krylov
spaces do depend on the preconditioning.) The two instances of
symmetric split preconditioning are also noteworthy, since they display
good asymptotic properties for elliptic probleﬁs (see Section 10.4).
Moreover, the only preconditioning operation in these four methods is a

solve Q—lv. so that an explicit factorization of Q is not required.

The cost per iteration of these four algorithms is two matrix-—
vector products (Av and ATV), two preconditioning solves (Q-lv and
Q—Tv). and 5N multiplications. Storage is required for five vectors
plus Q; the specific storage requirements for each of the methods follow

its description.



Algorithm 9,1: CGNR with right preconditioning.
Choose X9 -
Compute T = f - Axo .
Compute 50 = Q-TATro .
Compute Py = Q_lso .
FOR i = 0 STEP 1 UNTIL Convergence DO
@A, 0 )
%17 7 (Ap;.Apy)
i#1 T X3t 8P4

Tiv T Ty T 8yApy

-T,T, -T, T
(Q Ar“l,Q A'r, )

b = i+l
i (@ % 0T )

~ L -T,T ~

Pjyg = Q Aryy *byp .

_1~
Pis1 = @ Pin

Storage: x, r, S; ATx' shared with p; Q—TATr shared with Ap.

102

Algorithm 9,2: CGNE with left preconditioning.

Choose Xy .

Compute T, f - Axo .
Compute ;0 = Q_lto .

Compute Py = ATQ—'T;O .

FOR i = 0 STEP 1 UNTIL Convergence DO
(x;.7

IR

Ti4l T X3 toapy
- -1
=T, .iQ Api

i+l
b = (Fi41°T541)
IR
i'Ti
T -T~
p“l—AQ ri+1+bipi .

Storage: x, T, p; Q_T;iﬂ shared with Ap; ATQ" T shared with Q 1ap.
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Algorithm 9,3: CGNR with symmetric, positive—definite split
preconditioning.

Choose X -

Compute T = f - Axo .
e |
Tp= QT
Compute p, = Q—IATr(') .
FOR i = 0 STEP 1 UNTIL Convergence DO
_ulepa it

a
i —1
(Ap,,Q "Ap,)

Tie1 T X5t 8;py
-1
Tiel T Ty~ 8,Q TApy

T -1,T
W W

b, = ————
1 (ATr;,Q_lATr'i)
o 1,T
Piyg = QAT +bypy .

Storage: x, r', p; ATr! shared with Ap; 0 1aT:! shared with Q—lAp.

Algorithm 9,4: CGNE with symmetric, positive-definite split
preconditioning.

Choose X .

Compute Ty = f - Ax

Compute pj = ATQ—lro .

0 °

Compute p; = Q—lp(') .
FOR i = 0 STEP 1 UNTIL Convergence DO
-1
(r;,Q 7ry)
4, = — 1
i (p;,p})
= xytapy

141 = Ty T ajApy

-1
(F141°Q T34y)

-1
(ri.Q ’1)

T,1
Piyg = A Q7T +byp)

.

-1
Pi+1 = Q@ Py

Storage: x, r, p'; p shared with Q lr; Ap shared with ATQ lr,

105



106

9.3 Preconditioned GCR and Orthomin(k)

The preconditioned versions of most of the methods of Chapters
5 — 8 can be handled in essentially the same vty.. Note that the
technique of applying the preconditioning affects the norm associated
with the minimizing methods of Chapters 5 — 6, while this question does
not seem important for the methods of Chapters 7 and 8 that do not
minimize a norm. We focus on the preconditioned versions of GCR and

Orthomin(k) as representative of the preconditioned methods.

As we mentioned above, the "one—sided” (left or right)
preconditionings are actually special cases of split preconditioning.
In Algorithm 9(5, we present preconditioned GCR and Orthomin(k) in terms
of split preconditioning. We point out specific issues of one-sided

preconditioning when they arise.

If ji = 0 for all i, then this algorithm is preconditioned GCR. If

ji = max(0,i-k+1), then it is preconditioned Orthomin(k).

The work per loop for these preconditioned methods is identical to
that for the unpreconditioned versions (see Table 5-1), except that the
matrix-vector product is replaced by a preconditioned matrix-vector
product Q;IAQ;1;1+1. In general, this operation is performed in three

steps: a system of equations with coefficient matrix Qz is solved for

.
The one exception is GCG, which we discuss in the mnext section.
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Algorithm 9,5: Preconditioned GCR and Orthomin(k) .
Choose Xy ¢
Compute T = f - Axo B
~ -1
Compute Iy = Ql T -
—1~

Set Py = Q2 Ty .
FOR i = 0 STEP 1 UNTIL Convergence DO

~ -1

(r;,Q; Ap))

—1 ~1
(Q; Ap,,q, " Ap))

Tien T XY 43Py

~

~ 1
LITOTLE PR PO Y

-1, -1~ -1
GG )

(i) =
b = , J=igreeesid
i 1, 1 i
(o Apj.Q1 Apj)
-1~ . % b(i)P
Piv1 = & Tin Pt Bt
i

i
_1 —1 1~ (i) 41
QAp,, = Q AQG T+ 3§j bj o Apj .
i

Q;lri+1; the result is multiplied by A; and that result is used as the
right hand side in a system of equations to be solved for

Q;IIA Q;1;1+1]. If one-sided preconditioning is used, then ome of the
preconditioning operations reduces to multiplication by the identity

matrix, and the other involves the solution of a system of equations
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Qu = v. One can also think of the preconditioned matrix—vector préduct
as providing the intermediate vector Q;lri*l used in the computation of
Pisye (That is, a subroutine can be used to compute the two vectors
Q;l;i+1 and Q;IAQ;l;i+1.) With this viewpoint, it is relatively easy to
take advantage of the efficient techniques [20] developed for

preconditionings based on the incomplete factorization of A (see Chapter

10).

The storage costs depend on the technique of applying the
preconditioning. We assume that the preconditioning is implemented so
that Q;lAv can overwrite Av. All three techniques require storage for
x, T, (pj). [Q;lApj}, and AQ;I;. which by assumption can share space
with Q;IAQEI;. As in the unpreconditioned version of GCR, QEIAQ;121+1
can also be overwritten by Q;lApi+1. For right and split
preconditioning, one additional vector of storage is required for Q;l;:
for left preconditioning, @, = I so that le; = T. Thus, the left
preconditioned versions of GCR and Orthomin(k) have the same storage
requirements as the unpreconditioned versions (see Table 5-1), and the

right and split versions require one extra vector of storage..

. ~

If the actual residual r, = Ql’i is required, them left
preconditioning loses this edge, since it requires an extra vector of
storage for ;. For right preconditioning, = ;i' and for split

preconditioning, T, can share storage with Q;l;i.
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As with CGN, the technique of applying the preconditioning affects
the norms and Krylov spaces associated with these methods. The

quantities minimized are as follows:

“3—111“2 , for left preconditioning
Hriﬂz » for right preconditioning
“Q;lriuz ’ for split preconditioning .

For GCR, the Krylov spaces in which these norms are minimized are all

given by
-1 -1,,i-1
xo + <pg,Q Apo..,..(Q A" Tpy>

where the dependence on the technique of preconditioning is reflected in

the definition of Py:

Q_lro R for left preconditioning
Py = T » for right preconditioning
QIlro R for split preconditioning .

We have generally favored right preconditioning with the variational
methods since the norm minimized is independent of preconditioning. For
nearly symmetric problems, split preconditioning may have an advantage,

since the preconditiomed matrix QIIAQ;I may also be nearly symmetric.
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9.4 Symmetric Positive-Definite Preconditioning
Assume that Q is symmetric and positive-definite with factorization

Q= SST. and consider split preconditioning by Q:
=15t T = 5726 = F (9.5)

Like CGN, the variational methods of Chapters 5 — 6'can be implemented
to solve (9.5) without reference to the factorization of Q, as shown in

Algorithm 9¢6.

The work per loop is the same as that for Algorithm 9.5, except
that the matrix—vector product Ar' and preconditioning operation Q—lAp

are separated. Storage is required for x, r', {p.}, (Apj]. and Ar'.

3
Q—lAp can share storage with Ar', and for GCR, this vector can be

overwritten by Api+1,

If @Q=M, then A = I - R with R skew—symmetric, so that the error

bound of Theorem 5.10 holds:

Theorem 9,7: The residuals gemerated by Orthomin(1l) with split

preconditioning by the symmetric part satisfy

e, ll-1 < 2 Meglh-1 ,
M2 carirmi + [-cpoarlryyy™i T O
where
2
o V1n® +1
R
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Algorithm 9,6: GCR and Orthomin(k) with symmetric, positive-definite
split preconditioning.

Choose X, -
Compute Ty = f - Axo .

-1
Compute ré =Q T -
Set Py = r6 .
FOR i = 0 STEP 1 UNTIL Convergence DO
(r},Ap;)
-1

(Ap,,Q “Ap,)

41 = %t o8Py

Tl = rp - 8, Ap
(Ar!,.,G 1Ap))
(i) _ i+1’
b -————————3——_1A R P
(Apj.o ?;)
i
(i)
Piep = Ther * 2 05 Ry
=i,

i
+ 2 b(i)APj .

Ay, = Ariy, j=j. 3
i

The symmetric part is the only preconditioning that can be used
with the generalized conjugate gradient method. This preconditioned
method also can be implemented without explicit reference to the factors

of M.
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Algorithm 9,8: The preconditioned generalized conjugate gradient
method.
Set X, = 0 .
Choose X .
FOR i = 0 STEP 1 UNTIL Convergence DO
r1=f—Ax
1

vy= M

n; = (vi,Mv)

i

1, if i =0
it1 <

v
[y

N VI B TR Y

Tipl T Xy Yo (vt x -ox )

The work per loop of preconditioned GCG is 2N multiplications plus
one matrix—vector product and ome solve M-lr. Storage is required for

Xi» X4 40 T, and v, plus M.

The analogue of Theorem 7.2 is as follows:

h

Theorem 9,9: The error at the it step of preconditioned GCG satisfies

2

“x‘xi“u < lx-xglly -

cpoirnt + [-c(pilp)yi

where C(A) is as in Theorem 9.7.

Finally, the virtual equivalence of GCG and CGNE extends naturally

to the preconditioned versions:
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Theorem 9,10: Let {xil denote the iterates generated by preconditioned
GCG, 1let [;i) denote the iterates gemerated by CGNE with split
preconditioning (Algorithm 9(4) by the symmetric part, and assume that

X9 = ;0' Then Xy = ;i‘



CHAPTER 10

Some Preconditioning Techniques

10.1 Introduction

Consider the system of linear equations
Ax=1f, (10.1)

where A is a nonsingular, nonsymmetric matrix of order N. In this
chapter, we consider some examples of preconditiomning techniques that
can be used with the iterative methods of Chapters 4 — 8 for solving

(10.1).

We seek a matrix Q that is in some sense a good approximation of A,
and that is inexpensive to use in the preconditioned algorithms. By a
good approximation of A, we mean roughly that the condition number of
the preconditioned coefficient matrix A should be small, or the
eigenvalues of X be tightly clustered. The error bounds of
Chapters 4 — 6'do not suggest a 'best” definition for this concept.
Moreover, it is usually difficult to analyze the effect of a particular
preconditioning for nonsymmetric matrices. As a result, preconditioning

is more of an art than a science, in which approximations Q are
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developed from heuristic notions of closeness to A and from techniques

known to be effective for symmetric problems.

In Section 10,2, we consider preconditioning matrices constructed
from approximate factorizations of the coefficient matrix. A lower
triangular matrix L and an upper triangular matrix U are constructed
that are in some sense approximations of the factors in the LU
factorization of A, but that are also sparse. The preconditioning
matrix is the product Q = LU, We consider two such approximate
factorizations, the incomplete LU factorization (ILU) [50, 511, and the
modified incomplete LU factorization (MILU) [19, 35, 36]. 1In Section
10.3, we discuss the related SSOR-preconditioning, which uses an
approximate factorization of A derived from the symmetric successive

over—relaxation iterative method [78].

In Section 10.4, we consider fast direct methods as
preconditionings for linear systems arising from the discretization of
elliptic partial equations. We use the error bounds of Chapters 4 — 7
and 9 to derive bounds on the asymptotic operation counts of the
preconditioned iterative methods, and we discuss the existing fast

direct methods.

Finally, in Section 10.5, we consider the preconditioning that
forms a reduced system to solve (10.1). If A is a two—cyclic
iatrix [73], then with a small amount of preprocessing some of the

unknowns can be eliminated from (9.1) to produce a reduced linear system
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of order m £ g. This preconditioning differs from the others in that

only a subproblem of the preconditioned problem is actually solved by an
J

iterative method, and this smaller problem can be solved using any of

the techniques (including other preconditionings) that we have dicussed.

10.2 Approximate Factorizatioms

We consider two preconditionings based on the approximate
factorization of A. The heuristic used to insure that the
preconditioning is inexpensive to implement is to force the factors to

be sparse by allowing nonzeros only within a specified set of locations.

The first technique is the incomplete LU factorization (ILU)
popularized by Meijerink and van der Vorst [50, 51]. Let Z be a set of
indices contained in {(i,j) | 1¢i,j¢{N}. The ILU factorization is given
by Q = LU, where L and U are lower triangular and unit upper triangular

matrices, respectively, that satisfy

if (i,j) & Z, then Lij = 0 and IJJlj =0 ; (10.2)

if (i,j) ¢ Z, then Qij = Aij . (10.3)

Thus, the approximate factors are forced to be zero at the indices in Z,
and the product Q agrees with A at all indices (i, j) not in Z. The
second requirement can be imposed by formally applying a Gaussian
elimination step at all indices (i, j) # Z. For example, the following
algorithm computes the nonzero entries of the factors by a modification

of the Crout version of Gaussian elimination [41].
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Algorithm 10,1: The incomplete LU factorization.
FOR i = 1 STEP 1 UNTIL N DO
FOR j = 1 STEP 1 UNTIL N DO

IF ( (i,j) ¢ Z) THEN

min(i, j)-1
535 7 Aij - til Litutj
P (12)) THEN Ly =s,,
IF (i < j) THEN U1j=sij/L“.

This algorithm is well-defined provided that Lii # 0 for all i.
Meijerink and van der Vorst [51] show that if Z does not contain any
diagonal indices {(1,0)))_; and A is an M-matrix, then this
factorization is well-defined and determines a regular splitting of
A [73]. They also give empirical evidence that when applied to
symmetric problems arising from the discretization of self-adjoint
elliptic partial differential equationms, the eigenvalues of the
preconditioned system are tightly clustered, so that this is an
effective technique to use in conjunction with the conjugate gradient
method. (See also [44].) Typically, Z is chosen to be the set of
indices for which the entries of A are zero, or some slightly smaller

set (so that the factors are slightly less sparse than A).

The second approximate factorization that we consider is the
modified incomplete LU factorization (MILU) proposed by

Gustafsson [35, 361 and derived from the iterative method developed for
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elliptic partial differential equations by Dupont, Kendall, and
Rachford [19]. Let Z be the set of indices that determine the zero
structure, and assume that (i,i)  Z, 1 < i < N, The modified
incomplete LU factorization is given by Q = LU, where L and U are lower

triangular and unit upper triangular matrices, respectively, that

satisfy
if (i, j) e Z, then Lij = 0 and Ulj =0 ; (10.4)
if (i,j) ¢ Z and i # j, then Qij = Aij H (10.5)
N
for 1 £ i <N, jﬁo (Qij - Aij) =a, (10.6)

where o is a scalar. Let E := Q — A denote the error matrix. The extra
defining condition (10.6) of the MILU factorization is that the row sums
of E equal a. The difference is effected by modifying the ILU
computation of the diagonal entries of L so that this condition is

satisfied. An implementation is given by Algorithm 10.2.

Assume that this algorithm is well-defined, i.e., that Lii # 0 for
all i, We demonstrate that the computed factors satisfy (10.6). The

essential observation is that for (i,j) e Z,

By =~ 835 - (10.7)

The residual entries satisfy

min(i, j)
A, .= 2 L

Biy= Q= A= 20 Lyl - Ay (10.8)
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Algorithm 10,2: The modified incomplete LU factorization.
FOR i = 1 STEP 1 UNTIL N DO

Lij=a

FOR j = 1 STEP 1 UNTIL N DO

min(i, j)-1
= Ay - t%l LieUes

s

ij

IF ( (i,j) ¢ Z) THEN
IF (i>j) THEN L, =s,.
i) THEN L =L, +s

IF (i < j) THEN ifij

IF (i ii

= sy

ELSE Lil = Lii + sij

FOR j = i+1 STEP 1 UNTIL N DO

Uij = uij / Li; -

But if j < i, then (i, j) & Z implies that Lij = 0, so that the upper
1imit of the sum in (10.8) is actuwally j-1. Similarly, if j > i, then
the upper limit is i-1. Hence, (10.7) follows from the definition of
555 in Algorithm 10,2, Now comsider {Eij} for (i,j) ¢ Z. If j # i,
then Eij =0 by (10.5)., If j = i, then

i i1
By = tzlLituti - Ay = [tzl'“ituti - Ayl L

Sosgytsypt 2 Sy ta

(i,j)eZ
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h

Thus, the contributions to the it row sum of E from the off-diagonal

entries are cancelled by the contribution from the diagonal, and

N
ZE

P A

The MILU factorization is well-defined provided that the pivot
element at each step is nonzero. The following result establishes

sufficient conditions for this to hold.

Theorem 10,3: If A is strictly diagonally dominant, then the MILU
factorization is well-defined for @ 2 0. If A is irreducibly diagonally
dominant, then there exists a permutation matrix P such that any MILU
factorization of PAPT that is at least as dense as pAPT is well-defined

for a 2 O.

This result is due to Gustafsson [36]. Although the statement of
the theorem in this reference does not mention the permutation matrix,
the proof depends on it, Indeed, the MILU factorization may not be well
defined for irreducibly diagonally dominant matrices whose rows are not

ordered suitably. For example, let

2 -1 -1

and Z = {(2,3),(3,2)}. Execution of Algorithm 10.2 shows that L2 2 =0,
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so that the MILU factorization breaks down. If rows one and three and
columns one and three are interchanged, then the factorization is well

defined.

The parameter a can be used as a "tuning mechanism” to speed the
convergence of MILU-preconditioned algorithms. In some applicatioms,
a = 0 has been found to be the best value (see [12] and Chapter 11), so
that the MILU factorization could be considered independent of

parameters.

Several other incomplete factorization techniques have been used
with success, including the strongly implicit (SIP) [68], alternating
direction implicit (ADI) (see [73, 78]), and shifted incomplete LU [47]
factorizations., Unlike the MILU factorization, these methods are
sensitive to the choices of one or more scalar parameters. (See [11]
for a recently proposed genmeralization of the MILU factorization known

as ADDKR for use with elliptic partial differential equationms.)

10.3 SSOR Preconditioning

Let

A=D-L-T,

where D is the diagonal of A, L is the strict lower triangle of A, and U
is the strict upper triangle of A. The symmetric successive over—
relaxation (SSOR) iterative method [78] is the following two—stage

algorithm:



(D-wL)x [(1-w)D + mU]xi + wf

i+1/2
(D—oU)xi+1

[(1-0)D + mL]xi+1/2 + of ,

where w is a real scalar parameter between 0 and 2., With
= =1 _(p-ur)pt
Q: m(z—m)(D wL)D " (D-wl) ,
this method can be formulated as a one stage algorithm
Qx; .0 = (@A)x, + .
Q is the SSOR preconditioning matrix.

The SSOR preconditioning has been shown to be effective when used
with the conjugate gradient method for symmetric, positive-definite
problems [3, 12]. It is not as sensitive to the value of w as the SOR
method, and some techniques for estimating the best value for ® have
been developed [78]. Unfortunately, we know of no techniques for
estimating w for nonsymmetric problems, and the SSOR preconditioning is

sensitive to @ in this case (see Chapter 11).

We consider SSOR preconditioning despite these drawbacks because it

is easy to implement. Q can be expressed as
=1 p-py dpy~1(dp-
Q 2_“(ND L)(“D) (mD U) .

Since the iterates generated by a preconditioned algorithm are

independent of multiplicative constants in the preconditioning, the

123

factor ié; can be ignored. Thus, the SSOR preconditioning requires at
most one vector of length N for storage, for D := ib. Moreover, when
formulated this way, the SSOR preconditioned matrix-vector product can
be computed efficiently [20]. For example, consider the product Q_lAu.
Let NL and NU denote the number of nonzeros in L and U respectively. If
the product is computed naively, then 4N + ZNL + 2NU multiplications are
required. Using the techniques developed in [20], just 3N + NL + 2NU

multiplications are needed. Thus, if a good value for w can be found,

SSOR may be an effective preconditioning.

10,4 Fast Direct Methods

Fast direct methods can be used as preconditionings for linear
systems arising from the discretization of elliptic partial differential
equations of the form (2.2), on rectangular domains. Recall that the
discretization of (2.2) by the five—point operator on a uniform n x n

grid results in a block-tridiagonal system of linear equations
Az=f (10.9)

of order N = nz. If A is separable, then (10.9) can be solved by fast
direct methods, which require O(nzlog,n) operations (see below). If it
is nonseparable but self-adjoint, then fast direct methods can be
combined with the Chebyshev algorithm [14] or the conjugate gradient
method [6, 7] to solve (10.9) efficiently. In particular, the error
bounds for the Chebyshev method and CG are independent of h., We show

that these ideas can be extended to the nonseparable, non—self-adjoint
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case, using CGN, GCG, and the variational techniques of Chapters 5 and
6. We state the results for the latter techniques in terms of
Orthomin(k) only, although they also apply to GCR, GCR(k), MR, LSGCR,

AXEL(k), and Orthodir.

10.4.1 Convergence Results

The symmetric part M of A is positive—definite [29]. As
Widlund [75] observes, since the skew—symmetric part R is derived from a
differential operator of lower order than that producing M, the

eigenvalues of K—IR are bounded independent of h for small h.
Let M = SST. and consider split preconditioning by M:
A= 1sasT s = s - g (10.10)

The error bounds for GCG and Orthomin(1l) applied to (10.10) depend only
on p(M—lk) (see Theorems 9.7 and 9.9). Hence, these bounds are
independent of h, In light of the virtual-equivalence of GCG and CGNE
established in Section 9.4, it follows immediately that the convergence
of CGNE with split preconditioning by M is also independent of h.

Alternatively, by (4.5),
KA <1+ p(sTRSTD =1+ o0,

so that the error bound (4.3) for both CGNE and CGNR is independent of

h.

Each step of these preconditioned algorithms requires the solution
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of a system of equations with coefficient matrix M (see Sections 9.2 and
9.4). If M is separable, then these systems can be solved with fast
direct methods in O(nzlog,n) operations., The number of iterations
needed to reduce the error by a given factor & is independent of mesh
size, If the error is to be reduced to truncation, then & is
proportional to n—z. and the number of iterations required is

proportional to log,n. Ve summarize these observations as follows:

Theorem 10,4: The asymptotic operation counts of Orthomin(1), GCG,
CGNE, and CGNR with split preconditioning by the symmetric part for

solving (10.9) to truncation error are 0(n2(log,n)2).

If M is not separable, then fast direct methods are not applicable
to (10.10). However, there often exists a separable, symmetric,

positive-definite matrix Q that satisfies
¢4(2z,0z) < (z,Mx) £ c,(2,Qz) (10.11)

for all z, where ¢, and c, are positive constants [14]. For example, Q
2

2
might be the discrete analogme of the negative Laplacian - [-a-—2 + g—h]'
. ax ay’
If Q = VVT. then Q can be used to precondition (10.9) to produce the

linear system of equations

A= v v = vl =g, (10.12)

The following result shows that Q is essentially as effective as M for

preconditioning (10.9).
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Theorem 10,5: Let Q = WT be a symmetric, positive—definite matrix that

satisfies (10.11). Let Az = V—lAV—T. with symmetric part Mz

1,5~ T

=viw

and skew—symmetric part ll2 =V "RV *, Then
¢y £ A(Hz) Lcey
p(Ry) e, pO'R)
and
T [o,2 + e 'm) P
K(AzAz) < ———-———————cl .
Proof: For (10.13),
-1 .-T
).Mn(uz) = min (z.‘(lz ':‘)’ z) min (u,Mu)
z#0 ’ u#0
by (10.11). Similarly, A.n‘x(ldz) < cy-
For (10.14),
(R.)2 = max ey T, vy T _ max (Ru, @ 'Ru)
PR = ko (z,2) u#0

11
(u,Qu) 2 (u,Mu) °
Moreover, we claim that

(Ru, @ 1Ru) ¢ cz(Rn.M—lku) .

(oo 2 1 °

T

(10.13)

(10.14)

(10.15)

Hence,
(R.)2 ¢ max (Ru,M_llln) _ max (S—IRS—TV,S—IRS_TV)
PR)™ £ udo ~(u, M)~ véO V.V

= p(M—IR)2 .

To prove the claim, we show that

(v,a"1v)
max —— 3~ < cy
v#0 (v,M "v)
(v,a 1v)
(v,M V) .
is a solution to the gemeralized eigenvalue problem

Let v be a vector at which attains its maximum, p. Then

-1

-1v=ull v

Q

(see [76]). Let w = H-lv. so that

Mw = pQw .
Hence,
_ (w,Mw)
k= twan < °2 -

Finally, (10.15) follows from (10.13), (10.14), and the following

inequality:

Ay < AATAY) € [hg, 00) + o) T

which is a consequence of Theorem 4.3.
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(n,v)

Q.E.D.
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Corollary 10,6¢! If Q is a symmetric matrix that satisfies (10.11), then
the asymptotic operation counts of Orthomin(k), CGNE, and CGNR with

split preconditiong by Q are O(nz(log,n)z).

Proof: The residuals generated by Orthomin(k) satisfy

2
c
_ 1 i/2 _
et < [1 - g Mool

2 -1
2 * czp(M R)

by Theorem 5.9 and Theorem 10.5.

Similarly, by the error bound (4.3) for CGN and Theorem 10.5, the CGN

iterates satisfy

c2(1+p(H—1R)) -y

E(x,) € 2 — E(x,) ,
1 [ oy (Tp IR + o Jetxg
where
e, Wl -1 for CGNR ,
E(x) := i'e

“x—xi“Q for CGNE .

Hence, the error bounds for these algorithms are independent of h.

Q.E.D.

This result shows an advantage of Orthomin(k) and CGN over GCG.
GCG requires the solution of a subproblem with coefficient matrix M at
each step. If M is not separable, then this may be an expensive task.
In contrast, Orthomin(k), CGNE, and CGNR can be combined with an

alternative preconditioning based on fast direct methods to solve
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(10.9) even if M is not separable. (See [34] for an altermative

GCG-1like iteration for nonseparable M.)

Note that the use of split preconditioming in (10.12) requires that
Q be symmetric and positive-definite. Since fast direct methods are
applicable to separable nonsymmetric matrices as well [69], it may be
preferable to use a separable preconditioning matrix Q that contains
some approximation to the skew-symmetric part of A. Either of the
one-sided formulations for the preconditiomed problem (9.2) or (9.3) are
suitable for such matrices. Also, as stated in Section 9.2, the norms
minimized by Algorithms 9.1 and 9.2 and Algorithm 9.5 with right
preconditioning depend only on the original problem and not on the
preconditioning. We do not have an error bound analogous to Corollary
10.6 for such preconditioning techniques. See Chapter 11 for numerical

experiments with these techniques.

10.4.2 Examples of Fast Direct Methods
We conclude this section with a brief discussion of the known fast

direct methods. These methods comprise the following techniques:

1. the cyclic reduction algorithm ;

2. Fourier analysis ;

3. the generalized marching algorithm .
Definitions and a complete list of references for the first two methods
can be found in the survey papers [18, 70]. The generalized marching

algorithm is described in [7, 8]. Our present concern is to outline the
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advantages, limitations, and costs of these methods.

The preconditioning matrix Q is based on the discretization of a

separable approximation of the differential operator in (2.2),
- (B“x)x - (Cny)y +Du_ + (Du)z + Eny + (Eu)y + Fu=6G, (10.16)
i.e.,

B=80x , =%y ., P =Dbx),

£ =Ey , F= ?l(x) + iz(y) .

Thus, one of the important issues of this preconditioning techmique is
the choice of these coefficient functions. The other issues are the
particular choice of fast direct method and the technique of applying
the preconditioning. To a great extent, these issues are
interdependent. For example, Q is nonsymmetric if D or E is nonzero,
but not all the methods are generally applicable to nonsymmetric
problems. Also, as we have shown in Chapter 9, the symmetry of Q

figures in the way it is applied as a preconditioning.

The choice of the approximating functions is highly problem
dependent, and we do not address it here (see [6]). We briefly address
the second issue in Table 10-1, which contains the asymptotic operation
counts of the four methods and outlines restrictions on operators to

which they can be applied.

The best technique to use for a given problem is not gemerally
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| Method | Operators | Operation Count |
| | i Self-adjoint: i
| cCyelic | | 5n3lo |
8,0

: Reduction : General separable : Non—self—adjoint: |

20n%log,n |
| | Self-adjoint separable, | |
| Fourier | non-self-adjoint if constant | 2n31 |
|  Analysis | coefficient ,in at least | nilog,n |
| | one variable | |
| + i 4
| Gonoralized = Self-adjoint b1 s2n310g2 }
| Marching : e j » separable nilog, |
| |

Table 10-1: Properties of fast direct methods.
known (see [65]1). We remark that the operation counts given in Table
10-1 contain only the highest order terms, and they reflect the
assumption that the coefficients in (10.16) are not constant. (The
coefficients are smaller if Q is derived from a constant coefficient
operator,) The actual performance of these techmiques may be affected
by lower order terms, as well as idiosyncrasies of the computing

environment.

Finally, lower asymptotic operation counts can be obtained from

. o ~
Either B, D, and Fl are constant, or C, £, and ?2 are constant.

..The integer parameter s figures in the stability of the generalized
marching algorithm, On a t-digit machine, error bounds are of order
¢%27t, with ¢ > 1,
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judicious combinations of these methods. A combination of Fourier
analysis with cyclic reduction results in the FACR method [70], with an
operation count of Snzlos,log,n. For constant coefficient operators, a

combination of the gemeralized marching algorithm with Fourier

techniques leads to a method requiring O(nz) operations [8].

10.5 Reduced Systoems
If A is a two-cyclic matrix [73], then its rows and columns can be

permuted symmetrically so that (10.1) has the form

e | [k NES)

x(2)

where D1 and D, are diagonal matrices of order m; and m,. Without loss

of generality, my 2 my. Premultiplying by

-1
D1 0

-1
-C,Dy I

o

results in the preconditioned problem

-1 (1) -1.(1)
Iml D, C1 x D1 £
e nl (2) (2)_n n—1.(1)
[} D,-C,Dy Cl x f 02D1 f
in which the block unknowns x(l) and x(z) are decoupled. Block 1(2) can

then be computed by solving the reduced system
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_ -1(1
[p, - C2D1101] LRI cznllﬁ ) (10.17)

of order m, Y

) with x

recovered by

1) _ -1,.(1) _ (2)
x =D, (f Cyx )

Typically m, = g.

In contrast to the other preconditioning techniques, the
coefficient matrix and right—hand side of (10.17) are computed
explicitly. This enables (10.17) to be solved by most of tﬁe other
preconditioned iterative methods discussed in this dissertation, (This
computation is not necessary if mo additional preconditioning is used to
solve (10.17). See [12] for a discussion of this alternative in the
symmetric case; see [9] for a discussion of preconditioning for a
coefficient matrix that is not explicitly formed.) If C1 and C2 are
sparse, then the preprocessing step to decouple the block unknowns is

inexpensive and the coefficient matrix in the reduced system is sparse.



CHAPTER 11

Numerical Experiments

11.1 Introduction

In this chapter, we describe the performance of some of the
jterative methods and preconditionings discussed earlier. The test
problems are linear systems arising from the discretization of several
non-self-adjoint elliptic partial differential equations. In Section
11.2, we describe the differential equations and resulting discrete
problems. In Section 11.3, we discuss some implementation issues. In
Section 11.4, we present the results of numerical experiments with the
conjugate gradient method applied to the normal equations (see Chapter
4), the minimizing methods of Chapter 5, and the Chebyshev and hybrid
methods of Chapter 8, combined with the preconditioning techniques of
Chapter 10, Other numerical experiments are described

in [2, 5, 23, 24, 34, 46, 48, 60, 61, 75, 80].
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11.2 The Test Problem

Consider the elliptic partial differential equation

- (Bux)x - (Cuy)y + Euy + (Eu)y +Fu=6G, (11.1)
where
B(x,y) = e XY, C(x,y) = &,
= =1
E(x,y) = y(x+y) , F(x,y) = Ty *

vy is a real scalar parameter, and the right hand side G is chosen so

that
uw(x,y) = x e*¥ sin(nx) sin(xny)

is the solution to (11.1)., For the test problem, we pose (11.1) on the
unit square 0 { x {1, 0 { y £ 1, with homogeneous Dirichlet boundary

conditions.

We discretize.(11.1) using the five—point centered finite

difference scheme [29, 73] on a uniform n x n grid, with h = ;%T'
producing a linear system
Az-=f (11.2)

of order N = nz. The symmetric part of A is determined by the
second— and zero—order terms of (11.1), and is positive-definite [29]1.
The skew-symmetric part is determined by the first—order terms. The

cost of the matrix-vector product Av is approximately 5N
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multiplications.

In the numerical experiments, we use values of h = 1/16, 1/32,
1/48, and 1/64, which result in linear systems of order 225, 961, 2209,

and 3969 respectively. We use the values y = 5, 50, and 250.

11.3 Implementation Issues

The iterative methods CGNR, Orthomin(k), GCR(k), MR, the Chebyshev
algorithm, and the hybrid method consisting of GCR followed by the
Chebyshev algorithm are used in conjunction with the preconditioning
techniques of Chapter 10. We outline some of the issues and costs

concerning the implementation of these methods below.

Chebyshev method: We use the Chebyshev code TCHEB written by
Manteuffel [48], modified to handle preconditioned matrix-vector
products. The initial choice of the ellipse parameters ¢ and d (see
Section 8.2) is as follows: with no preconditioning, d is taken to be
the average of the diagonal elements of the coefficient matrix; for
preconditioned problems, d is initialized to 1. In both cases, c is
initially chosen to be 0. New parameters are computed at most every 20
iterations (the adaptive procedure is invoked earlier if the residual
norm is increasing rapidly). The overhead for the adaptive procedure

(14N multiplications [46]) is not included in the operation counts.

MILU, ILU, and SSOR preconditioning: Except for the reduced

systems, we use the efficient implementation of these factorizations due
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to Eisenstat [20]. The cost of the preconditioned matrix-vector product
is 9N multiplications. Unless otherwise indicated, o = 0 is used as the

MILU parameter,

Fast direct preconditioning: We use the cyclic reduction algorithm
implemented in the routine BLKTRI in the FISHPACK subroutine
package [71]. The number of multiplications for the preconditioning

solve Q_lv is approximately
20n2[103,(n+1)] - 5502 + 40nllog, (n+1)] ,

where [x] denotes the largest integer less than or equal to x

(see [69]1). We approximate the coefficient functions of (11.1) by

B0 = B Uy = ey . (11.3)

E» =snEGy , Fay =irad +1rdy .

The scaling factor 8(y) in E(y) is introduced to prevent the off-
diagonal entries of Q from being too large and violating an error
condition in FISHPACK. It satisfies 0 < 8(y) 1, and is identically 1

for y =5, all h, and v = 50, h < 1/48.

Reduced system preconditioning: The cost of the matrix—vector
product for the reduced system is approximately %N multiplications., The
MILU preconditioning operation costs an additional %N multiplications.
Hence, the preconditioned matrix-vector product for the reduced system

costs approximately 9N multiplications.



Note that the terms "cyclic reduction”- and "reduced system” here
refer to two distinct preconditionings, Cyclic reduction is one example
of a fast direct method, whereas reduced system refers to a way of

eliminating some of the unknowns from (11.2). See Chapter 10.

11.4 Numerical Results

In all tests, we use right preconditioning as in (9.3) so that the
norm of the residual of the unpreconditioned system is minimized by CGNR
and Orthomin(k), et. al. The initial guess is the zero vector. The

stopping criterion is

el .

12 4078,

H:on2
The tests were run in optimized FORTRAN-20 on a DECSYSTEM 2060. With
the exception of the experiments using the cyclic reduction
preconditioning, all tests were run in double precision (63 bit
mantissa). The experiments using cyclic reduction were run in single

precision (27 bit mantissa). The Chebyshev algorithm was not used with

cyciic reduction preconditioning.

The main set of results is shown on pages 142-164. This data is
arranged in three groups, corresponding to y = 5, 50, and 250. Ve

comment briefly on some of the patterns exhibited in these tests.

Among the iterative methods, the norm-minimizing methods
Orthomin(k), GCR(k), and MR exhibit fairly similar behavior, but require

fewer operations with small k (0 or 1) than with k = 5, The Chebyshev

139

algorithm usually converges more rapidly (in terms of multiplications)
than these methods, but it may diverge initially before good parameters
are found. The conjugate gradient method applied to the normal
equations is always the least effective iterative method. (See Figures

11-1, 11-2, 11-3; 11-8, 11-9, 11-10, 11-15, and 11-16.)

If enough preprocessing steps are taken, then the hybrid methods
prevent the initial divergence of the Chebyshev algorithm, but they do
not always cut the total cost of satisfying the stopping criterionm,

(See Figures 11-6, 11-7, 11-13, 11-14, 11-19, and 11-20.) This is due
in part to the higher cost of the GCR iterations. Also, we suspect that
the eigenvalue estimates provided by GCR may delay the acquisition of

information about the extreme eigenvalues by the Chebyshev algorithm,

All of the preconditioning techniques are improvements over no
preconditioning. (See Figures 11-4, 11-11, and 11-17.) Among the
preconditionings, the combination of the reduced system with the MILU
factorization seems to be the most effective. (See Figures 11-5, 11-12,
and 11-18.) The MILU preconditioning seems to be more effective than
the ILU preconditioning. The cyclic reduction preconditioning is
competitive with the incomplete factorizations only for small y.
(Because of this, we did not include a figure for cyclic reduction
preconditioning for y = 250, h = 1/48; a representative picture of its
performance for this problem can be seen in Figure 11-17.) Its

difficulty for larger y is probably due in part to the scaling 8(y) in
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(11.3). Note, though, that the number of iterations required to reach
the stopping criterion with this preconditioning does not grow with
decreasing h (see Tables 11-2, 11-4, and 11-6), suggesting that it may

be useful for very large problems.

Recall that most of the convergence results for the methods of
Chapter 5 require that the symmetric part of the coefficient matrix be
positive-definite. Although this requirement is satisfied by A, we do
not know in general whether it holds for the preconditioned coefficient
matrix. Indeed, we have encountered numerous preconditioned problems
arising from elliptic partial differential equations in which the
symmetric part of the preconditioned matrix is indefinite, including

some of those used in the preceding tests. We itemize these below:

— MILU preconditioning: h = 1/48, vy =35 ,
h=1/64, y =5, 50, 250 ;
- Cyclic reduction preconditioning: h = 1/16, y = 50 ,

h = 1/16; 1/32, 1/48, 1/64, v = 250 .

We have also encountered indefiniteness with the ILU preconditioning in
other problems, although it seems less prome to this difficulty than

MILU. We feel that this issue merits further study.

In Table 11-7, we examine in more detail the effect of the number
of directions k on Orthomin(k). The data suggests that there is little

advantage to taking k much larger than 2, and that MR (k = 0) may at
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times converge more slowly than Orthomin(k) for k 2 1. GCR(k) behaves

in a similar manner.

In Figure 11-21, we show the effect of a on the MILU
preconditioning with Orthomin(1), for h = 1/48. The value a = 0 is
approximately optimal (a = 0.1 required one fewer iteration for
¥ = 250). We do not know how a affects the definiteness of the

preconditioned problem.

In Figure 11-22, we briefly examine the SSOR preconditioning with
Orthomin(1), for h = 1/48. These results suggest that SSOR
preconditioning is very sensitive to the value of w. Indeed, the curves
are cut off abruptly at their right endpoints because the preconditioned
problems are indefinite for larger values of ® and Orthomin(1l) failed to
converge.

flz, 4l
Finally, in Table 11-8, we compare the bounds for

derived
s, 1,
in the proof of Theorem 5.9 with the maximum values attained during the

execution of Orthomin(1). We consider four problems: h = 1/16, vy =5

and 50, no preconditioning and MILU preconditioning. In the table,

2
| Mgy Ji2
1 T
Max® A)
AL (M)

i/2
Bo=[1- A (DA () + (R)z] )
min ‘max P

The data suggests that the bounds may not be tight.
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H = 1/48, GAMMA = 5, MILU H=1/48, GAMMA = 5, ILU
1.0E+00 T T v T T T 3 ' 1.0E+00 —T T T
1.0E-01 3 1.0E-01
F 1.0e-02 - £ 1.06-02
=) 2 E
=z ] z
& 1.0E-03 - & 1.06-03
=1 3 > ]
2 ] 8
1) ] n I
?EJ 1.0E-D4 3 lé-l 1.0E-04 3
o 3 o ;
-t -
8 1.0E-05 . 8 1.06-05
3 E 3
1.0E-06 4 1.0E-06
1.0E-07 : . . . — . . ] 1.0E-07 : - . . - .
0.0E+00 1.0E+086 2.0E+06 3.0E+06 4.0E+06 0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06
MULTIPLICARTIBNS MULTIPLICARTIBNS
A MR A MR
B ORTHBMIN(1) B BRTHBMIN(1)
C BRTHBMIN(S) C BRTHBMIN(S)
D GCR(1) D GCR(1)
E GCR(S) E GCR(S)
F CGNR F CGNR
G CHEBYSHEV | G CHEBYSHEV
Figore 11-1: Residual norm vs. multiplications for several iterative Figure 11-2: Residual norm vs. multiplications for several iterative

methods with MILU preconditioning, for y=5, h=1/48. methods with ILU preconditioning, for y=5, h=1/48.
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Figure 11-3: Residuval norm vs. multiplications for several iteratjve
methods with cyclic reduction preconditioning, for y=5, b=1/48.

Figure 11-4: Residual norm vs. multiplications for Orthomin(1) with
several preconditionings and with no preconditioning, for
. y=5, h=1/48,
The data for MR, Orthomin(5), GCR(1), and GCR(5) was nearly idenmtical
to that for Orthomin(1) in this problem.
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| Mo | IL0 | Cyc.Red.l|
| MR | s8 | 323 | 11 |
| oOrthomin(1) | 32 | 78 | 9 |
| Orthomin(5) | 25 | 53| 9 |
| GCrR(1) | 37 | 93 | 9 |
| GCR(S5) | 28 | 61 | 9 |
| ceNR | g0 | 166 | 13 |
| Chebyshev | 38 | 9 | -

Table 11-1:

Number of iterations to satisfy stopping criterion, for
v=5, h=1/48.

+

Iterations | Multiplications I
I 1/n | MILU ILU Cyc.Red. | MILU ILU Cyc.Red. |
| 16 | 14 19 8 | 50397 67957 85725 |
1 32 | 22 50 9 | 339741 765117 549492 |
| 48 | 32 78 9 | 1134925 2747869 1220372 |
1 64 | 40 123 9 | 2548429 7788053 2892032 |
Table 11-2: Iterations and multiplications used by preconditioned

Orthomin(1) to satisfy stopping criterion, for y=5 and several

mesh sizes.
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Figure 11-5: Reduced system preconditioning, and reduced system
followed by MILU preconditioning, compared with methods applied

to the full linear system, for y=5, h=1/32,
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Residual norm vs. multiplications for the GCR/Chebyshev

hybrid method with MILU preconditioning, for y=5, h=1/48.

149

H = 1748, OGAMMA = 5, HYBRID, ILU

1.0E+00 f
1.0E-01
1.06-02 :
1.06-03

1.0E-04 F

LBG10(RESIDUAL NB@RM)

1.0E-05

1.0E-06 é

B T

12808

aaacaned o sseeud 0 spaaned 8 saesand o senseed 4 g asesd

a 1 " 1 i 1

1.0E-07
0.0E+00

Figure 11-7:
hybrid

5.0E+05 1.0E+06 1.5E+06 2.0E+06
MULTIPLICATIBNS

CHEBYSHEV

2 STEPS GCR + CHEBYSHEV
6 STEPS GCR + CHEBYSHEV
10 STEPS GCR + CHEBYSHEV

oOwD>D

Residual norm vs. multiplications for the GCR/Chebyshev
method with ILU preconditioning, for y=5, h=1/48.
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Figure 11-10: Residual norm vs. multiplications for several iteragive
methods with cyclic reduction preconditioning, for y=50, h=1/48.

Figure 11-11: Residual norm vs. multiplications for Orthomin(1) with
several preconditionings and with no preconditioning, for
s, =50, h=1/48.
The date for MR, Orthomin(5), GCR(1), and GCR(5) was mearly
identical to that for Orthomin(1l) in this problem.
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) | MiLu | ILU | Cyc.Red.|
| MR | 21 | 32 | 14 |
| Orthomin(1) | 21 | 32 | 14 |
| oOrthomin(5) | . 20 | 31 | 12 |
| 6cr(1) | 21 | 32 | 14 |
| GCR(5) | 20 | 35 | 12 |
| ceNR | 37 | 58 | 17 |
| Chebyshev | 43 | 36 | -1
Table 11-3: Number of iterations to satisfy stopping criterion, for
v=50, h=1/48.
| Iterations | Multiplications |
| 1/n | MILU ILU Cyc.Red. | MILU ILU Cyc.Red. |
| 16 | 9 10 23 | 32837 36349 245730 |
| 32 | 15 19 17 | 233397 294165 1036332 |
| 48 | 21 32 14 | 749221 1134925 1896007 |
| 64 | 27 45 14 | 1727165 2864069 4494447 |

Table 11-4:

Iterations and multiplications used by preconditioned
Orthomin(1) to satisfy stopping criterion, for y=50 and several
mesh sizes.
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Figure 11-12: Reduced system preconditioning, and reduced system
followed by MILU preconditioning, compared with methods applied

to the full linear system, for y=50, h=1/32.
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H = 1/48., GAMMA = 250, ORTHBMIN(1) | Mo | 1LU | Cyc.Red.l
- T T T T " T T = + + +
1.0E+01 A 3 | M I 16 I 11 | 39 |
3 E ; Orthomin(1) : 15 : 14 : 39 I
r 1 Orthomin(5) 13 14 38
1.0E+00 ¢ —D E | GCr(1) I 14 | 14 | 39 |
= ; 3 : GCR(5) ‘ 14 I 14 : 38 :
x _ ] CGNR 26 26 172
S 1.0E-01 ¢ 1 | Chebyshev | 21 | 17 | - |
&J r 7 + + + + +
.0E-02 F -
E% 1.0E-02 E § Table 11-5: Number of iterations to satisfy stopping criterion, for
= E ] v=250, h=1/48.
& 1.0E-03 F 1
e 3 ]
S 1.0E-04 F 4
- 3 §
1.0E-05 F ]
1.0E-06 . 4 L L . ! . | Iterations | Multiplications
0.0E+00 2.5E+05 5.0E+05 7.5E+05 1.0E+06 - : +— +
MULTIPLICATIBNS | 1/n I MILU ILU Cyc.Red. | MILU ILU Cyc.Red. !
A NEZPRE 1 16 | 7 8 94 | 25813 29325 1003087 |
B MILU 1 32 | 10 11 53 | 157437 172629 3227112 |
¢ 1w | 48 | 15 14 39 | 538837 503773 5274182 |
D CYCLIC REDUCTIEN | 64 | 20 19 30 | 1285869 1222741 9622175 I

Table 11-6: Iterations and multiplications used by preconditioned
Orthomin(1l) to satisfy stopping criterion, for y=250 and several
mesh sizes.

Figure 11-17: Residual norm vs. multiplications for Orthomin(1) with
several preconditionings and with no preconditioning, for
¥=250, h=1/48.
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Figure 11-19: Residual norm vs. multiplications for the GCR/Chebyshev
Figure 11-18: Reduced system preconditioning, and reduced system hybrid method with MILU preconditioning, for y=250, h=1/48.
followed by MILU preconditioning, compared with methods applied
to the full linear system, for y=250, h=1/32.
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hybrid method with ILU preconditioning, for y=250, h=1/48.
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————t + + + +

| kx| ITterations] Mults | |Iterations| Mults |

A————t + 4 + +

I ol | »s00 | >4250000 | | 39 | 488413 |

I 111 306 | 3493257 | | 22 | 339741 |

I 211 156 | 2225893 | | 21 | 379345 |

I 311 1714 | 2976349 | | 21 | 431257 |

| 411 167 | 3326195 | | 20 | 456441 |

y=5 I s 11 143 | 3242699 | | 20 | 499701 |

611 138 | 3508657 | | 20 | 540077 |

711 132 | 3714177 | | 20 | 5771569 |

sl 1 125 | 3850607 | | 20 | 612177 |

911 12 | 4323079 | | 20 | 643901 |

1011 135 | 4890471 | | 20 | 672741 |

| x| |Iterations| Mults | I|Iterations| Mults |

ol |l 135 | 1155691 | | 15 | 193021 |

111 14 | 1622017 | | 15 I 233397 |

211 108 | 1539781 | | 14 | 252813 |

31l 11 1 1997203 | | 14 | 284537 |

| 411 121 | 2403343 | | 14 | 313377 |

vy=5 1 5|1 120 | 2714941 | | 14 | 339333 |

I 611 120 | 3043717 | | 13 | 332793 |

Il 711 11 | 3398323 | | 13 | 350097 |

| 811 127 | 3913803 | | 13 | 364517 |

I 9l | 125 | 4185151 | | 13 | 376053 |

1ol | 132 | 4778373 | | 13 | 384705 |

| x| |Tterations| Mults | |Iterations| Mults |

et + + + 4 + +

I ol | »s00 | 4250000 | | 11 | 143789 |

I 111 205 | 2340847 | | 100 | 157437 |

I 211 210 | 2997769 | | 10 | 180509 |

| 311 213 | 3646201 | | 10 | 200697 |

| 411 220 | 4389481 | | 9 | 194157 |

y=25 | 511 186 | 4220377 | | 9 | 205693 |

1 611 194 | 4955137 | | 9 | 214345 |

I 711 193 | 5465731 | | 9 | 220113 |

| 811 185 | 5746487 | | 9 | 222997 |

I 911 189 | 6391999 | | 9 | 222997 |

l1wol 1 197 1 7207163 | | 9 | 222997 |

———t + + + + +
Table 11-7: Iterations and multiplications used by Orthomin(k) to

satisfy stopping criterion.
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B, ! Ratio

¥ =5, No precon. | .99996

.99807 | .93578

b — g —

.99997 | .98928

91728 | .58727

.88482 | .20181

o o - = -

7Y = 50, No precon. | .99998 |
ly=5, MILD I .97572 |
| v = 50, MILD I .94071 |
Table 11-8: Upper bounds for |Ir

for b=1/16.

I,7lz. ), compared
with maximom values obtained during §+1 3 i'2

xecution of Orthomin(1)
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CHAPTER 12

Conclusions

In this chapter, we review the main ideas of the dissertation and

suggest some areas for further research.

We have attempted tq describe and add to the development of
iterative methods for large, sparse, nonsymmetric linear systems. Much
of the effort in this direction has been in generalizations of the
conjugate gradient method. Algorithms based on this idea have the
advantage of requiring no a priori information about parameters (e.g.,
eigenvalues) associated with the coefficient matrix. Although the
optimality properties of CG appear to be achievable for nonsymmetric
problems only at large expense, several algorithms have been proposed

that are less than optimal but inexpensive and convergent.

An alternative approach is to aoquire information about the
coefficient matrix during the iteration, and to use this information to
modify the iteration. This idea is the basis for both the adaptive
Chebyshev method and Broyden’s method. Of these two techniques, only

the Chebyshev method has low cost per step.
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Convergence

—

= Method Domain = Expense i
i CGNR, CGNE | Genmeral | Pized, ATA |
i7 GCR | M p.d. i Increase i
: Orth:;;n(k) = M p.d. I Fixed ;
i LSGCR Tﬁ M p.d. i Increase i
Mininizing i Axel(k) i M p.d. i Fixed i
i Orthodir i General | Increase i
i Otth:;;r(k) = =1 = Fixed {
i GCG i M=1 i Fixed i
77 Orthores | M p.d. i Increase |
Galerkin- |  Orthores(k) i7I=I, unknown for i Fixed |
Lanczos | k)2 | more general A 1 !
i FOM, DFOM i M p.d. | Increase i
i IOM(k), DIOM(k) i M=I, unknown for i Fixed i
| | more general A ! !
i Chebyshev I M p.d. I Fixed I
Others i7 Broyden i General i Increase i
i Hybrid I M p.d. l Fized |

Table 12-1:

Summary of iterative methods and their properties.
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In Table 12-1, we list the methods that we have considered, their

domains of convergence, and some aspects of their work and storage

costs.

The CG-like methods are grouped according to the properties of
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CG that they gemeralize. The convergence domains comsist of the largest
classes of nonsymmetric matrices A for which the methods are known to
converge. They are identified as general nonsingular matrices
(General), matrices with positive-definite symmetric part (M p.d.), and
matrices vho:e.lylmetric part is the identity matrix (M = I). For the
work/storage properties, we specify whether these expenses per iteration
sre fixed or increasing with the number of iterations. In addition, we
identify those methods that gemerate a Krylov sequence based on Alk
rather than A. Note that methods with increasing costs, such as GCR,

can have their costs fixed through restarting.

We elaborate on the convergence domains. For the norm-minimizing
methods, we have constructed counter—examples in the next larger domain
for which the methods do not conmverge. For example, Orthomin(k) is not
guaranteed to converge for general nonsymmetric matrices. We are less
certain about Orthores(k), IOM(k), and DIOM(k). We know of no
convergence results for these methods that are applicable to problems
with positive-definite l&-metric part, but we do not have examples of
such problems for which the methods do not converge. We indicate this
uncertainty in the table. (GCG was not designed for more general
problems.) Finally, recall that while the Chebyshev polynomials are of
use if the eigenvalues of A lie in the right half plane, the adaptive
Chebyshev algorithm requires that the symmetric part be positive—

definite,
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We have performed numerical experiments with a subset of these
methods, using several preconditioning techniques. In general, we have
found the Chebyshev method to be more rapidly convergent than the
CG-1like methods (Orthomin(k) and GCR(k)) tested, but the former method
is sensitive to iteration parameters. All of these methods appear to be
more effective than the conjugate gradient method applied to the norm;l
equations., Preconditionings based on 1nconpleie factorizations, fast
direct methods, and reduced systems all speed the convergence of the

iterative methods.

Finally, several important issues concerning these methods are

unresolved. We feel the most important ones are the following:

1. Error bounds: The iterative methods seem to comverge more
rapidly than the current error bounds suggest; we do not know

if these bounds are tight or if there are stronger bounds.

2, Stopping criteria: We have used the norm of the residual for
the stopping criterion because it is easy to compute.
However, the error =Xy might be 1-:;; even if the residual
is small. For symmetric, positive-definite problems, an
upper bound for the norm of the error cam be obtained fairly
easily [38]. We know of no simple way to do this for

nonsymmetric problems.



3, Indefinite systems: Problems in which the symmetric part is
indefinite occur in applications, and (as we showed in
Chapter 11) they may result from preconditioning. Most of
the methods considered are not rigorously applicable to

indefinite problems.

4. Yector machines: Since the iterative methods are based on
inner products and scalar-vector products, they are well-
suited to vector machines. However, the forward- and back-
solves required by the incomplete factorizationm
preconditionings cannot be implemented as efficiently on
vector machines. Other techniques need to be examined.

(See [72]) for a list of references to work in this area.)
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