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ABSTRACT

Algorithmic Program Debugging
Ehud Y. Shapiro

Yale University, 1982

In this thesis we lay a theoretical framework for program debugging, with the goal
of partly mechanizing this activity. In particular, we formalize and develop algorithmic
solutions to the following two questions:

1. How do we identify a bug in a program that behaves incorrectly?

2. How do we fiz a bug, once one is identi fied ?

We develop interactive diagnosis algorithms that identify a bug in a program that
behaves incorrectly, and implement them in Prolog for the diagnosis of Prolog programs.
Their performance suggests that they can be the backbone of debugging aids that go far
beyond what is offered by current programming environments.

We develop an inductive inference algorithm that synthesizes logic programs from
examples of their behavior. The algorithm incorporates the diagnosis algorithms as a
component. It is incremental, and progresses by debugging a program with respect to
the examples. The Model Inference System is a Prolog implementation of the algorithm.
Its range of applications and efficiency is comparable to existing systems for program
synthesis from examples and grammatical inference.

We develop an algorithm that can fix a bug that has been identified, and integrate
it with the diagnosis algorithms to form an interactive debugging system. By restricting
the class of bugs we attempt to correct, the system can debug programs that are too
complex for the Model Inference System to synthesize.
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Chapter 1

INTRODUCTION

1.1 The problem

It is evident that a computer can neither construct nor debug a
program without being told, in one way or another, what problem the
program is supposed to solve, and some constraints on how (o solve it. No
matter what language we use to convey this information, we are bound to
make mistakes. Not because we are sloppy and undisciplined, as advocates
of some program development methodologies may say, but because of a
much more fundamental reason: we cannot know, at any finite point in
time, all the consequences of our current assumptions. A program is a
collection of assumptions, which can be arbitrarily complex; its behavior is a
consequence of these assumptions; therefore we cannot, in general,
anticipate all the possible behaviors of a given program. This principle
manifests itself in the numerous undecidability results, that cover most
interesting aspects of program behavior for any nontrivial programming
system [79].

It follows from this argument that the problem of program debugging
is present in any programming or specification language used to
communicate with the computer, and hence should be solved at an abstract
level. In this thesis we lay theoretical foundations for program debugging,
with the goal of partly mechanizing this activity. In particular, we attempt

1

2
to formalize and develop algorithmic solutions to the following two
questions:

1. How do we identify a bug in a program that behaves
incorrectly?

2. How do we fiz a bug, once one is identified?

An algorithm that solves the first problem is called a diagnosis algorithm,
and one that solves the second a bug-correction algorithm.

To debug an incorrect program one needs to know the expected
behavior of the target program. Therefore we assume the existence of an
agent, typically the programmer, who knows the target program and may
answer queries concerning its behavior. The algorithms we develop are
interactive, as they rely on the availability of answers to such queries.

A diagnosis algorithm and a bug-correction algorithm can be
integrated into a debugging algorithm, following the scheme in Figure
1 below. A debugging algorithm accepts as input a program to be debugged
and a list of input/output samples, which partly define the behavior of the
target program. It executes the program on the inputs of the samples;
whenever the program is found to return an incorrect output, it identifies a
bug in it using a diagnosis algorithm, and fixes it with the correction
algorithm. Note that an algorithm for program synthesis from examples
can be obtained from a debugging algorithm by fixing the initial program to
be the empty one.

read P, the program to be debugged.
repeal :
read the next input/output sample.
while P is found to behave incorrectly on some input do
identily a bug in P using a diagnosis algorithm;
fix the bug using a correction algorithm.
oulput P. ‘ '
until no samples left to read. ]

Figure 11 A scheme for a debugging algorithm



‘1.2 Results

The main result of the thesis is a theoretical framework for program
debugging. We describe a computational model, which is an abstraction of
some common functional programming languages, including Prolog. Within
this model a program can have three types of errors: termination with
incorrect output; termination with missing output; and nontermination. We
develop diagnosis algorithms that can isolate an erroneous procedure, given
a program and an input on which it behaves incorrectly.

These algorithms are interactive: they query the programmer for the
correctness of intermediate results of procedure calls, and use these queries
to diagnose the error. Here are some examples of queries these algorithm
pose during the diagnosis process:

o Is |a,b,c] a correct output for append on input [a,b] and [c,d]?
o What are the correct outputs of partition on input [2,5,3,1] and
4
o Is it legal for sort, on input [1,2,3], to call itself recursively with
input [1,1,2,3)?
Queries of the first kind are posed by the algorithm that diagnoses
termination with incorrect output; the second by the algorithm that
diagnoses termination with missing output; and the third by the algorithm
that diagnoses nontermination.

Our goal in developing the diagnosis algorithms was to minimize the
amount of information the programmer needs to supply for them to
diagnose the error. Typically, the computational overhead that is involved
in optimizing the number of queries needed is acceptable. For example, we
develop a diagnosis algorithm for the first error — termination with
incorrect output — that is query optimal: the number of queries it performs
is on the order of the logarithm of the number of procedure calls in the
faulty computation. The query-complexity of the algorithm is optimal, and
its computational complexity is linear in that of the faulty computation.

Even as a stand-alone diagnosis aid these algorithms provide a
significant improvement over standard tracing packages, considering the

4

amount of human effort they require to diagnose a bug. But they also open
the way for a wide spectrum of methods for automated debugging, all based
on mechanizing the process of answering queries they pose. We list several
such methods that can be used to partially mechanize diagnosis queries:

o Accumulate a database of answers to previous queries. Use them

to answer repeated queries.

o Supply assertions and constraints on the input/output behavior,
invoke the diagnosis algorithms whenever they are violated, and

use them to answer diagnosis queries whenever they apply.

o Use a previous version of the program that is known to work to
answer queries, when debugging the modified program on inputs

on which its output is expected to remain unchanged (e.g., when

the modification is only an optimization).

For example, the constraint that the number of elements in the output list
of append should be the sum of the number of elements in its inputs lists
can be used to answer negatively the first query in the example above.
Knowing that the size of the input list to sort should decrease as the sorting
progresses can be used to answer the third query in the negative. An older
version of partilion can be used to supply the desired outputs in the second
query.

We think this approach is flexible enough to support the process of
program development in all ils stages: in developing prototypical,
throwaway systems, one'’s concern is not reliability, but fast turnout. For’
fast changing programs answers to previous queries are worthless, and the
overhead of maintaining the consistency of declarative information and
documentation with what the program currently does is not cost-effective.
For such systems the diagnosis algorithms provide a low-overhead
development tool.

We expect that production systems, on the other hand, will exploit the
full spectrum of aids the diagnosis algorithms provide. A database of
answers lo diagnosis queries is an invaluable source of test data, and can
function as on-line documentation of the program. Debugging a new release
of a system with the current working version answering diagnosis queries
may also result in significant savings in human labor. The declarations of
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strongly-typed languages, although not obligatory, are not excluded from
this framework as well: type and other declarations can be veriflied at
runtime, when in debugging mode. Declarations that are checked at
runtime can be more flexible and expressive than those designed specifically
for verification by static analysis.

Our second group of results is concerned with the problem of inductive
inference and program synthesis from examples. It turns out that the
problems of inductively inferring theories and synthesizing programs from
their input/output behavior can be addressed in much the same way as
program debugging. The basic cycle of debugging — propose an hypothesis;
test it; detect an error in it; correct the error — Is applicable to the problem
of inductive inference as well. We have developed a general algorithm that
can synthesize logic programs from examples of their behavior. This
algorithin uses the diagnosis algorithms as a component. In addition, it has
a bug-correction component, that searches the space of possible corrections
for a bug, once one is found; this component takes advantage of the
intimate connection between the syntax and semantics of logic programs to
prune the search.

The Model Inference System is a Prolog implementation of the
inductive synthesis algorithm. In comparison to other systems for
grammatical inference and program synthesis from examples, the Model
Inference System proves to be superior both in its efficiency and in its range
of applications. '

The bug-correction strategy of the inductive synthesis algorithm is not
very appropriate to interactive debugging, since it essentially removes the
incorrect part of the program, and searches for a correct component from
scratch. In an attempt to apply our techniques of inductive inference to
interaclive debugging, we have developed a more adaptive bug-correction
algorithm. The complexity of programs that can be handled effectively by
the interactive debugging system exceeds those that can be synthesized from
examples by the Model Inference System. This gain in power is achieved at
the expense of generality: the Model Inference System can correct, in a
sense, arbitrary bugs in the program, but as a resull the class of programs
that can be practically synthesized is limited. In order to debug arbitrarily

6

large programs, we restricted the class of bugs that we attempt to correct
automaltically; more complex bugs are left to be corrected by the
programmer.

1.3 Related work

1.3.1 The need for debugging

It has been suggested that one way to eliminate the need for debugging
is to provide a correctness proof of the program. As Naur and Randell say
(in [64], p.51, from [39)):

“{When] you have given the proof of correctness, ... |[you] can dispense with
testing altogether.”

In conjunction with this quotation, Goodenough and Gerhart [39] recall a
simple text formatter program described and informally proved correct by
Naur [63], and find seven bugs in it. Three of them can be detected
immediately by running the program on a single example. So they
comment (p.172):
Jthe practice of attempting formal or informal proofs of program correctness is
useful for improving reliability, but suffers from the same types of errors as
programming and testing, namely, failure to find and validate all special cases
. relevant to a design, its specification, the program and its proof. Neither
testing nor program proving can in practice provide complete assurance of
prugram correctness...”

Gerhart and Yelowitz [35] discuss the fallibility of some of the
methodologies that claim to eliminate or to reduce the need for debugging.
They consider three types of errors: errors in specifications, errors in
systematic program construction, and errors in program proving, and
provide instances of each of these errors selected from published articles.
Concerning errors in specifications, they conclude (p.199):

“These examples clearly show that specifications must be tested in much the

same way thal a program is tested, by selecting data with the goal of
revealing any errors that might exist.”



7

As a program can be proven correct formally only with respect to
another formal description of its intended behavior, this observation
suggests that even if the effort in program verification succeeds, it does not
solve the problem of program debugging, but simply reduces it to the
problem of debugging specifications. If the problem of debugging
specifications has not yet revealed itsell as a serious one, it may be because
there has been no intensive use of formal specifications in full scale
programming tasks. From an abstract point of view, however, a
specification language that has a partial decision procedure is just another
programming language, and for any programming language there is a
complex programming task for which there Is no simple, self-evidently
correct program (e.g. the compiler specification of Polak [70]). As soon as
complex specifications are used, there will be a need to debug them.

Manna and Waldinger [56], also suggest that one can never be sure
that specifications are correct, and agree that it is unlikely that program
verification systems will ever completely eliminate the need for debugging.

Balzer [8] analyzes the role of debugging in the ultimate automatic
programming system. He suggests that debugging Is an unavoidable
component in the process of “model verification”, in which the system
verifies that it has the right idea of what the target program is. Balzer also
comments on the role of assertions in the phase of model verification (p.78):

“..we do not feel that Jusing assertions] should be part of this phase. I a

problem can be conveniently described by a series of assertions, then that is
how it should be stated originally.”

An even more radical opinion on the prospects of program verification
was put forth by DeMillo, Lipton and Perlis [21]:

“A program is a human artifact: a reallife program is a complex human
artifact; and any human artifact of sulficient size and complexity is imperfect.
The output [of a verification system| will never read VERIFIED".

1.3.2 The software-engineering perspective on debugging

Traditionally, the efforts in program debugging were focused on how
to bridge the gap between the programmer and the executable program.

8

Print statements and core dumps were the common means of
communication between the programmer and the running program.

~ The problem faced by software-engineers, when trying Lo improve the
situation, was that much of the original, human oriented, aspects of the
source program were lost during the compilation step. To bridge this gap,
an interactive debugger typically included features such as “memory and
register initialization; ability to examine, dump, and/or modify memory
locations and registers; selectively execute sections of the program by use of
breakpoints; and single step capability” [49)].

However, bringing the user closer to the machine was not sufficient to
solve the problems of software development. Two major avenues were
taken to alleviate this situation; both relying on the use of “higher level
languages”.

One approach, promoted by the advocates of the Algol-like languages,
was that of structured programming [101]. The goal was to achieve the
construction of reliable software through a reliable method of program
development. Discipline and a systematic approach were suggested as a
means of curing the program of bugs.

Structured programming marks a significant improvement of our
understanding of the programming process. It has, however, a significant
limitation, when implemented within the Algol-like family of languages: an
Algol or Pascal program cannot be executed, until after the program is
completely written and compiles successfully. The restrictive nature of
compiler oriented languages limits the opportunities of experimentation, and
typically results in a rigid design strategy called by Perlis the pre-structured
method (66]:

“The pre-structured method is the traditional approach in which the final

system language, data structures, control structures and modularization are
fixed very early in the [software] life-cycle, usually in the design phase”

This approach is usually supplemented with management techniques
and discipline enforcing methodologies at all levels of software development.
At the programming language level, this approach is typically supported
with a strong-typing mechanism, such as in Pascal [48], Mesa [61], and
Ada [15).
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We agree that structured programming, augmented with a strong
typing mechanism, helps -the programmer enormously in avoiding, or
detecting carly, many syntactic and shallow semaatic errors. lowever, the
task of preventing deeper errors — errors that can be detected only by
exercising tlie different components of the system, or worse, by exercising
the system as a whole is not supported by this design methodology. On the
contrary, the correction of such errors is typically very hard and costly.
The drawback of this method iIs its “pencil and paper” character: typically,
there are no effective computerized aids that can help test and experiment
with different designs.

Perlis describes a different approach to the problem, called the
prolotypical method [66]:

“In the prototypical approach, on the other hand, the software is seen as being
developed through a sequence of executable prototypes possessing increased

functionality, with more and more implementation detail and alternative
desigas being the rationale for the successive prototype systems.”

This approach is best supported with flexible, interpretive languages
that have low overhead in implementation, such as Prolog [14], Lisp [95),
APL [47], and SmaliTalk [46]. A similar observation on the program
development methodology that arises from such languages was made by
Sandewall [81], who coined the term structured growth for it:

“An initial program with a pure and simple structure is writlen, tested, and

then allowed to grow by increasing the ambition of its modules... The growth
can occur both “horizontally”, through the addition of more facilities, and

“vertically”, through a deepening of existing facilities...”

Since these languages are interpretive, the problem of information loss
between the source code and the executable program is not as severe.
Indced, the best programming environments and debugging tools have been
developed within, and for, these languages [22, 95].

These debugging tools do what debugging systems for compiler-
oriented languages did, but better: they allow the programmer to examine
and alter the state of the computation, at the programming language level,
rather then at the machine level. However, these systems maintain the
passive nature of the debugging facility. Our debugging algorithms differ
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from existing programining environments by being active: once invoked,
they actively present information to the programmer, and ask him about
the correctness of intermediate computation steps. Current debugging
facilities measure their merit by the amount of information they can provide
the programmer with, and by the flexibility in which they can respond to
his particular requests. Our debugging algorithms are different: we
measure their merit by the succinctness of the information they present to
the programmer while diagnosing and correcting a bug.

1.3.3 Program testing

One question that arises in the context of program debugging is
whether the behavior of the prograum on a given set of test data is sufficient
to determine its correctness. The answer is negative in general, but
Goodenough and Gerhart [39]) showed that under certain assumptions one

‘may find such a test data set, which they term reliable. The idea is to

partition the domain of the program to a finite number of equivalence
classes, such that the correct behavior of the program on a representative of
each class will, by induction, test the entire class, and hence establish its
correctness. The testing procedure then is to pick a representative from
each class and execute the program on it. If the program behaves correctly
on all the test cases, then it is concluded to be correct. The approach does
not specifly how to proceed in the case where the program behaves
incorrectly on some input.

The approach of Goodenough and Gerhart was followed by the
Program Mutation Project of Budd et al. [18, 18] and by Brooks |16}, among
others. Testing by program mutation is based on the assumption that the
program to be tested, if wrong, is a close variant (mutant) of the target
program. Hence if there is a set of test data on which a program behaves
correctly, but all its mutants do not, then we can say with some confidence
that the program is correct. The idea was implemented and tested for
Fortran and Lisp programs. Brooks [18] applied similar ideas to pure Lisp
programs. lle treated a more restricted class of errors, and hence was able
to prove that with respect to this class of errors, if the program behaves
correctly on a certain test data set, then it is correct. He developed a



. system that can generate such a test data set for simple programs.

The goal of program testing is to provide some evidence for the
correctness of the program after it has been developed. But the question of
what to do if the program is found to behave incorrectly on some test
sample is typically not addressed. We suggest that a system for generating
test data can be integrated in a natural way with our debugging algorithms:
the former can be used to generate the test data on which the debugging
algorithm can operate. As the program changes, new or different test data
may be necessary for the program to meet the desired level of reliability;
but in an integrated environment, the test data can be developed
incrementally, hand in hand with the program that is being debugged.

1.3.4 Heuristic approaches to debugging

Sussman [94] studied a model of skill acquisition based on debugging.
His system, Hacker, was able to improve its performance in the blocks world
by proposing plans and debugging them. After a plan (program) is
proposed, it is executed in a “careful” mode, in which primitive operations
are applied only if they do not violate their prerequisites, and established
subgoals of the plan are protected against being violated by attempts to
satisfy other goals. If such a violation occurs, then a method for diagnosing
the bug is applied, and a patch to the plan is attempted. If a patch is
successful, then, under certain conditions, it may be generalized and the
patched, generalized plan is added to the plan library. Sussman admits,
however, that the diagnosis and correction strategies incorporated in his
system are domain specific, and no immediate generalizations of them are
available.

Davis [31} showed how extended tracing and explanation facilities can
enable an expert who is not a programmer to debug the rule base of an
expert system.

Hayes-Roth, Klahr and Mostow [42] have considered the problem of
debugging in the context of acquisition of knowledge for a rule-based expert
system. They consider rule-debugging essential to transforming expert’s
knowledge into executable code, and suggest directions as to how to
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automate this process. They classify the possible bugs that arise from
altempt to program knowledge into categories such as ezcess generalily,
excess specificily, invalid knowledge and invalid reasoning, and suggest
strategies to cope with such bugs, termed knowledge refinement strategies.
For example, in case of excess generality, they recommend to “specialize the
rule, using case analysis, proof analysis, concept hierarchy specializations”.
In case of invalid knowledge they recommend to “correct faulty advice,
using proof analysis, diagnosis and refinement”. An example of how
knowledge refinement may be applied to correct invalid strategies in the
case of the card game of hearts is described.

A different approach to debugging is taken by the Programmer's
Apprentice at MIT [75, 77, 83], and Soloway et al. [90}. Both have
developed a bug diagnosis system which can identify a restricted class of
bugs. To do so, the system is supplied with a plan for the intended
program, and infers the existence and type of bugs in the program by
performing some kind of pattern-matching between the plan and the
program. Both systems are at an experimental stage, and are currently
applicable only to a narrow class of bugs.

Work in inductive inference is surveyed separately in Section 4.1.

1.4 Outline

The target and implementation language for the algorithms and
systems developed in this thesis is Prolog. Basic concepts of logic
programming and Prolog are reviewed in Chapter 2.

In Chapter 3 we develop interactive diagnosis algorithms, which apply
to most known functional programming languages; the exact assumptions
are spelled oul in Section 3.1. The algorithms are developed for three types
of crrors: (termination with incorrect output; termination with missing
output; and nontermination. A Prolog implementation of these algorithmns,
capable of diagnosing pure Prolog programs, is shown, and its behavior is
exemplified.  This chapter also discusses extensions of the diagnosis
algorithms to full Prolog, and methods for mechanizing the process of
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answering diagnosis queries.

We apply the diagnosis algorithms to two problems: program synthesis
from examples, in Chapter 4, and interactive debugging, in Chapter 5.

The inductive program synthesis algorithm, developed in Chapter 4,
uses the diagnosis algorithms as a component. Its top-level control structure
is identical to the algorithm in Figure 1; it differs from this algorithm in
that its initial program — the program it debugs — Is the empty onc.

The Model Inference System is a Prolog implementation of this
algorithm, capable of synthesizing Prolog programs from examples of their
behavior. The system is described in Section 4.3, and examples of programs
the system has synthesized — an insertion sort program and a grammar for
a subset of Pascal — are provided in Appendix I.

A bug-correction strategy that is applicable to interactive debugging is
described in Chapter 6. A bug-correction algorithm that tries to modify
incorrect componenis of the initial program is developed, and is
incorporated with the diagnosis algorithms to form an interactive debugging
system. Ilts power is demonstrated in a session in which we first
interactively debug a faulty quicksort program, and then “debug” it into a
quicksort program that removes duplicate elements.

Chapter 2

CONCEPTS OF LOGIC PROGRAMMING
‘ AND PROLOG

Prolog is both the target and the implementation language for the
algorithms and systems developed in this thesis. We introduce here the
concepts and definitions necessary to make the thesis sell-sufficient. We
suspect, however, that this chapter cannot serve as a substitute for an
adequate introduction to the uninitiated reader. Several relevant references
are mentioned in the following brief historical comments.

Since the introduction of the resolution principle by Robinson [78],
there have been attempts to use it as the basic computation step in a logic-
based programming language [25, 40]. Nevertheless, for general first order
theories, neither resolution nor its successive improvements were efficient
enough to make the approach practical. A breakthrough occurred when a
restricted form of logical theories was considered, namely Horn theories.
The works of Colmerauer, van Emden and Kowalski [27, 33, 54], set the
basis for procedural interpretation to Horn-clause logic, and led to the
development of the Programming language Prolog {14, 80}, which is today a
viable alternative to Lisp in the domain of symbolic programming [58, 97].

The model-theoretic, fixpoint and operational semantics of logic
programis have been studied by Apt, van Emden and Kowalski [7, 33),
among others. The computational complexity of logic programs was studied
by Shapiro [86]. The more essential definitions and results of concerning

"
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. logic programs are reproduced in Section 2.1. The basics of Prolog are
surveyed in Section 2.2.

2.1 Logic programs

A logic program is a finite set of definite clauses, which are
universally quantified logical sentences of the form

A« B.B,,.. B, k>0

where the A and the B's are logical atoms, also called goals. Such a
sentence is read “A is implied by the conjunction of the B's”, and is
interpreted procedurally “to satisfy goal A, satisly goals Bl'Bz""'Bk"' Ais
called the clause’s head and the B's the clause’s body. If the B's are
missing, the sentence reads “A is true” or “‘goal A is satisfied”’. Given a
goal, or a conjunction of goals, a set of definite clauses can be executed as a
program, using this procedural interpretation.

An example of a logic program for insertion sort is shown as Program

Program 1: Insertion sort

isorl(|X|Xs),Ys) «— isort(Xs,Zs), insert(X,Zs,Ys).
isort([),{]).

inserl(X,[NYs},[X,N]Ye]) — X < V.
insert(X,[V]Ys},[N|Zs]) — X > Y, inserl(X,Ys,Zs).
insert(X,[},(X])- 0

We use upper-case strings as variable symbols and lower-case strings
for all other symbols. The term || denotes the empty list, and the term
[X]}] stands for a list whose head (car) is X and tail (cdr) is Y. The results
of unifying the term [A,B|X] with the list [1,2,3,4] is A=1, B=2, X=[34],
and unifying [X|¥] with [a] results in X=a, Y=().
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Figure 2 establishes some relationships between logic programs and
concepts from conventional programming languages.

Procedures Definite clauses
Procedure calls Goals

Binding mechanism,
data selectors and constructors Unification

Execution mechanism Nondeterministic goal reduction

Figure 2: Common programming concepts in logic programs

2.1.1 Computations

A computation of a logic program P can be described informally as
follows. The computation starts from some initial (possibly conjunctive)
goal A; it can have two result: success or failure. If a computation
succeeds, then final values of the variables in A are conceived of as the
output of the computation. A given goal can have several successful
computations, each resulting in a different output.

The computation progresses via nondeterministic goal reduction. At
cach step we have some current goal A ,A,,...A. A clause
A’—B,B,,...B, in Pis then chosen nondeterministically; the head of the
clause A” is then unified with A,, say, with substitution 0, and the reduced
goal is (B,,B,,....B,A,,...,A)0. The computation terminates when the
current goal is emply.

We proceed to formalize these notions. We follow the Prolog-10
manual [14] in notational conventions, and Apt and van Emden [7] in most
of the definitions. A term is cither a constant, a variable or a compound
term. The constants include integers and atoms. The symbol for an atom
can he any sequence of characters, which is quoted il there is possibility of
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confusion with other symbols (such as variables, integers). Variables are
distinguished by an initial capital letter. If a variable Is only referred to
once, it does not need to be named and may be written as an “anonymous”
variable indicated by a single underline _.

A compound term comprises a functor (called the principal functor of
the term) and a sequence of one or more terms called arguments. A functor
is characterized by its name, which is an atom, and its arity or number of
arguments. An atom Is considered to be a functor of arity 0.

A substitution is a finite set (possibly empty) of pairs of the form X—
¢, where X is a variable and ¢ is a term, and all the variables X are distinct.
For any substitution §={X 1t Xy—tg vy X n—*t.} and term s, the term
80 denotes the result of replacing each occurence of the variable X i by ¢ o
1<i<n; the term 80 is called an instance of s.

A substitution 0 is called a unifier for two terms s and s, i 3,0=3,0.
Such a substitution is called the most general unifier of s, and s, if for any
other unifier 0. of s, and 8y ’l'l is an instance of 8,0. If two terms are
unifiable then they have a unique most general unifier {78].

We define computations of logic programs. Let N=AA,,..,4_,
m>0, be a (conjunctive) goal and C=A~-B,,..B,, k>0, be a clause such
that A4 and A, are unifiable with a substitution 6. Then
N'=(B,,...Bj,Agy.,A,)0 Is said to be derived' from N and C, with
substitution 8. A goal A,ﬂ of N’ is said to be derived from Aj in N. A goal
B of N’ is said to be invoked by A, and C.

Let P be a logic program and N a goal. A derivation of N from Pis a
(possibly infinite) sequence of triples <N,C,,8,>, I=0,1,... such that N/’is
a goal, C; is a clause in P with new variable symbols not occuring
previously in the derivation, 0, is a substitution, Ny=N, and N; +1 is

1The usual definition of derivation allows any atom in the goal to be resolved with a
clause, not necessarily the first one. Apt and van Emden [7] showed that the restriction
of derivations to resolve the first atom ouly does not violate the completeness of the
proof procedure. We adopt this restriction to simplify the definition of total correctness
below.
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derived from N; and C; with substitution 0,, for 1>0.

A derivation of N from P is called a refutation of N from P if
N,=n (the empty goal) for some I>0. Such a derivation is finite and of
length I, and we assume by convention that in such a case C=o and
0/={}. If there is a refutation of a goal A from a program P we also say
that P succeeds on A.

Figure 3 shows a refutation of the goal isort([2,1},X) from Program 1.
It assuines that the programs for the arithmetic predicates < and < operate
as though they were represented by an infinite set of unit clauses.

<isort([2,1),L),
(isor(|X|Xs),Ys) — isort(Xs,Zs), inserl(X,Zs,Ys)),
{X—2,Xs—(1],L—Ys}>
<(#s0rt([1),Zs), insert(2,2Zs,Ys)),
(isort(|X1|Xs1),Ys1) — isort(Xsl1,Zsl),insert(X1,251,Ysl))
{X1—1,X81-|),Z8—Ys1} >
<(isorl(|),Zs1), insert(1,Z81,2s), inserl(2,2s,Ys)), isor!(|),[)), {Zs1—[]}>
<(insert(1,[],Zs), insert(2,2s,Ys)), insert(X2,[),|X2), {Zs—[X2),X2—1})>
<insert(2,[1],Y3)),
(insert(X3,[Y3|Y33],[Y3| Z35])— X3> V3, insert(X3,Y3s,Z3s5)),
{X3—2,Y3—1,Y38—|},Ys—|1|Z3s]} >
<(2> 1,insert(2,]),Z3s)), 2>1,{} >
<inserl(2,[),Z3s), insert(X4,|},[X4]), {Z3s—[2],X1—2})
<oo{}>

Figure 3: An example of a refutation

A more intunitive, though less complete way to describe successful
computions of logic programs (i.e. refutations) is via the refulation tree. In
the refutation tree, nodes are goals that occur in the computation, with
their variables instantiated to their final values, and ares represent the
relation of goal invocation. The refutation of isort([2,1},L) in Figure
3 corresponds the refutation tree in Figure 4. Depth of indentation reflects
depth in the tree.
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isorl( I2,ll,l| ,2])
isort([1),[1))
isort([},{))
insert(1,[},[1))
insert(2,[1),(1,2))
2>1
insert(2,[},[2])

Figure 41 An example of a refutation tree

2.1.2 Semantics

We define semantics of logic programs, which is a special case of the
standard model-theoretic semantics of first order logic [33]. An
interpretation is a set of variable-free goals. A substitution ¢ salisfies a
goal A A,,..., A, in an interpretation M if A01s in M, for 1<i<n.

Definition 2.1: We say that a clause Ao—B‘,Bz....,Bn covers A’ in
M il there is a substitution # that unifies A with A’ and satisfies
Bl'Bz'""Bn in M.

A clause is true in M if every variable-free goal it covers in M is in
M, and false otherwise. A program P is true in M if every clause in Pis
true in M. In the context of logic, we use correct as a synonym of true and
incorrect as synonym of false.

Let P be a program. The Herbrand universe of P, H(P), is the set of
all variable-free goals constructable from constants and functors that occur
in P. We define the interpretation of P, M(P), to be the set {A| A is in
H(P) and P succeeds on A}.

Van Emden and Kowalski [33] show that M(P) is the minimal
interpretation in which P is true. They also associate a transformation 7
with any program P and show that M(P) is the least fixpoint of 7, The
transformation 7p is defined as follows. Let M be an interpretation. Then
a variable-free atom A in 7 M) iff there is clause in P that covers A in M.
An alternative definition of truth is that a program P is true in M iff
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MCr1dM).

We say that a program P is complete in M if MC M(P). A program
Pis correct and complete in M iff M=M(P).

A domain is a set of goals. We say that a program P is everywhere
terminating over a domain D if for no goal A in D there is an infinite
derivation of A from P.

Every program defines a domain, as follows. Let P be a program. A
goal A is in the domain of P if it occurs in a derivation of B from P, for
some goal B in H(P). The domain of a program is all the goals that can be
invoked in derivations of ground goals from P.

Lemma 2.2: Let P be a program that is everywhere terminating
over H(P). Then Pis everywhere terminating over its domain.

Proof: If a program is not everywhere terminating over its domain then
there is some goal A in its domain such that there is an infinite derivation
of A from P. But A occurs in a derivation of some goal B in H(P). Hence
there is a infinite derivation of B from P, in contradiction to the assumption
that Pis everywhere terminating over H(P). [}

A program that is everywhere terminating over its domain, and is
correct and complete in M is called totally correct in M. The target of our
debugging and synthesis algorithms are totally correct programs.

2.1.3 Complexity measures

We define complexity measures over refutations, using the notion of
refutation tree. Let R be a refutation. We define the length of R to be the
number of nodes in the refutation tree. The depth of R is the depth of the
tree. The goal-size of R is the maximal size of any node of the refutation
tree, where the size of a goal is the number of symbols in its textual
representation.
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Definition 2.8: We say that a logic program P is of goal-size
complexity G(n) If for any goal A in M(P) of size n there Is a
refutation R of A from P of goal-size < G(n).

P is of depth complezity D(n) if for any goal A in M(P) of
size n there is a refutation R of A from P of depth < D{n).

P is of length complezity L(n) if for any goal A in M(P) of
size n there is a refutation R of A from Pof length < I(n).

We say that an interpretation M is of goal-size complexity G(n) if
there is a logic program P such that M{P)=M and the goal-size
complexity of P iIs G(n). We assume similar definitions for the depth
complexity and length complexity of interpretations.

In [86] we have established the following relationships between
complexity of refutations of logic programs and complexity of computations
of alternating Turing machines [24].

Theorem 3.4s Let P be a logic program of depth complexity
D(n), goal-size complexity G(n) and length complexity L(n). Then
there exists an alternating Turing machine T and a constant ¢
uniform in P such that T operates in time cD(n)G(n) space ¢G(n)
and tree size cI{n)G(n), and that L{T)=M(PF).

Theorem 2.6: Let T be an alternating Turing machine that
accepts a language L in time T(n), space S(n) and tree-size Z(n).
Then there exists a logic program P of depth complexity T(n),
goal-size complexity S(n)+c and length complexity Zn) and a goal
A that contains the variable X such that L(T)={X0 | A0 is in
M(P)}, where ¢ is a constant uniform in M.

Using the results of Chandra et. al [24], one can characterize the
complexity of logic programs in terms of deterministic complexity measures.
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2.2 Prolog

The relationship between logic programming and Prolog is a
reminiscent of the relationship between the \-calculus and Lisp. The “pure”
part of Prolog is simply a realization of refutations of logic programs on a
sequential machine. Prolog extends beyond this pure core in several ways,
for reasons of efficiency and expressiveness. We explain how the
nondeterminism of logic programs is implemented in sequential Prolog, and
survey some extensions of Prolog, used in the programs and systems
described below. We follow the Prolog-10 manual [14] in doing so.

2.2.1 The execution and backtracking mechanism

Prolog’s execution mechanism is a sequential simulation of the
nondeterministic computation mechanism described in Section 2.1. Instead
of choosing the next clause to be invoked nondeterministically, Prolog tries
all unifiable clauses sequentially, in the order they occur in the program
text. When it fails to find such a clause, it backtracks to the last choice
point. The implementors of Prolog in describe the backtracking mechanism
as follows [14]:

“To ezecule a goal, the system searches forwards from the begipning of the
program for the first clause whose head malches or unifies with the goal.
The unification process [78] finds the most general common instance of the
two terms, which is unmique if it exists. If a match is found, the matching
clause instance is then aclivaled by executing in turn, from left to right, each
of the goals (if any) in its body. If at any time the system fails to find a
match for a goal, it backtracks, i.e. it rejects the most recently activated
clause, undoing any substitutions made by the match with the head of the
clause. Next it reconsiders the original goal which activated the rejected
clause, and tries to find a subsequent clause which also matches the goal.”

Prolog’s sequential proof procedure is correct, as any refutation it finds
is indeed a refutation, but is incomplete, as it may fail to find a refutation
although such exists. This may happen if there are both refutations and
infinite computations for a given goal, which result from different choices of
clauses, and Prolog happens to start and explore an infinite computation
first.
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The problem does not occur if the logic program has no infinite
computations. Since we restrict ourselves programs which are totally
correct over their domains, this incompleteness of Prolog’s prool procedure
is no limitation for such programs; and incorrect programs can be debugged,
as the title of this thesis suggests.

Logic programs with Prolog's sequential proof procedure are referred to
as pure Prolog; in particular, all the extensions described below are excluded.

2.2.2 Running time and the “occur check”

The most basic operation of Prolog Is the unification of a variable
against a term. The unification algorithm [78] requires that this operation
succeed only if the variable does not occur in the term. The check of
whether this case holds is called the occur check. The unification algorithm
incorporated in Prolog does not include the occur check, since with this
check Prolog could not be a practical programming language. For example,
the runtime of the straightforward program for appending two lists would
be in the order of square of the size of the input lists, rather than linear.
The lack of the occur check Is not felt in most programming tasks, including
the development of the systems described in this thesis. Colmerauer [28]
describes a theoretical model of Prolog without the occur check, based on
unification over infinite trees.

The complexity measures defined for logic programs are
nondeterministic; we would like to get hold of a more practical measure to
evaluate the performance of concrete Prolog programs. We define the time
of the computation of Prolog on a give goal to be the number of clause
invocations performed until all solutions are found to that goal. This
definition is justified in part by the absence of the occur check in Prolog;
without the occur check, the time required to invoke a clause in most
practical Prolog programs is bounded by a constant that depends on the
program. This claim does not hold when unification is used for tasks other
than variable binding, data selection and construction, such as the check of
the equality of two compound terms in a goal. This claim fails also il the
program modifies itself in runtime by using assert.
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As a consequence of this property, Prolog implementors use the
number of invocations per seconds as a measure of the speed of their
implementation.  The Japanese Fifth Generation Computer Project
suggested the term LIPS (logical inferences per second). Micro-Prolog [57)
is known to run 110 LIPS on the 2z-80 microprocessor, the Prolog-10
performs about 24K LIPS on the KL-10, and the Japanese project is aiming
at a personal logic programming machine of 1 mega LIPS, and a parallel
machine of 1 giga LIPS [62].

To give the reader a feel for these measures, we counted the number of
invocations needed to sort an ordered list using quicksort (an n? process for
the naive choice of the partition element). The number of clause
invocations needed to sort a list of 10, 20, and 30 elements are 87, 271, and
523, respectively.

2.2.83 Control

The order of goals in the clause determines the order in which they are
solved. The order of clauses in the program determines the order in which
they are tried. Besides the sequencing of goals and clauses, Prolog provides
one other facility for specifying control information. This is the cut symbol,
written “I". A cut is inserted in the program just like a goal, and its effect
is as follows [14]:

“When first encountered as a goal, cut succeeds immediately. If backtracking
should later return to the cut, the effect is to fail the “parent goal”, i.e. that
goal which matched the head of the clause containing the cut, and caused the
clause to be aclivated. In other words, the cut operation commits the system
to all choices made since the parent goal was invoked, and causes other
alternatives to be discarded. The goals thus rendered “determinate” are the
parent goal itsclf, any goals occurring before the cut in the clause containing
the cut, and any subgoals which were executed during the execution of those
preceding goals.”

The cut is Prolog’s go to. It is a low-level control primitive, and
unrestricted use of it lends to result in an unstructured, incomprehensible

code. Similar to the way go to can be used to implement higher level
control constructs as the while and repeat loops in conventional
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programming languages, cul can be used to define higher level control
predicates in Prolog. »

One such construct is negation, Prolog's not. Procedurally, a goal
nol(A) succeeds iff the goal A fails. A fixpoint semantics to nol is given by
Apt and van Emden [7). The not construct can be implemented using cut,
as follows:

nol(P) — P, fail.
nol(P).

where fail is a goal that fails (i.e. has no clauses defined for it). The not
program uses the meta-variable feature of Prolog, that allows goals to be
determined dynamically, at runtime; it is similar to passing procedure names
as paramelers in a conventional programming language. Tired of being
accused that Prolog’s not is not really not, the implementors of Prolog-10
switched to “\+" instead, hoping that no one would have any emotional
attachments to such an obscure symbol; we follow this convention in Prolog
code that is quoted directly from the actual systems developed.

Another, more conservative extension to Prolog is or, written
is defined as follows:

(P; Q) — P
(P;Q) — Q.
For example, the following program for grand father
grand father(X,Y) — father(X,2), ( father(Z)Y) ; mother(Z)Y) ).

computes the same relation as: -

grand father(X,Y) — father(X,2), father(Z)Y).
grand father(X,Y) — father(X,Z), mother(Z,Y).

but more efficiently, since it does not recompute father(X,Z) for solving
mother(Z,Y). The or construct can be viewed as a notational convention,
since, if the program has no cut, it can always be removed by introducing a
new predicate, as in:

“r and
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grand father(X,Y) — father(X,Z), parent(Y,2).

parent(X,Y) — father(X.Y).
parent(X,Y) — mother(X,Y).

Another useful control construct is Prolog’s if-then-else “—". The
goal (p — ¢ ; r) is executed as follows: “solve p, if successful, solve g, else
solve r". The if-then-else construct can be defined as follows.

(P~Q;R)~PLQ.
(P> Q;R) — R

The goal P — Q, when occurring other than as one of the alternatives of a
disjunction, is equivalent to P — @ ; fail.

2.2.4 Side-effects

Prolog is a functional language by nature, and many applications
which typically require global data structures such as stacks and queues, can
be implemented in it cleanly and efficiently without side-effects (see
Program 17, page 124 for an example of a functional implementation of a
queue). It is, however, essential sometimes for a program to modify the
state of the system. Prolog has two predicates, assert and retract, whose
execution results in side-effecting the database of clauses, i.e. the program
being executed. assert(X) adds the clause X to the program (it has two
variants, asserta that adds the asserted clause as the the first clause in the
procedure, and assertz that adds it as the last). retracl(X) deletes a clause
that unifies with X from the database, if such a clause exists, and fails
otherwise. .

Side-effects are used by the systems developed in this thesis for two
purposes only: to modify the program being synthesized or debugged, and
to record user's answers to queries, so he is not asked the same query twice.
All the rest of the computations are done functionally; system i/o excluded,
of course.
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. 2.2.6 Second order predicates

It is sometimes convenient to refer explicitly to the solutions to a goal.
Prolog provides predicates that enables one to compute this set. The goal
bagof{ X,F,S) returns in S the nonempty list of all instances of X for which
P is true , in the order they are found when solving P, and fails if no such
solution exists. For example, one can compute all pairs of two lists using
the following goal:

?— bagof{(X—Y),(member(X,[1,2,3]), member(Y[a,b,c,d])),S).

S = [1—a,1-b,1—¢,1—d,2—a,2—b,2—¢,2—d,3—a,3—b,3—¢,3—d|

setof is similar to bagof, except that it returns an ordered list of
solutions, ordered according to Prolog’s canonical ordering of terms, with
duplicates removed. Both predicates are implementable within Prolog,
using side-effects and forced backtracking. The resulting code is not the
most elegant, but no Prolog user ever needs to look at it. The
implementation of bagof in Program 2 is a simplified version of its
implementation in Prolog-10.

Program 2: An implementation of bagof

bagofiX,P,Xs) —
asserla(item( $bag’)), P, asserta(item(X)), fail ;
reap([},Xs), nonempty( Xs).

reap(Xs,Ys) —
retracl(item( X)), !,
( X=="8bag" — Xs=VYs ; reap(|X|Xs},Ys) ).

nonempty(|_|_])- 0

The marker “$bag’ is necessary for recursively nested bagof's to work
properly; without it they may steal each other's solutions. The actual
Prolog implementation of bagof{ X,P,S) is more sophisticated; if P has
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variables not occuring in X, Prolog indexes the instances of X on the
different solutions of these free variables in P. Free variables in P have to
be quantified existentially to override this indexing. For example, Prolog’s
bagof (not the one above) will return,

1— bagof{X,(member(X,[1,2,3]), member((X—V),[1—a,2—a,2—b,3—1])),5).

S =12,
Y=a;
S = [2,3),
Y==%

but if we existentially quantify the variable Y in the examble above we get

— .bago[(X ,Y1(member( X,[1,2,3]),
member((X-Y),(1—a,2—a,2—b,3—})),S5).

S =[1,2,2,3)

2.2.6 Meta-programming

“I'd rather write programs that help me write programs than write programs.”
— An anonymous meta-programmer

Considering the goals of this thesis, the most important aspect of
Prolog is the ease with which Prolog programs can manipulate, reason about
and execute other Prolog programs. Program 3 below shows an interpreter
for pure Prolog, written as a pure Prolog program. It uses the system
predicate clause(P,Q), which functions as if the program is reresented as a
list of unit clauses clause( P,Q)«— for any clause P—@ in it. A unit clause
P~ is represented as clause( Ptrue)—, a conjunctive goal ApAgA, A,
is represented as (A (Ay(..(A,_}uA,)--))).

The interpreter operates as follows. On the goal true is simply
succeeds, using the first clause. It solves a conjunctive goal (A,B) using the
second clause, by calling itself recursively on A and B. ‘The “real” work is



Program 8: An interpreter for pure Prolog

solve(true).

solve((A,B)) — solve( A), solve(B).
solve(A) — clause(A,B), solve(B).

done in the third clause: on a unit goal A it invokes a clause A—B, and
recursively solves B. The interpreter that executes this interpreter performs
the clause invocation and the unification when solving the goal clause(A,B).
Failure to solve the goal solve(B) would force the interpreter that executes
this interpreter to backtrack and provide new solutions to clause(A,B).

This interpreter cannot use the system predicates such as arithmetic
and input-output. We extend the interpreter using system(X), a predicate
that succeeds if A's main functor is a system predicate. System predicates
have no clauses defined for them, and they are solved directly by the Prolog
system. Since true is a system predicate that succeeds, it need not be
mentioned explicitly in the interpreter below.

solve((A,B)) — solve( A), solve B).
solve(A) — system(A), A ; clause(A,B), solve( B).

The extended interpreter can, for example, execute the insertion sort
program above.

?— solve(isor(([2,1,3,6,4,2],X)).

X = [1,2,2,3,4,6)

Chapter 3 .

PROGRAM DIAGNOSIS

This chapter presents diagnosis algorithms, which are interactive
algorithms that can identify a bug in a program that behaves incorrectly.

We distinguish three types of errors in program behavior: termination
with an incorrect output; termination with a missing output; and
nontermination. Each type of error receives the following uniform
treatment. A property of procedures is defined, for which an error in the
program implies that it contains a procedure having this property. This
procedure needs to be modified to eliminate the error in the program.

Algorithms that diagnose erroneous procedures are developed. These
algorithms are interactive, as they query the user for informnation about the
intended behavior of the program. The computational- and query-
complexity of the algorithms is analyzed. We then instantiate the
definitions and algorithms to logic programs, develop Prolog
implementations of them and demonstrate their performance.

From one point of view, the diagnosis algorithms are a quantitative
improvement on the standard single-stepping trace technique, since they
perform the same function of showing the programmer the behavior of the
program, except that they save some human labor by showing only pieces of
the computation that are relevant for diagnosing the bug. They seem to
function rather well as a replacement, or enhancement, to the standard
trace package of an advanced programming environment.

30
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From another point of view, however, these algorithms open up the
way for a much more automated form of debugging, since they do not
necessarily rely on a human agent to answer their queries: stored answers lo
previous queries, a previous version of the program that is known to work,
assertions concerning the input/output behavior of procedures — all can be
used to answer the queries in place of the human programmer, and help
locate the bug.

3.1 Assumptions about the programming language

Although the target programs of the diagnosis algorithms are logic
programs, the methods they employ are general, and are applicable to a
large class of programming languages. We therefore describe an abstract set
of properties of a programming language that are sufficient for the diagnosis
algorithms to apply, and develop the algorithms in this general setting.
Describing these algorithms in a logic-independent context also allows their
natural extension to full Prolog, as discussed in Section 3.6.

Our approach is geared towards languages in which the basic
computation mechanism is a procedure (or function) call, but is insensitive
to the inner workings of procedures. The diagnosis algorithms abstract
away all the details of the computation, except the procedure calls
performed, their inputs, and their outputs.

“Purificd” versions of many existing and proposed programming
languages satisfly our model, as elaborated below. For example, pure Lisp,
pure Prolog, loop-free Algol-like languages with no side-effects and a
provision for enforcing monotonicity, procedural APL with no goto’s and no
side-effects, Dackus’ applicative languages, Hope, and Harel's And/Or
programs.

We describe our assumptions more formally. A program is a finite set
of procedures. A procedure is defined by ils name, its arity, and its “code”.
In this abstract setting we do not specify what that code is, but assume that
the language has a computable interpreter, that maps this code into a class
of legal behaviors for that procedure, which we deseribe via top level
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traces [16].

A top level trace of a procedure p on input z that returns y is a finite
(possibly empty) ordered set of triples:

{<sz|vV|>o <PpTg¥y>s oo <kaszk>,

Where the p's are procedure names, and the z's and y's are vectors over
some domain D, not containing the symbol |. The intended interpretation
of such a top level trace is as follows: if the set is empty, it means that the
procedure p, on input z, has a legal computation that returns y without
performing any procedure calls; otherwise it means that p, on input z, has a
possible computation that calls p, on z,, and if this call returns y,, then p
calls Py on z,, and if this call returns Yy then... , then p calls P on I, and
if this call returns y,, then p returns y.

The restriction that the top-level trace is ordered assumes a sequential
interpreter. This restriction needs to be relaxed to handle concurrent
programming languages, and we suspect that most of the techniques of the
diagnosis algorithms will carry through. The programming language can be
nondeterministic (with bounded nondeterminism), and in such a case for
each triple <p,z,y> there can be only finitely many legal top level traces.

We describe legal computations of a program via computation trees.
Let P be a program. A partial computation tree of P is a rooted, ordered
trce whose nodes are triples <p,z,y>, where p is a procedure name, z and
y are vectors over D, and for every internal node <p,z,y> in T with sons
S, S is a legal top level trace of <p,z,y>, where p is a procedure in P. A
tree T is a complete compulation tree of P (computation tree for short) if it
is a partial computation tree of P in which all leaves have empty top level
traces. Complete computation trees represent successful computations, and
correspond (o refutation trees in logic programs.

A tree T is a reachable compulation tree of P if it is a partial
computation tree of P such that for every path in 7, every subtree to the
left of any node in the path, except the last node, are complete computation
trees.  Reachable trees represent partial computations that can be realized
by the interpreter of the language. A tree T is a infinite reachable
computation tree of P if it is a reachable computation tree of P that
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contains an infinite path. [Infinite reachable computation trces represent
nonterminaling compulations. '

We require that if a program P has no infinite reachable computation
tree rooted at <p,z,y> then it has only finitely many such reachable
computation trees. This implies that if the program Is not diverging, we
can explore all its legal computations in finite time.

We assume that the programming language has an interpreter, that
operates as follows. When invoked with a procedure call, the interpreter
performs some computations, including Invoking itsell recursively zero or
more times with other procedure calls, and then returns some output. We
assume that the computation trees of a program represent accurately the
possible behaviors of this interpreter: given a program P, and a procedure
call <p,z>, we assume that the interpreter responds as follows: it diverges
it P has a infinite reachable computation tree rooted at <p,z,y>, for some
y; otherwise it nondeterministically outputs a y for which P has a complete
computation tree rooted at <p,z,y>, if such a y exists; otherwise it returns
1.

We define semantics for our programming language, analogous to the
model theoretic semantics of logic programs. An interpretation M is a set
of triples <p,z,y>, where p is a name of a procedure with n input
variables and m output variables, z is in D" and y is in D™. We assume
that for any p and z there are only finitely many y's such that <p,z,y> is
in M. We say that y is a correct oulput of a procedure call <p,z> in Mif
<px,y> is in M, or, in case y=1, if for no y’, <p,z,y°> is in M.
Otherwise, y is said to be an incorrect output in M.

A program P Is partially correct in M if the root of every complete
computation tree of Pis in M. A program P Is complele in M if every
triple in M is a root of a complete computation tree of P. A program P is
everywhere terminating if it has no infinite reachable computation tree,
otherwise it is diverging. A program is totally correct if it is partially
correct, complete, and everywhere terminating.

We point out some properties of the programming language, that
follow from our definition. The functionality of the language follows from
the “context-freeness” of the trees. A complete computation tree represents
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a legal computation of the program, independent of the context in which it
is exccuted. Another property is the monotonicity of the set of legal
computations of programs with respect to the subset relation: if a program
P, is a subset of P, then the (partial, complete, infinite reachable)
computation trees of P, are a subset of those of F,.

We employ two computational complexity measures that are intended
to reflcct the machine resources consumed by an interpreter as above:
length, the number of procedure calls performed during a computation, and
depth, the maximal depth of procedure invocation (stack depth). The
length of a computation is also the number of nodes in the computation
tree, and the depth of the computation is the depth of this tree. Sometimes
we consider also the branching of the computation, defined to be the
maximal branching of the computation tree.

Our diagnosis algorithms typically involve simulating a computation,
and performing some additional operations in between. We assume that a

simulator of the interpreter can be constructed, that works in at most a

constant overhead in the length or depth of the computation. Furthermore,
we assume that such a simulator can be extend in natural ways: that we
can extended it with a routine that performs some operation whenever a
procedure call returns; that we can modify the interpreter so it calls another
routine with a procedure call, instead of calling itself recursively; and that
we can store results of procedure calls for further processing.

The following is an informal summary of the properties of the
programming language:

e A program is a finite set of procedures.
o A procedure has a name, arity, and “code”.

e The code of the procedure determines the set of its possible
behaviors, which are described via top-level traces.

e The legal computations of a program are described via
computation trees constructable from top-level traces of its
procedures.
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. 3.2 Diagnosing termination with incorrect output

3.2.1 Correctness

If a program is partially correct then every subprogram of it is also
partially correct, as the computation trees of a subprogram are a subset of
those of the program as a whole. The opposite, however, is not always true.
For example, a subprogram P’ of a partially correct program P can be
modified in a way that maintains the partial correctness of P’, but violates
the partial correctness of P, as in the following program for (unary) integer
multiplication.

times(0,Y,0).
limes(X,0,72) — plus(X,0,2).
times(s(X),Y,2) — times(X,Y,U), plus(U,Y,2).

plus(0,Y,Y).
plus(X,0,2) — plus(X,0,2).
plus(s(X),Y,8(2)) — plus(X,Y,2).

This program is partially correct with respect to the standard
interpretation of times and plus, as whenever the computation on
times(X,Y,Z) terminates (and this happens If Y3£0), Z is X times Y.
However, we can modify plus(X,Y,2) to return in Z the value of X if Y=0.
This modification preserves the partial correctness of the plus program, but
violates the partial correctness of the program as a whole, since now
times(1,0,2) will return Z=1 instead of diverging as before.

This example shows that the property of partial correctness is not local
to procedures, hence we need a finer concept for this diagnosis task. The
definition we propose is that a procedure p will be called correct with
respect to an interpretation M if whenever all procedure calls performed by
p return an output correct in M, then p returns an output correct in M.

Definition 3.1: A procedure p covers <p,z,y> with respect to
M if <p,z,y> has a legal top level trace which is a subset of M.

A procedure p is correct in M il every triple <p,z,y>
covered by p with respect to M is in M. Otherwise p is incorrect
in M.

These definitions parallel the definitions for logic programs, given in
Section 2.1.

If a procedure p is incorrect in M, then it has a top level trace in M
for some triple <p,z,y> not in M. Such a top level trace is called a
counterexample to the correctness of p in M.

We show below that if every procedure in a program is correct, then
the program is partially correct; the opposite, however, is not always true.
For example, any everywhere nonterminating program is partially correct,
but the nonterminating program

AX,Y) « integer(2x X), f(2xX,1).

is incorrect in the interpretation M = {</f, X, 1> | X is an integer},
since </f,0.5,1> is not in M, but its top level trace, {<f, 1, 1>} is.
Theorem 3.2 shows that if a program has a finite computation that returns
an incorrect output then it contains an incorrect procedure.

Theorem 8.2: Let P be a program and M an interpretation. If
P is not partially correct with respect to M then P contains a
procedure incorrect in M.

Proof: Let p be a procedure in P that on input z returns an output
y#1 incorrect in M. We examine the computation tree of <p,r,y>.
Consider the first node <gq,u,v> in the post-order traversal of the tree
which is not in M. Such a node exists, since the root is not in M. By the
choice of this node, all its sons (if any) are in M, hence q covers <gq,u,v>.
But since <q,u,v> is not in M, it follows that g is incorrect in M. []
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3.2.2 A single-stepping algorithm for diagnosing incorrect
procedures

The proof of Theorem 3.2 suggests a diagnosis algorithm for detecting
an incorrect’ procedure in a program P that is not partially correct, using a
standard tracing technique: single step through the procedure calls of the
computation. The first procedure to return an Incorrect output is incorrect.

We formalize the algorithm and argue that it is correct. The
algorithm uses a ground oracle for M, which is a device that, on input
<p,z,y>, oulputs yes if <p,z,y> is in M and no otherwise.

Algorithm 1: Tracing an incorrect procedure by single-stepping

Input: A procedure p in P and an input z such that p on z returns
an oulput y7# | incorrect in M.

Output: A triple <q,u,v> not in M such that g covers <gq,u,v>.
Algorithm:  Simulate the execution of p on z that returns y;
whenever a procedure call <q,u> returns an output v, check, using
a ground oracle, whether <q,u,v> is in M. If it is not, return
<gqu,v> and terminate. [}

Algorithm 1 is correct since the order in which procedure calls return
in a computation corresponds exactly to the post-order traversal of the
computation tree. Consider the first node <q,u,v> of the tree in post-
order, for which the ground oracle answers no. By the definition of
Algorithm 1, all sons of this node were already tested and found correct,
hence the procedure g is incorrect in M.

3.2.3 A Prolog implementation

We relate the above discussion to logic programs. A top level trace of
a procedure corresponds to the body of a ground instance of a clause.
Correctness of a program P in M is its model-theoretic truth in M: a
clause is false in M iff it covers a goal not in M, and a counterexample to
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the correctness of Pis a false instance of a clause in P. In the case of logic
programs, Algorithm 1 amounts to a search for a false instance of a clause
in P, given a proof of a false conclusion from P. Program 4 implements
Algorithm 1.

Program 4: Tracing an incorrect procedure by single-stepping

I(A,B),X) <\,
(A, Xa),
( Xa=ok — fp(B,X) ; X=Xa ).
MAX) —
system(A) — A, X=ok ;
clause(A,B), fp(B,X?),
( Xb#ok - X=Xb;
query({forall, A,true) — X=ok ; X=(A~B)).

The program fp detects a false clause in a Prolog program that
succeeds on a false goal. It is a simple extension to the Prolog interpreter
shown in Program 3 above. fp(A,X) computes the relation “A is a solvable
goal; if A is false then X is a false instance of a clause used in solving A,
otherwise X==0k". The procedure fp contains two clauses. The first clause
deals with conjunctive goals. It returns (A°«—B’) if the recursive call on
any conjunct returns (A°—B’), and return ok otherwise. The second clause
deals with unit goals. If A s a system predicate it executes it and returns
ok if A succceds. Otherwise it returns (A°«—B°) if the recursive call of fp
on the body of the invoked clause returned (A’—B’). Otherwise it returns
ok il the instantiated goal is tested and found true, and return the (ground
instance) of the clause invoked if the result of the test is false.

A solved goal may still contain variables, which are interpreted to be
universally quantified. The implementation of gquery can either instantiate
the variables before querying the user, or perform a universal query. In our
implementation query( forall,A,V) returns V=lrue il every instance of A is
true, or unifics A with such a false instance and V with false otherwise; the
code is shown in Appendix 1l.
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We examine the behavior of fp on the following buggy insertion sort
program.

isorl(|X|Xs),Ys) — isort(Xs,Zs), insert(X,Zs,Ys).
isort([].[)-

insert(X,[Y]V3s],[Y]Zs]) — Y> X, insert(X,Ys,Zs).
inserl(X,[Y]Ys],|X,}Ys]) — X<Y.
insert(X,[},{X]).

We first test isort on [2,1,3),
| 1— isort([2,1,3],X).

X =[2,3,1)
and get a wrong result. The tree of this computation is shown in Figure 5.

isort([2,1,3],(2,3,1})

isort([1,3),[3,1])
isort([3),[3))
isort((},[))
Insert(3,[},[3])
insert(1,(3},[3,1])
3>1
insert(1,[},{1])
insert(2,[3,1},(2,3,1])
2<3

Figure 61 The computation tree of (incorrect) insertion sort

We apply fp to isort([2,1,3),[2,3,1]). The queries fp performs are
answered by the user.
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|- 1 p(isort(|2,l,3|,|2-3:||)’C)~

query: isorl([},[)? y.

query: insert(3,[},[3])? y.

query: isort([3],[3])? y.

query: insert(1,[},[1])? y.

query: insert(1,[3],[3,1])? n.

C = insert(1,[3),[3,1]) — 3>1, insert(1,[},[1])))

yes

Jp returned a false instance of the first clause of ¢nsert. Examining it shows
that the arguments for the > test are exchanged. We (ix that bug, and try
isort again,

| 7— isort([2,1,3]),X).

X =[1,23]

and it returns a correct output.

3.2.4 A lower bound on the number of queries

We evaluate diagnosis algorithms along two dimensions:  their
computational complexity, which reflects the machine resources they
consume, and their query complexity, which reflects the number and type of
oracle queries they perform during the computation. Typically, the acting
oracle will be the user, therefore we put greater emphasis on optimizing the
query complexity of the diagnosis algorithms, even at the expense of a
reasonable increase in their computational complexity.

Length and depth of computations of the diagnosis algorithms are
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measured as a function of the complexity of the computation being
diagnosed, as defined in Section 3.1. We ignore the cost of performing a
query since we give a separate analysis of the query complexity for each
diagnosis algorithm.

Using these measures, the worst-case length and depth of the single-
stepping diagnosis algorithm, when diagnosing a computation of p on z that
returns y, are linear in the length and depth, respectively, of the faulty
computation. The maximum number of oracle queries it performs is
bounded by the length of the computation.

Answering that many queries can become a tedious matter if the
computation is long. We show that, in the worst case, the number of
querics any diagnosis algorithm of this type requires is of order of the
logarithm of the number of procedure calls in the computation. In the
following section we develop an algorithm that achieves this performance.

The lower bound proof is based on an information-theoretic adversary
argument, and its idea is simple: the most a query can tell us is the
existence of a bug in a component of the computation tree. An “adversary
bug” can choose to hide in the larger component of the tree. The best
strategy against such a bug is to perform queries that split the tree into two
roughly equal components. . The result of such a query narrows the search
space for a bug to one component, and a sequence of at most log, n such
queries can detect the bug.

We assume that a diagnosis algorithm for incorrect procedures uses a
ground oracle for M and, when applied to a computation of any procedure
p on input z that returned an output y incorrect in M, it returns a triple
<q,u,v> not in M.

Theorem 3.3: Let DA be a diagnosis algorithm for incorrect
procedures. Then there is a program P such that for any n there
is an interpretation M and a triple <p,z,y> with a computation
tree of length less than or equal to n, for which DA on <p,z,y>
performs at least log, n queries.

Proofs We show a particular program in which such an adversary strategy
for “bug-hiding” can be implemented. Consider the program
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»0).

w&(X)) — p(X).
The program checks whether its input is a string composed of 0, and zero or
more applications of the successor function 8.

We define the interpretation M to have all such strings of length <k
for some £>0. For the diagnosis algorithm to find a counterexample to the
program, it needs to find the exact k for which p(ak(o)) is in M, but
pls*+Y(0)) is not.

Since a positive answer to a query p(n‘(o)) only constrains us to choose
k>1, and a negative answer to such query to choose k<i, it follows that for
every input X of size n and every query strategy of DA we can “hide” k so
that DA would need at least log, n queries to find it. |

3.2.6 Divide-and-query: a query-optimal diagnosis algorithm

The lower-bound proof suggests an improvement over the single-
stepping querying strategy: query the node <gq,u,v> in the computation
tree that will divide the tree into two roughly equal components. If
<qu,v> is in M, then omit the subtree rooted at that node and iterate;
otherwise apply the algorithm recursively to that subtree.’

We develop an algorithm that implements this querying strategy whose
length and depth are linear in the length of depth of the original
computationg. To do so we first describe a method to divide the tree.

Let M’ be a subset of M, and consider the computation tree of p on x
that returned y. The weight of <p,z,y> modulo M’ is defined as follows.
If <p,z,y> is in M’ its weight is 0. Otherwise, if <p,z,y> is a leal then
its weight is 1. Otherwise, the weight of <p,z,y> is 1 plus the sum of the
weight modulo M’ of its sons.

Let T be a computation tree whose weight modulo M’ is w. Define
the middle node of the tree to be the leftmost heaviest node in the tree

2Fhe development of this algorithm benefited from collaboration with David Plaisted.
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. whose weight modulo M’ is <[w/2]. Given a computation tree with weight
w modulo M’, we can compute the middle node in length linear in w, by
calling the following recursive procedure fpm with the root of the tree.

The procedure fpm computes the middle node of the tree and its
-weight. To do so it computes weight and identity of nodes as long as it is
in the “lower half® of the tree, i.e. when traversing nodes whose weight is
less than half the weight of the tree, and returns the heaviest node returned
by a son and its weight as soon as it enters the “upper half” of the tree, i.e.
traverses nodes whose weight is greater than half the weight of the tree. It
operates as follows: on input <p,z,y> and W, it searchs the computation
tree of <p,r,y> in post order, pruning nodes in M?% for each node A
searched it computes Wa, the weight modulo M’ of the node, and the
weight and identity of the heaviest node (B,Wb), returned by the recursive
calls of fpm to A’s sons; il Wa>[W/2] then it returns (B,WD), else it returns
(A,Wa). The procedure fpm as described assumes a given computation tree;
in practice the computation tree is not given but computed by an
interpreter, and fpm is an augmentation to that interpreter, as in the Prolog
implementation below.

The implementation of the divide-and-query algorithm uses this
procedure; it is shown as Algorithm 2 below.

Theorem 3.4: Let P be a program and M an interpretation. If
a procedure p in P has a computation on input z of length n,
depth d and branching b that returns an output y# | incorrect in
M, then the computation of Algorithm 2 applied to <p,z,y> and
M’={} has length cn, for some constant ¢>0, depth d+1,
performs at most blog n queries, and returns a triple <q,u,v> not
in M such that q covers <q,u,v> in M.

We first establish the correctness of the algorithm.

Lemma 3.6:¢ Under the conditions of Theorem 3.4, if the
algorithm terminates and returns <p,z,y>, then p covers
<p,z,y> in M, but <p,z,y> is not in M.

4

Algorithm 2: Tracing an incorrect procedure by divide-and-query

Input: A procedure p in P and an input z such that p on z returns
an output y74 | incorrect in M, and a (possibly empty) set of triples
M'CM.

Oulput: A triple <q,u,v> not in M such that q covers <q,u,v> in
M.

Algorithm: Simulate the execution of p on z that returns 1y,
computing w, the weight modulo M’ of the computation tree. Then
call a recursive procedure fp with <p,z,y>, wand M".

The procedure fp, on input <p,z,y>, w, and M’ opcrates as
follows. If w=1 then fp returns <p,z,y>. Otherwise it applies the
procedure fpm, defined above, which finds the heaviest node
<qu,v> in the tree of <p,z,y> whose weight w_modulo M’ is
less than or equal to [w/2]. It then queries the groun?i oracle whether
<q,u,v> Isin M.

If the oracle answers yes, then fp calls itsell recursively with
<p,x,y>, w—w, and MU{<qu,v>}. If the oracle answers no, fp
calls itsell recurs"vely with <q,u,v>, w and M’ ]

Proof: Observe that if fp is called with <p,z,y> then <p,r,y> is'not in
M. This is the input condition of the algorithm, and is preserved by the
recursive calls of fp. The procedure fp returns a triple <p,z,y> only il it
was called with w=1, which implies that the weight of the sons of <p,z,y>
in the computation tree is 0, or, in other words, that all of its sons (if any)
are in M”. |

We analyze the query- and computation-complexity of the algorithm.

Lemma 38.6: Under the conditions of Theorem 3.4, the

computation of Algorithm 1 applied to <p,z,y> and M’={} has
length O(n), depth d+1, and performs at most blog n querics.

Proof: We show that at each application of the procedure fp the size of the
computation tree decreases by a factor of at least 1/2b. If the oracle
answers no to the query performed by fp, then fp calls itselfl recursively
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with the subtree rooted at the node queried; the size of this subtree is at
most 1/2 of the size of the original computation tree, and the claim holds.
If the oracle answers yes, then the node is added to M’ In the next
computation, the weight of this-node is 0, thus decreasing the weight of the
computation tree by at least a factor of 1/2b. Let I(n) be the maximal
number of iterations of the algorithm on a tree of weight n. The following
recurrence relation bounds K(n).

n)<i

Kn) < 1 + Kn(20—1)/2b)
We can verify by induction that I(n)=blog,n satisfies these inequalities. It
satisfies the first inequality since Mogzl equals O which is less than or equal
to 1. ‘The induction step is proved showing that the inequality

blog,n < 1 + blog,(n(26—1)/2b)

can be reduced to the inequality log,(26—1)/2b>—1, which holds for b>1.

The length of each iteration is linear in the size of the remaining
computation tree. Hence the total length of the computation satisfies the
following recurrence relation

)<k
I(n) < kn + L(n(2b—1)/2b)

for some k>0, that is satisfied by the solution I{n)<cn, for some ¢>2b. )

Proof of Theorem 38.4: The theorem follows from the last two lemmas.
By Lemma 3.5, if the algorithm terminates then it returns a triple <q,u,v>
nol in M such that g covers <q,u,v> in M. By Lemma 3.5, the algorithm
terminates, and its length and depth are as desired.

We would like to point out a corollary of this theorem. If the length
of the computations of the program being diagnosed is polynomial in the
size of its input, then the number of queries performed by the divide-and-
query diagnosis algorithm is of the order of the logarithm of the size of the
input to the faulty computation, where the constant depends on the degree
of the polynomial. The bugs that are harder to diagnose are those that
manifest themselves only on large inputs. The query complexity of the
divide-and-query algorithm suggests that the number of queries needed to
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diagnose such bugs would be feasible for programs that run in polynomial
time. ’

3.2.6 A Prolog implementation of the divide-and-query algorithm

Program 5 implements the procedure fpin described above.

Program b: An interpreter that computes
the middle point of a computation

Jom(((A,B),Wab), MW) 1,
Jpm((A,Wa),(Ma,Wma),W), fpm((B,Wb),(Mb,Wmb),W),
Wab is Wa+Wh,
( Wma>=Wmb — M=(Ma,Wma) ; M=(Mbd,Wmb) ).
Jpm((A,0),(true,0),W)
system(A), !, A; fact{A,true).
Jom((A,Wa),M,W) —
clause(A,B), fpm((B,Wb),Mb,W),
Wa is Wh+1,
( Wa>(W+1)/2 - M=Mb ; M=((A—B),Wa) ). |}

The first clause computes the heaviest node returned by the recursive calls
on the sons, and the total weight of the node. The second clause prunes
goals that are in M’ or are system predicates. The third clause solves unit
goals by activating a clause, and also decides whether it is in the upper or
lower half of the computation tree, and returns its output accordingly, as
described above.

Program 6 is a direct implementation of Algorithm 2. The procedures
Jp is explained above. The procedure false _solution is augmented with an
interface to an error handler, to be used in the systems developed below.
The implementation assumes that M’ is represented as a set of clauses: for
any goal A in M’ there is a clause fact(A,true) in the database. Also, it
assumes that results of system predicates are correct, hence saving some
queries.
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Program 8: Tracing an incorrect procedure by divide-and-query

Jalse _solution(A) —
writel(|  Error: wrong solution °,A,’. diagnosing...’]), nl,
Jom((AW), _,0), % finds W, the length of the computation
Jo(AW,X) — handle_error(’ false clause’,X) ;
write{ "llegal call to fp°), nl.

J(A,Wa,X) —
fP'"((/ ‘»‘Va)v((P O—Q),wm),WG),
( Wa=1 —» X=(P—Q);
query( forall,Pitrue) — Wal is Wa—Wm, fp(A,Wal,X);
wPwWm,X)). )

The difference between the implementation and the algorithm is that
Jp returns a false instance of a clause, rather than the false goal covered by
that clause.  This introduces only a minor complication to the
implementation, and we find the result to be more informative to the
human debugger.

Consider the following buggy Insertion sort program.

isorl([X|X8),Ys) — isorl(Xs,Zs), insert(X,Zs,Ys).
tsort([},[))-

insert(X,[V|Ys],[X,1|Ys]) — X<Y.
insert(X,[]Ys),[Y]Zs]) — inasert(X,Ys,Zs).
insert(X,[},|X]).

If we apply the  single-stepping algorithm to  diagnose
isorl([2,1,4,3,5,6),(6,4,5,2,3,1)) it will perform 18 queries, in a computation of
length 17. In comparison, the divide-and-query algorithm needs only four
queries in this case to find a false clause.
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7— fp(isort([4,1,2,3,5,6},[1,2,3,5,4,6)),17,C).

Query: isorl(|2,3,5,8},[2,3,5,8])? y.
Query: inserl(4,[2,3,5,6},(2,3,5,4,6])? n.
Query: insert(4,[5,6},[5,4,8])? n.
Query: insert(4,(6],[4,6])? y.

C = inaserl(4,[5,6),[5,4,6])—inaert(4,[6],[4,8])

Theorem 3.4 ensures that the length and depth of the computations of
the diagnosis program are linear in that of the faulty computation. We
suspect that a similar claim cannot be made on the running time of the
program, since the division strategy does not take into account the amount
of backtracking that is needed to construct the different parts of the
computation tree, but their final sizes only. However, an O(n log n) bound
on Lhe running time is easy to show: the number of iterations is bounded
by the log of the length of the computation tree, which is bounded by n;
and the running time of each iteration is bounded by the running time of
the original faulty computation, which is n, since fpm is just a Prolog
interpreter that performs some additional arithmetic operations and
unifications, whose overhead is a constant function of the running time.

3.3 Diagnosing finite failure

For a deterministic programming language, il y is a correct output for
p on z, but the computation of p on z terminates and returns an output
different from y, then this output is incorrect, and the algorithms for the
diagnosis of termination with incorrect output are applicable. For a
nondeterministic language, however, it may happen that every computation
of p on z terminates and returns an output correct in M, but no
computation returns y. Such a program is said lo finitely fail on
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<p,z,y>. Finite failure needs a special treatment for a nondeterministic
programming language. In this chapter we develop an algorithm for the
diagnosis of finite failure.

3.3.1 Comi;leten »

A program P is sald to be complete in M if for every triple <p,z,y>
in M, there is a computation of p on z that returns y. If a program finitely
fails on a triple in M, then it is not complete in M. Again, we define a
property of procedures such that an incomplete program can be proved to
contain a procedure with this property. '

We say that a procedure p is complete with respect to M if for any
<p,z,y> In M, p covers <p,z,y> with respect to M; otherwise p is said
to be incomplete. Clearly, if a procedure p is incomplete, say, by not
covering <p,r,y>, then p needs to be modified, as the only way (if any) in
which p applied to z can return y is by having some procedure call
subordinate to <p,z> return an output incorrect in M.

Theorem 8.7: Let P be a program and M an interpretation. If
P finitely fails on a triple <p,z,y> in M, then P contains an
incomplete procedure.

Proof: We have to show that if there is a triple <p,z,y> In M for which
every reachable computation tree of P rooted at <p,z,y> is finite, and
there is no such complete computation tree, then P contains an incomplete
procedure. The proof is by induction on d, the maximal depth of any
reachable computation tree rooted at <p,z,y>.

If d=1, then p has no top level trace for <p,z,y>, hence it does not
cover <p,r,y>, and since this triple is in M then p is incomplete.

Assume that the claim holds for d—1, where d>1 is the maximal depth
of any reachable computation tree rooted at <p,z,y>. If no top level trace
of <p,z,y> is in M then p does not cover <p,z,y>, and p satisfics Lhe
claim. Otherwise, consider the triples in the top level trace. For at least
one such triple <gq,u,v>, there is no computation tree; otherwise there is a
complete computation _tree for <p,:é,y>, in contradiction (o the
assumption.
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Also, the maximal depth of any reachable computation tree of
<qu,v> is d—1, by the assumption that the maximal depth of any
reachable computation tree rooted at <p,z,y> is d. Hence the assumptions
of the claim apply to <q,u,v> and d—1, and by the inductive assumption
P contains an incomplete procedure. ]

3.3.2 An algorithm that diagnoses incomplete procedures

As in the proof of Theorem 3.2, the proof of Theorem 3.7 also suggests
an algorithm for detecting an incomplete procedure, which is described
below. The algorithm uses existential queries to detect such a procedure.
An eristential query is a pair <p,z>; the answer to an existential query
<p,x> in an interpretation M is the set {y | <p,z,y> is in M}. By our
assumption on interpretations, this set is finite.

The algorithm performs oracle computations using an oracle for M
that can answer existential queries. An oracle computation of <p,z> is a
computation in which every procedure call <q,u> subordinate to <p,z>
is simulated by a call <q,u> to an existential oracle for M, followed by a
nondeterministic choice of some v from the set returned by the oracle.

Algorithm 3: Tracing an incomplete procedure

Input: A triple <p,z,y> in M on which p finitely fails.

Oultput: A triple <q,u,v> in M not covered by gq. '

Algorithm: The algorithm calls a recursive procedure ip with input
<pT,y>. o

The procedure ip operates as follows. On input <p,z,y> it tries to
construct an oracle simulation of the procedure call <p,z> that
returns y, using existential queries, and while doing so it stores the
top level trace that corresponds to that computation. If it fails, then
ip returns <p,r,y>. If it succeeds, then it searches through the top
level trace for a triple <q,u,v> on which P finitely fails, calls itsell
recursively with <gq,u,v>, and returns the output of the recursive
call. ]
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Theorem 3.8: Let P be a program and <p,z,y> a triple in M

on which P finitely fails. Assume that any reachable computation

tree of <p,z,y> has length of at most n and depth at most d, and

that the maximal size of the union of the top level traces of any

triple <q,u,v> in any reachable computation tree rooted at

<p,x,z>, for any 2, is at most b.

Then the computation of Algorithm 3 applied to <p,z,y>

has length at most dn+1, depth at most d+1; it performs at most

Hd—1)+1 queries, and returns a triple <q,u,v> In M not covered

by q.

Proofs The proof that ip terminates follows from the following complexity
analysis of the algorithm. It is easy to see that if ip terminates it returns a
triple <gq,u,v> in M such that g does not cover <q,u,v>.

Assume that ip is called with <p,z,y>. Since P has no infinite
reachable computation tree rooted at <p,z,2>, for any 2, it follows, by our
assumplion on the programming language, that it contains only finitely
many reachable computation trees rooted at <p,z,y>; let n be the
maximal length, and d the maximal depth of any of these trees.

We prove by induction on d that the depth of the computation of ip is
al most d+1, its length is at most dn+1, and the number of queries it
performs is at most §d—1). If d=1, it means that there are no top level
traces for <p,z,y>, hence ip returns immediately without performing any
queries. Hence both the depth and the length of ip’s compulation are
d+1=dn+1=2, and the number of queries performed is §d—1)=b1—1)=0.
‘ Assume that the claim holds for d—1, where d>1. In this case ip tries
to construct an oracle simulation of the procedure call <p,z> that returns
y; to do this it has to perform at most b existential queries, by the
assumption that the sum of sizes of any top level traces of any triple in
reachable computation trees of <p,z,y> is b.

Following this step, ip either returns or calls itself recursively with
some triple <q,u,v> that finitely fails. By the assumption that the depth
of the computation of p on z is d and its length is n, the depth of any
computation of a triple in the top level trace ‘is at most d—1, and the
maximal sum of their lengths is at most n—1.
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By the inductive assumption, the depth of the computation of ip on
<q,u> is at most d and its length is at most (d—1)n+1, therefore the
depth of the computation of ¢p on <p,z,y> is at most d+1, and its length
is at most (d—1)n+1+n=dn+1.

By the inductive assumption the number of queries performed by ip on
< q,u> is at most b(d—2), therefore the number of queries performed by ip
on <p,z> is Hd—2)+b=~Hd—1), and the claim is proved. ]

3.3.3 A Prolog implementation

We relate the general discussion to logic programs, and describe a
Prolog implementation of Algorithm 3. Finite failure in logic programs was
studied by Apt, van Emden (7], and Clark [26]. A goal A immediately fails
in Pif there Is no clause A’+—B' in P such that A’ unifies with A. A goal A
Jinitely fails in a program P if all computations of P on A are finite, and
each computation contains at least one goal that immediately fails. In the
context of logic programs, Theorem 3.7 says that if a program P finitely
fails on a goal A in M, there there is a goal B in M such that no clause in
P covers B. Program 7 can detect such goals. It is a direct implementation
of Algorithm 3.

Program 7: Tracing an incomplete procedure

_ip((A,B),X) « \,
(A — ip(B,X); ip(AX) ).
ip(A,X) —
clause(A,B), satisfiable(B) — ip(B,X) ; X=A.

salisfiable((A,B)) — !,
query(ezists,A,true), satisfiable B).
salisfiable(A) —
query(exists,A,true). ||

The procedure ip(A,X) computes the relation “if A is a finitely failing
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true goal, then X is an uncovered true goal®. The uncovered true goal is
found by tracing down the path of failing goals in the computation, on the
assumption that the original goal to ip is true and finitely fails. Going
down this path ip will encounter either an immediately failing goal, on
which the goal clause(A,B), will fail, or an uncovered goal, on which the call
satisfiable(B) will fail on any solution of clause(A,B); in either case A is
uncovered, and is returned as output by ip.

The procedure query{exists,A,}) queries the user for all the true
instances of A. It nondeterministically returns such an instance, with
V=true, if such an instance exists (i.e. returns the first solution supplied by
the user and backtracks if necessary), and returns V=/false otherwise.
Similar to the top level Prolog interpreter, the user who answers this query
returns all the true instances of the goal, ending the sequence with no. If
the system knows that a certain goal is determinate, it does not ask for
more then one instance. Also, if the goal being queried is a system
predicate, such as X>Y and X<Y in the example above, then guery solves
directly it rather then querying the user about it.

We demonstrate the behavior of ip on the following insertion sort
program; in this session isort and insert are declared to be determinate, so
only one answer lo the existential query is necessary. Examples of
diagnosing context free grammars are shown in Appendix I below, in which
the programs being diagnosed are nondeterminate.

isorl(|X|Xs),Ys) — isort(Xs,Zs), inserl(X,Zs,Ys).
isorl([),)).

insert(X,[V]Ys],[Y]25]) — X>Y, insert(X,Ys,Zs).
inserl(X,[Y]Vs],|X,NYs]) — X<Y.

The program finitely fails, for example,

| 1— isort(|3,2,1},X).

no

So we call ip on isorl([3,2,1],1,2,3}),

54
| 2= iplisort([3,2,1],(1,2,3)),X).

query: isor!(|2,1},X)? y.
which X? 1,2

query: inserl(3,1,2],[1,2,3])? y.

query: tsort([1],X)? y.
which X1 |1].

query: insert(2,[1},1,2])? y.

query: isort([),X)? y.
which X? |}.

query: insert(1,[},[1])? y.
X = inseri(1,]},1])

yes

And it finds that insert(1,[},1]) is uncovered. We examine the two clauses
for insert, and see that neither of them can cover this goal: their heads do
not unify with it, since they expect a nonempty list in the second argument.
We realize that we forgot the base clause insert(X,|],[X]).

An improvement of the query-complexity of ip can be obtained by
interleaving the search for a top level trace that is in M, with the search for

. the failing goal, as mentioned above. In the best case, this improvement

can be a factor of at most b, where b is the maximum number of goals in
the body of a clause in the program being diagnosed. In the worst case, the
query-complexity will remain the same. Program 8 contains this
improvement, and is the program used in the systems developed in the
following. It is also augmented with an interface to the error handler,
similar to PProgram 6.

The procedure ipl interleaves the construction of the top level trace
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Program 8: Tracing an incomplete procedure (improved)

missing_solution(A) —
writel(|” error: missing solution *,A,’. diagnosing...’]), nl,
query(exists,A,true), \+solve(A,true) —
ip(A,X), handle__error( uncovered atom’,X);
write("llegal call to ip°), nl.

ifA,X) —
clause(A,B), ipl(B,X) — true ; X=A.

ip1((A,B),X) |,

( query(ezists, A true), ( A, ip1(B,X) ; \+A, ip(A,X) ) ).
ip1(A,X) —

query(ezists,A,true), ( A — break(ip1(A,X)) ; ip(A,X) ). [}

and the search for a finitely failing goal; as soon as it detects a true finitely
failing goal it recursively invokes ip, without completing the oracle
simulation. If it completes the oracle simulation without detecting such a
goal it breaks, as this situation violates its input conditions. We apply the
improved ip to the same insertion sort program,

' - 'P( iaorl( |3'21 1 ]’l. v2'3| ),X).

query: isorl([2,1),X)? y.
which X? [1,2).

query: isort([1],X)? y.
which X? [1).

query: isorl([),X)? y.
which X7 |).

query: inseri(1,[},[1])? .
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X = insert(1,]},[1])

and see that il needs 4 queries lo detect the uncovered goal, compared to 6
queries needed by the previous program.

Theorem 3.8 bounds the length and depth of computations of ip as a
function of the depth and length of computations of the faulty computation.
A similar argument shows that the running time of ip is also bounded by
the square of the running time of the faulty computation: the number of
iterations of ip is bounded by the depth of the original, faulty computation,
and the running time of each iteration is bounded by that of the original
computation. ~

3.4 Diagnosing nontermination

One may ask: “how can we diagnose nonterminating computations, as
we know they do not terminate only if we wait an infinite amount of time?”
This problem does not prevent programmers from debugging such programs;.
a nonterminating program either exhausts the space allocated to running it
(and on any existing machine this amount has some fixed upper bound), or
the patience of the person waiting for its output (a quantity not proven
bounded, but in the following assumed to be so).

But even if the computation exhausts one of these resources, it still
does not mean that it is nonterminating; it may be that the program is not
efficient enough, the person is not patient enough, or the computer is not
big enough. Indeed, when the diagnosis algorithm described below is
applicd, it may fail to detect an error in a program that exhausted a
resource, and in such a case il is up to the programmer to decide which of
the three implied courses of actlion lo take.

3.4.1 Termination

Our approach to the diagnosis of nonterminating programs employs a
tool found useful in proving program termination [34]. Let S be a
nonempty set. A well founded ordering > on S is strict partial ordering on
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S that has no infinite descending sequences. That is, > is a binary relation
over S which is transilive, asymmetric and irreflexive, such that for no
infinite sequence z,, z,, ... of elements of S do we have that Z, - Ty >

Lemma 3.9: A program P is everywhere terminating iff there is a
well founded ordering > on the set of procedure calls such that for
every computation of P in which <p,z> callk <qu> it is the
case that <p,x2>><qu>.

Proof: If there is such a well founded ordering then the depth of any
computation of Pis finite and hence the computation terminates.

Assume that every computation of P terminates. Let d(<p,z>) be
the maximal depth of any computation of p on z. Define an ordering > to
be <p,2> > <qu> Wl d(<p,z>) > d(<q,u>). It s easy to see that the
ordering thus defined is well founded. |

As in the previous two types of program misbehavior, we would like to
define a property of procedures for which knowing that a program is
diverging implies that it contains a procedure with that property. However,
the mere fact that a procedure p performed a call that violated the well-
founded ordering does not mean that the code for p is wrong. For example,
consider the following buggy quicksort program.

gsort(|X]|Xs],Ys) —
partition(Xs,X,Xs1,Xs2), gsorl(Xsl,Ysl), gsort(Xs2,Ys2),
append(Ys1,[X|Ys2),Ys).

gsort([L.N))-

partition(|X|Xs),Y,X351,[X|Xs2]) — Y < X, partition(Xs,Y,Xs1,Xs2).
partition(|X]Xs),Y,|X|X81],X82) — X < Y, partition(Xs,Y,Xs1,X52).
pa"“ion(nvaX]v")' '

append(|X|Xs],Ys,[X|Zs]) — append(Xs,Ys,Zs).
append(||,Xs,Xs).
The computation of this program on the goal gsorf([1,2,1,3],X) does

not terminate, as gsor{([1,1),Ys) loops. The initial segment of the stack of
the computation is
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gsorl([1,2,1,3],Ys)
gsorl([1,1],Ys)
gsort([1,1),Ys)
gsorl([1,1),Ys)

However, the problem does not lie in the gsort procedure, but in partition,
since it may return an output list longer than its input list, as in

| ?— partition({1},1,Xs,Ys).

Xs = [1,1},
Ye=||

If we examine the code for partition (or diagnose partition([t],1,{1,1},(])
using fp) we find that the base clause is wrong, and should be
partition([],X,[},[]). Hence the following definition.

Definition 3.10: Let M be an interpretation and > a well-
founded ordering on procedure calls. A procedure p is said to
diverge with respect to > and M if it has a triple <p,z,y> with a
top level trace S for which:

1. There Is a triple <q,u,v> in S for which <p,z> # <qu>
2. All triples in S that precede <gq,u,u> are in M.

Note that knowing the well-founded ordering by itself is insufficient to
diagnose an error in a nonterminating computation; one needs to know the
intended interpretation as well, to verify that results of procedure calls

) performed before the call that violated the ordering were correct.

We say that a procedure loops if it calls itself with the same input it
was called with. Note that any procedure that loops also diverges, provided
procedure calls that precede the looping call returned a correct output, since
for any well-founded ordering >, procedure p and input =z,
<pr>f <px>.
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Theorem 3.11: Let P be a program, M an interpretation, and
> a well founded ordering over procedure calls. If P is diverging
then it contains a procedure incorrect in M, or a procedure that
diverges with respect to > and M.

Proof: Assume that some computation of p on z does not terminate. By
our assumptions on the programming language stated in Section 3.1 there is
a reachable computation tree with an infinite path of procedure calls. Such
a path must contain two consecutive procedure calls <p,z>, <q,u> such
that <p,z> # <qu>, since > is well-founded. Consider all the
procedure calls, if any, that p on z performed before calling <q,u>; if any
of them returned an incorrect output, then P is not partially correct, and by
Theorem 3.2 P contains an incorrect procedure. Otherwise, there is a top
level trace of p on x that has a triple <q,u,v>, for some v, such that every
triple that precedes <q,u,v> In the trace is in M, and by definition p
diverges with respect to > and M.

3.4.2 An algorithm that diagnoses diverging procedures

Our approach to debugging nontermination is based on the assumption
that even if the programmer cannot explicitly describe such a well-founded
ordering, he has one such ordering in mind when writing the program, or, at
the least, when presented with a looping or diverging computation can
decide which of the procedure calls involved is illegal. The latter
assumption is a minimal one, and must hold for a programmer to be capable
of debugging his programs, with algorithmic aids or without.

Algorithm 4 below requires a ground oracle for M and an oracle for >,
which is a device that can answer queries of the form ‘“is <p,z>
> <qu>?" for every procedure p and q in P. It is assumed that every
computation of p on z has some fixed bound d on its depth (not necessarily
a uniform bound), which cannot be exceeded.

We have not specified how to implement the search for violation of >.
One feasible approach, which is implemented in our system, is as follows.
First search for a “looping segment” in the stack, that is, a segment of the
form <p,z>...<p,x>. If such a segment is found, it must contain two

Algorithm 4: Tracing a diverging procedure

Input: A procedure p in P, an input z and an integer d>0 such that
the depth of the computation of p on z exceeds d.

Oulput: A triple <q,u,v> not in M such that ¢ on u returns v, or
two procedure calls <qu>, <r,w> which violate >, or “no
divergence found™.

Algorithm: The algorithm simulates p on z. When the depth of the
computation exceeds d, it aborts the computation and returns its
current stack of procedure calls. The algorithm then examines the
stack for two consecutive procedure calls <p,z>, <gq,u> such that
<p,x> ¢ <qu>. Il it finds such procedure calls, it searches, using
a ground oracle, for a procedure call performed by p on z before
calling <q,u> that returned an output v incorrect in M. If such a
procedure call is found, then the algorithm calls the procedure fp
from Algorithm 2 with input <gq,u,v>, and returns the output of
fp. Otherwise, the algorithm returns <p,z>, <qu>. If no
violation of > is found, the algorithm returns “no divergence
Jound". )

conseculive procedure calls that violate >. This pair can be detected using
the oracle for >. If no looping segment is found, then what is left is to

-search the entire stack. To detect such a pair we perform a linear search,

which was found suitable for the examples we have tried. It is possible that
by using a more sophisticated search technique, the query complexity of the
algorithm may be improved.

3.4.3 A Prolog Implementation

We first deseribe a Prolog interpreter that accepts as input a goal and
A a depth-bound, and returns true and an instance of A if it succeeds in
solving A without exceeding the given depth-bound, or the stack of goals of
depth d if an attempt to exceed this bound was encountered.

Consider the following insertion sort program.



61

Program 9: A depth-bounded interpreter

solve(true,D,true) — \.
solve( A,0,(over flow,[])) — L.
solve((A,B),D,S) — Y

solve( A,D,Sa),

( Sa=true — solve(B,D,Sb), S=Sb ; S=Sa ).
solve(A,D,Sa) — .

system(A) — A, Sa=lrue;

D1 is D—1i,

clause(A,B), solve( B,D\,Sb),

( Sb=true — Sa=lrue;

Sb=(over flow,S) — Sa=(over flow,{A|S]). (|

isort(|X|Xs),Ys) — isort(Xs,Zs), inser(X,Zs,Ys).
isort([},l})-

insert(X,[Y]Ys],| X, 1]Ys]) — X<Y.
insert(X,[Y]Ys),Zs) — insert(X,Ys,Wa), inserl(Y,Ws,Zs).
insert(X,[],{X]).

It does not terminate on input [2,1,3). If we solve isori([2,1,3],X) using
solve, with a depth bound of 8 we get:

| 1 solve(isory{[2,1,3},X),6,S).

S= (ovcr]low,[iaort(lz,l,3],X),iaorl(|l,3],|l,3]),inacrl(l,[3|,[l,3|),
insert(3,[1),[1,3]),insert(1,[3),{1,3]),insere(3,[1),(1,3])]),

X=X
And we see that the program is looping. Since the diagnosis algorithm
needs to check that results of calls performed “to the left” of the diverging
call are correct before it concludes that a clause Is diverging, it may be more
efficient to store these results during the computation, and return them
when a stack overflow occurs, instead of recomputing them. If so desired
the last disjunct of the last clause of solve should be
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Sb=(over flow,S) — Su=(over flow,[(A—B)|S}).

Program 10 below requires this modification. It implements Algorithm 4,
using the linear search technique.

Program 10: Tracing a stack overflow

stack _over flou P,S) —
writel(|" error: stack over flow on *,F,’. diagnosing...’}), nl,
( find _loop(S,Sloop) — check _segment(Sloop) ;
check _segment(S) ).

Jind _loop(|( P—Q)|S],Sloop) +—
looping _ segment((P—@Q),S,S1) — Sloop=((P—Q)|S1] ;
Jind _loop(S,Sloop). '

looping _ segment((P—Q),|[(P1—@Q1)|S].(PA—Q1)|SI]) —
same__goal(P,P1) — writel([P," is looping.’]), nl, Si=[} ;
looping_segment((P—Q),S,Sl).

check _segment([(P—Q),(P1—Q1)|5]) —
query(legal _call (P,P1),true) —
check _segment(|[(P1—@Q1)|S}) ;
Jalse_subgoal( P,Q,F1,Q1) — false _solution(Q1) ;
handle _error(’ diverging clause’ (P—Q)).

false__subgoal( P(Q1,Q2),P1,Q) —
Q1#£R,
( query(forall,Q1,false) — Q=Q\ ; fulse_ subgoal(P,Q2,P1,Q) ). [

The way solve and stack _overflow are hooked together is application
dependent, and will vary between the different systems that use them. We
show here part of a session with the diagnosis system, described in the next
section, which uses these programs to diagnose the looping insertion sort.



@isort([2,1,3),X).
stack over flow. debugging isort([2,1,3],X)
inserl(1,[3].X) is looping.

is (inserl(1,[3),X),insert(3,(1],X)) a legal call? no.
query: insert(1,[,[1))? y.

(insert(1,[3],X)—insert(1,[},[1]),insert(3,(1],X)) is diverging.

We invoked the depth-bounded interpreter with the goal isort([2,1,3],X).
The stack overflowed, and the stack diagnosis algorithm was applied. It
found a looping segment in the stack, starting with the goal inseri(1,[3],X).
So it searches down this segment for a call that violates >. The violation is
detected after one query. We answered negatively, since we know that the
the size of the input list to isort should decrease as the sorling progresses.
Before concluding that isort is diverging, it made sure that the calls
performed before the diverging call, in this case insert(1,(1],X), returned a
correct output, in this case X=([1]. Since we answered positively, the
diagnosis algorithm concluded that isort is diverging, and provided an
example for that.

3.6 A diagnosis system

The diagnosis system is composed of the diagnosis programs described
in the previous sections, an interactive shell, and an error handling routine,
which are shown in Program 11.

The diagnosis system is organized as follows. pds is the top level
“read-solve” loop; it iterates, reading goals and solving them, until it reads
exil. solve_and_check constructs the set of solutions to the input goal,
and then checks them, using check _solutions. check_solulions examines
the solutions; if it finds that a stack overflow occurred, or that the
computation returned a solution known to be false, or failed to rcturn a
solution known to be true, then the appropriate diagnosis algorithm is

Program 11: A diagnosis system

pds «—
nl, read(*Q°,P), ( P=ezil ; solve__and __check{F), pds ).

solve _and _chec{P) —
bago fO((P,X),s0lve( P,X),S), check _solutions(P,S).

check _solutions(P,S) «~
member{{ P1,(over flow,X)),S) — stack __over flow(P1,X) ;
member{(P1,true),S), facl(P1,false) — false__solution(P1) ;
Jacl(Ptrue), \+member{(P,true),S) — missing _solution(P) ;
con firm _ solutions(P,S).

con firm _ solutions(P,|(P1,X)|S]) —
wrilel(| solution: *,P1, °;°|),
( ( aystem(P1) ; fact(P1,true) ) — nl, con firm _ solulions(P,S) ;
con firm{* ok’) — assert _ fact(Pl,true), con firm __solutions(P,S) ;
assert_facl(P1,false), false__solution(P1) ).
con firm _solulions(P}[]) —
wrile{ ‘no (more) solulions.’),
( system(P) — nl ;
con firm(° ok’) — lrue;
ask_ for _solution(P), assert__ facl(P,true), missing__solution(P) ).

solve(P,X) +— see Program 9, page 61.

stack _over flouf P,X) +— see Program 10, page 62.
Jalse__solution(P)— see Program 6, page 47.
miassing _solution(P) «— see Program 8, page 55.

handle _error{’ false clause’,X) — |,

writel(|error diagnosed: *,X," is false.’}), nl, plisting(X).
handle _ervor( uncovered atom°,X) + !,

writel(| error diagnosed: *,X,’ is uncovered.’]), nl, plisting(X).
handle _error(’diverging clause’,X) «— |,

wrilel(| error diagnosed: °,\X,’ is diverging.’]), nl, plisting{ X).
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invoked. Otherwise, it calls confirm _solutions, that displays the solutions
to the user, and queries him whether they are correct. The error handling
procedure is trivial in this system: it just displays the results that the
diagnosis algorithms return.

Below is an annotated session with this system, logging an attempt to
debug a quicksort program. We challenge the reader (o find the four bugs
in the program below before following the rest of the diagnosis session.

We invoke the diagnosis system from Prolog, type in our initial version
of quicksort, and try it out.

| - pds.

@]user].

| asort([X|L.),L0)

| partition(L,X,L1,L2),

| gqsort(L1,L.3), gsort(L2,L4),
| append({X|L3]},L4,L0).
|

| partition(|X|L},Y,L1,[X|L2]) « partition(L,Y,L1,L2).

| partition([X|L},Y,[X|L1),L2) — X <Y, partition(L,Y,L1,1.2).
| partition([},X,[X].{]).

|

| append([X|L.1],L.2,{X|L3]) «— append(L1,L2,L3).

| append({},L,L).

|12

user consulted 156 words 1.38 sec.

@qsort([2,1,3],X).
error: slack over flow on gsorl([2,1,3],X). diagnosing...
gsort([2],X) is looping.

The computation overflowed the stack, and the stack _overflow diagnosis
program is invoked; searching through the stack, it finds thal gsort([2],X)
calls itself recursively with the same input, i.e. is looping. Before concluding
that the error is in gsort itself, the program checks that all calls made by
gsort bhefore the looping call returned correct answers.

query: partition((],2,[2],[))? n.

Indeed, it found that partition returned an incorrect output.

error: wrong solution partition([],2,[2],[]). diagnosing...
error diagnosed: (partition([},2,[2),|]) — true) is false.
Listing of partition({],2,[2].]]):
(partition([X|V},Z,U,|X|W) «— partition(Y,Z,U,W))
(partition(|X|V},Z,|X|,W) — X< Z,partition(Y,Z,V,W))
(partition([),X,[X],[]) — true)

It then invoked the program for diagnosing incorrect solutions, which
detected an error in the base clause of partition. We fix that that clause to
be partition([},X,[},[]), and and try again.

@gsort([2,1,3),X).
no (more) solutions. ok? n.

query: gsort([2,1,3),X)? y.
which X? (1,2,3].
error: missing solution gsort([2,1,3},(1,2,3]). diagnosing...
This time the computation finitely failed; we tell the system that this is

incorrect behavior, and supply the desired output. The missing_ solution
program is then invoked.

query: partition([1,3},2,X,Y)? y.
which (X,)? [1),(3}-

query: gsorl([1],X)? y.
which X? [1].

query: partition([},1,X,Y)? y.
which (X, [L.]-
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query: gsorl([},X)? y.
which X7 |).

error diagnosed: gsort([},[]) is uncovered.

Listing of gsort([],[)):

(gsort([XT¥], 2)—
partition(Y,X,W,X1),qs0rt(W,2Z1),gs0rt(X1,V1),
append(|X]Z1},11,2))

After performing some queries, the program found that gsort fails to sort
the empty list. Examining the listing for gsort, we find that indeed we
forgot to include the base clause gsort([],[]), in it. We fix that, and try gsort
again.

@gsort([2,1,3],X).
error: missing solution gsort([2,1,3],(1,2,3]). diagnosing...

query: gsori([3),X)? y.
which X? [3].

query: append(|2,1},[3},(1,2,3])? n.

error diagnosed: gsort(|2,1,3},(1,2,3]) is uncovered.

Listing of gsort([2,1,3),1,2,3]):

(gsort(|X]1),2)—
partition(Y,X,W,X1),qs0rt(W,21),gs0rt( X1,V1),
append([X|Z1},1,2))

(gsort({),[])—true)

gsort failed again to return the desired output. The diagnosis algorithm
found an uncovered atom, which is supposed to be covered by the main
clause of gsorl. If we examine it carefully, we see that the problem is that
the call append([2,1),3],(1,2,3]) is incorrect; we have inserted the partition
element in front of the list of the smaller elements, rather than between this
list and the list of the larger elements. We fix that clause to read:

| gsort(|X|L),L0) —

| partition(L,X,L1,L2),

| gsori(L1,L3), gsort(L2,L4),
| append(L3,|X|L4),L0).

and try gsorl again.

@gsort([2,1,3],X).
solution: gsort([2,1,3],(2,1,3]); ok? n.
error: wrong solution gsort([2,1,3),[2,1,3]). diagnosing...

This time gsort returned a wrong solution; the system knowns that gsort is
determinate, and knows that gsort([2,1,3],(1,2,3]) is correct, hence it could
deduce that [2,1,3] is an incorrect output, and automatically invokes the
appropriate diagnosis algorithms.

query: gsorl([1,3},(1,3])? y.
query: parlition([3),2,(],13])? y.

error diagnosed:
(partition([1,3),2,[),[1,3]) — partition([3},2,[},[3])) is /alse
Listing of partition([1,3),2,{],(1,3]):
(partition(|X]¥),Z,U,[X|W]) «— partition(Y,Z,U,W))
(partition(|X|¥],Z|X|V],W) — X< Z partition(Y,Z,V,W))
(partition([},X.[},[]) — true)

An error is detected in the first clause of partition. We have forgot the <
test in it. We include the test:

| partition(|X|L},Y,L1,[X|12]) «— X<Y, partition(L,Y,L1,1.2).
And try again.



@gsort([2,1,3),X).
error: missing solution gsort([2,1,3],[1,2,3]). diagnosing...

error diagnosed: partition([3),2,[},{3]) is uncovcrcd

Listing of partition([3},2,[},|3]):
(partition(|X|V],2,U,|X|W)) — X< Z,parhhon(YZU w))
(partition(|X|}},Z,[X|V,W) — X< Z,partition(Y,2,V,W))

(partition([},X,[},[]) — true)

This time the program finitely fails, and the error is found to be in partition
again. We examine the uncovered atom, and realize that the first clause is
supposed to cover it; it fails because we reversed the arguments to the <
test we just introduced.

| partilion(leL],Y,Ll,|X|L2|) «— X>Y, partition(L,Y,L1,L2).
So we fix it.

@qsort([2,1,3],X).
solution: gsort([2,1,3),1,2,3));
no (more) solutions. ok? y.

@qsort([2,1,4,3,66,2,477,4],X).
solution: gsort(|2,1,4,3,86,2,477,4},[1,2,2,3,4,4,66,477)); ok? y.
no (more) solutions. ok? y.

@exit.

This time gsort behaves to our satisfaction, so we end the diagnosis
session, and return to top-level Prolog. .
We summarize the main points exemplified in this session:

1. Any program can be diagnosed, no matter how “buggy” it is.
2. There is no nced to finish debugging “low level” procedures
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before “high level” procedures can be debugged (in contrast to
programming by stepwise refinement), or vice versa; the
program can be debugged as a whole.

3. False Instances of clauses and uncovered atoms are useful clues
as to how to correct bugs.

Several easy extensions to the system can make it more user-friendly,
including invoking an in-core editor with the appropriate arguments by the
error handler; automatic retry of a goal after an error has been detected and
fixed; and a facility for the user to declare certain procedures as “correct”,
thus avoiding tracing their execution and querying their results.

3.8 Extending the diagnosis algorithms to full Prolog

The previous sections considered the application of the debugging
algorithms to the “pure” part of Prolog only. Since the diagnosis algorithins
were developed in an abstract setting, it should be fairly evident that they
can handle any side-effect free extensions of pure Prolog. We do not know
yet how to handle side-effects without resorting to a state-transition type
semantics.

In the following we examine several such extensions, and point out how
the diugnosis algorithms can handle them. We do not confront any
conceptual problems in doing so; the major effort in modifying the diagnosis
programs would be to augment every mini-interpreter they use to handle the
extensions desired.

3.6.1 Negation

The way to diagnose negalion was pointed out to me by Frank
McCabe (personal communication, 1981). He observed that Algorithms 1
and 2 are dual, in a sense, and discovered that the following augmentation
to fp and ip is sufficient to allow them to diagnose programs that contain
negation.
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Jr(not(A),X) — ip(A,X).

ip(not(A),X) ~ A X).

A goal not(A) succeeds iff A finitely fails; hence if the goal not(A)
erroneously succeeded, is means that A erroneously finitely failed. This
justifies the clause fp(nol(A),X) — ip(A,X). Similarly, if not(A) erroneously
failed, it follows that A erroneously succeeded; hence the clause ip(not(A),X)
— Jp(A,X) is correct. The augmented ip and fp can return now either an
instance of a clause or a goal; in the former, the clause is a false instance of
a clause in P in the latter the goal is a true goal uncovered by Pin M.

We demonstrate the behavior of fp and ip, augmented with these two
clauses. The version of fp used is the one in Program 4, and of ip is
Program 7. The more sophisticated implementations of fp and ip in
Programs 6 and 8 need more elaborate modifications to handle negation.

Consider the following program that finds an element in the symmetric
dilference of two lists.

difference(X,Ys,Zs) — member(X,Ys), not(member(X,Zs)).
difference(X,Ys,Zs) + member(X,Zs), not(member(X,Ys)).
member(X,[}]X3]).
member(X,[}{Ys]) — member(X,Ys).

We try it on a simple example:
| 7— difference(X,(1,2,4),(2,3}).

no

The program did not find any element in the differcnce. So we call the
augmented ip with one of the possible solutions:
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| 2— ip(difference(4,[1,2,4],[2,3]),C).
query: member(4,[1,2,4])? y.
query: member(4,[2,3])? n.

C = member(4,[2,3])—true

And a counterexample to the base clause of member is found.
Although the program finitely failed, ip found a counterexample to a clause
(by calling fp), rather than an uncovered goal. We modify the base clause

“of member to be member(X,|X|Xs}), try again:

| 1— difference(X,[1,2,4},(2,3]).

X=1;
X=4;
X=3;
no

and get the correct result.

3.6.2 Control predicates

Control predicates with local scope, such as Prolog if-then-else
construct “—". can be handled in a way similar to negation. Malters are
more difficult with the cut predicate “!”. Since its scope is the whole
procedure (set of clauses with the same head predicate), one cannot assign
the simple model theoretic semantics to individual clauses; the abstract
semantics we have developed for procedures still hold, though, as it does not
rely on properties of logic.

Since the abstract definition of the algorithins refer to procedures,
rather then clauses, they are applicable to Prolog programs with cuts as
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well. The difference is in how the result of the diagnosis is interpreted. In a
program with cuts, a false instance of a clause does not necessarily mean
that the clause needs to be modified; it may mean that a cut is missing from
some clause that preceded it, thus erroneously letting it work on a goal it
was not supposed to. The same holds for uncovered goals; if a goal is
uncovered, is does not necessarily mean that a clause needs to be added, or
that the clause that was “supposed to” cover it needs to be modified. It
may be that some clause q above the clause p that was supposed to work
has a superfluous cut, which prevented p from being activated.

Maarten van Emden [96] suggested that there are two different uses of
cul: One is to influence the fMlow of control; he calls a cut that serves this
function a red cul. The other is to increase the efficiency of the program by
preventing it from backtracking into useless paths; he calls such cuts green
cuts. Our programming experience suggests that red cuts can almost always
be subsumed by a correct use of the local constructs if-then-else and not.

If one restricts onesell to the use of green cuts, one can ignore them
during the debugging process, unless the resulting program is too slow. The
problem of how one distinguishes between green and red culs remains,
however.

3.6.3 Second order predicates

A solution to the goal setof{X,P,S) can be wrong in two ways: S may
include a wrong solution to P (an instance of X for which P is false), or S
may fail to include some correct solution to P (an instance of X for which P
is true). In the first case, the false_ solution program should be invoked
with the false instance of P, in the second, the missing _solution program
should be invoked with the missing instance of P. Since setof explores all
computation paths, we are guaranteed that in both cases the original
computation on the wrong or missing solution terminates. If the
selof{X,1,S) goal does not terminate, this implies that the goal P does not
teriminate, and the stack _over flow program is applicable.

The same approach can be applied to bagof, as long as it is perceived
only as a more efficient version of selof, in which the multiplicity and
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ordering of solutions is immaterial for correctness. If this is not the case
then clauses can not be debugged individually, similarly to clauses with red
culs, since their order in a procedure and their multiplicity are relevant to
this aspect of the behavior of bagof.

3.7 Mechanising the oracle

In addition to optimizing the query-complexity of the diagnosis
algorithins, one can alleviate some of the burden on the user by partially
mechanizing the oracle. The simplest improvement is already incorporated
in the implementations described above. User answers lo queries are
remembered within and between sessions, so that he is not asked the same
query twice. Known positive facts also bias the construction of the heaviest
path by the interpreter, improving the query-complexity of Algorithm 2 in
another way.

Another immediate improvement can be achieved using the known
negative facts. If, during a computation, a goal succeeds and returns an
output already known to be incorrect, there is no need to start diagnosing
the computation from the top; rather, the diagnosis algorithm should be
invoked directly by the interpreter, as soon as it “traps” incorrect outpuls.

An interpreter that monitors the computation, and invokes the
appropriate diagnosis algorithm as soon as it detects an error is shown as
Program 12,

The interpreter msolve is an enhancement of the depth-bounded
interpreter solve in Program 9 above. lts first argument is the goal to be
solved, the second is the depth bound. In its third argument it returns lrue,
if the computation terminated correctly and no errors found, (over flow,S) if
the stack S overflowed, and false if an error occurred- during the
computation.

The procedure that monitors the correctness of solutions to goals is
result. Is first clause traps stack overflow. Its second clause returns false
it an crror occurred in solving subordinate goals, or if a solution to the
current goal is known to be false, or if there is a known solution to the
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Program 12: An interpreter that monitors errors

masolve(A,0,(over flow,])) — L.
msolve((A,B),D,S) — !,
masolve( A,D,Sa),
( Sa=true — msolve( B,D,Sb), S=Sb ; S=Sa ).
msolve(A,D,Sa) —
system(A) — A, Sa=lrue;
D\ is D—1,
setofo((A,B,Sb), (clause(A,B), msolve( B,D1,Sb)),R),
result(R,A,Sa).

result(R,A,(over flow,|(A—B)|St])) —
member((A,B,(over flow,St)),R), !.
resull(R,A, false) —
member((A, _,false),R), ! ;
member((A,B,lrue),R), fact(A,false) , !,
Jalse _solution(A) ;
Jacl(A,true), \+(member((A, _,truc),R)), !,
missing _solution(A).
resull(R,A,true) —
member((A, _,true),R). [}

current goal that was not found by the program. Finally, its third clause
returns a solution to the goal, if no errors were detected by the first two
clauses.

An interpreter that monilors errors is a bit slower than the standard
interpreter, depending on how hard it is to check whether a result is known
to be incorrect; but in “debugging mode” such an overhead is acceptable,
and may save some human labor.

There are situations besides interactive debugging in which a
monitoring interpreter may prove useful. For example in a production
system in which the correctness of the output of some procedure in the
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system is critical. In such a system, one can keep the “debugging mode”
always turned on; that is, whenever such a procedure returns an output, it
will be checked against the information available about the intended
behavior of that procedure, and some kind of complaining mechanism can
be established when the result is found incorrect. This use of redundant
information is similar to its use in error correcting codes, and has already
been suggested by Hewitt [43].

Answers to queries Is one way to inform a debugging system of the
intended behavior of the program, but not necessarily the most convenient
or concise one. For example, the constraint

isorl(X,Y) — ordcrcd(Y)

is readable, easy to verify, and may save the user from answering some
queries if it is known by the system. It is easy lo incorporate constraints
and partial specifications in the current scheme, by making the query
procedure [first consult the available information about the intended
input/output behavior of the program, and ask the user only if it fails to
answer the query using this information. ]

We found two other types of information useful: whether a procedure
is determinale, i.e. whether it has at most one solution to any goal in a
given domain, and whether it is total, l.e. has at least one solution for any
goal in a domain. If a procedure has two solutions for a determinate goal,
the diagiosis system can conclude that at least one of them is false, and
after performing at most one query can invoke false_solution. 1If a
procedure is total, then the interpreter can trap termination with missing
output as soon as it ‘occurs in such a procedure, and apply
missing _ solution starting at this point in the computation.

The following two clauses, added to the result procedure in Program
12 above, will enable it to make use of such information.
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resull([],A, false) —
altribute(Atotal), !,
writel(|” Error trapped: no solution to *,A}), nl,
query(exisls, A true), missing_solution(A).
resull([A1,42|R], A, false) —
altribute(A,determinate), !,
writel(|’ Error trapped: too many solutions to °,Al), nl,
member((A, _, ),|A1,A2|R)), query(forall,A, false), !,
Jalse _solution(A).

Chapter 4

INDUCTIVE PROGRAM SYNTHESIS

In this chapter we apply the diagnosis algorithms to the problem of
synthesizing a program from examples of its behavior. Inductive inference
was the testbed in which the diagnosis algorithms were developed, and it is
the application of the algorithms with which we have the most experience.

These algorithms enable the development of an incremental inductive
inference algorithm, since they can pinpoint accurately where the problem
with the program being synthesized lies, and thus allow local modifications
to the program to effectively correct the bug.

We survey concepts of inductive inference, and show the problem of
program synthesis from examples to be a special case of program debugging.
We then develop an incremental inductive inference algorithm that
synthesizes logic programs from examples of their input/output behavior,
and study its behavior in abstract terms and via examples of the behavior of
the Model Inference System, its implementation.

4.1 Concepts and methods of inductive inference
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~ 4.1.1 Identification in the limit

One way to debug a program Is to augment it with a table of patches,
and add an input/output entry to the table for every input for which the
program behaves incorrectly. Patching constitutes a rudimentary form of
learning. 1t seems that patching is not satisfactory as a general approach to
program debugging, as it works only if the program behaves incorrectly on a
finite number of inputs only. One way to justify this claim on theoretical
grounds uses the concept of identification in the limit, introduced by
Cold [36, 37|, and is defined as follows.

A presentation of a program P is a (possibly infinite) sequence of
input/output samples of P in which every input in the domain of P
eventually appears. Assume that a debugging algorithm is given an initial
program and a presentation of some target program. The debugging
algorithm reads the samples one at a time, and performs modifications to
the initial program as it pleases. The debugging algorithm is said to
identify the target program in the limit If eventually there comes a time
when the modifications it performs results in a program with the same
input/output behavior as the target program, and it does not modify this
program afterwards.

Note that within this definition, a debugging algorithm based on
patching alone will not identify a program in the limit if its initial program
behaves incorrectly on an infinite number of inputs. A debugging algorithm
that has a fixed initial program (say, the empty program) is called an
inductive inference algorithm. An inductive inference algorithm may be
supplied with some initial information on the target program, such as
program schemas; this information can be viewed as a restriction on the
class of possible target programs.

4.1.2 Enumerative inductive inference algorithms

Gold has shown that there is no general-purpose inductive inference
algorithm, that is, there is no algorithm that, given some fixed initial
program, will identify any program in the limit. This implics that there is
no general-purpose debugging algorithm as well. Gold showed, however,

that if we restrict the target programs to be any recursively enumerable
class of programs which are everywhere terminating (i.e. compute total
functions), then there exists an algorithm that can identify them in the
limit. The technique he suggested, called identification by enumeration, is
very general, and operates as follows.

Let P, P, P,.. be some effective enumeration of a class of
programs with the property that for every ¢ and every input z, the
computdation of P, on z terminates. Call the initial program of the
algorithm Fy, and assume that when receiving the nth input/output sample
<z,¥,> the conjecture of the algorithm Is P, for some j>0. After
receiving the nth sample, the algorithm simulates P, on z_. If the result is
Y, the algorithm proceeds to read the next sample. Otherwise, the
algorithm searches for the next program Pk that follows P, on the list, with
the property that the result of simulating P, on z, Is y; for every i, 1<i<n.

Assume that the inductive inference algorithm thus defined is supplied
with a presentation of some program P on the list. Let P, be the first
program on the list with the same input/output behavior as P. For any
program P, i<n, there is some sample on which P; behaves incorrectly,
hence the algorithm will eventually reject this conjecture, and therefore the
algorithm will eventually try Pn. But since P, has the same behavior as P,
the algorithm will never abandon this correct conjecture. Hence it identifies
Pin the limit. ‘

Gold has shown that no inference method needs fewer input/output
samples to discover the target program than identification by enumeration,
in the following sense. Define the convergence point of an inductive
inference algorithm I to be the sequential number of the first sample it
reads after which it does not modify its conjecture. Then I is uniformly
more data efficient than I' il the following two conditions hold: for any
presentation of a program P which T’ identifies, I also identifies P and its
convergence point docs not exceed the convergence point of I’ and there
exists some presentation of some program such that the convergence point
of I’ on this presentation exceeds the convergence point of I. Gold's result
is that no inductive inference method is uniformly more data efficient then
ideatification by enumeration.
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Even if the target program computes a total function, it is not always
easy to restrict the search space of a debugging algorithm to terminating
programs. As every experienced programmer knows, even if the initial
program and the targel program are terminating, it happens that in the
process of debugging one constructs intermediate programs which do not
terminate on some input. Blum and Blum [13] suggested an approach to
this problem, which is a variant of identification by enumeration. The idea
is to specify in advance a complexity bound for the target program, and
reject intermediate programs that happen not to run under this bound. Let
h(:,y) be our complexity bound. Then the new algorithm can be obtained
from the identification by enumeration algorithm by restricting any
simulation of P on z that should return y to take no more than h(z,y)
computation steps. The resulting algorithm follows.

Again, call the initial program of the algorithm Fy, and assume that
when receiving the nth input/output sample <z ,y >, the conjecture of
the algorithm is P, for some J>0. After receiving the n'h sample, the
algorithm simulates P; on z,, for no more than h(z,,y,) computation steps.
If the result is y, the algorithm proceeds to read the next sample.
Otherwise, the algorithm searches for the next program P, that follows P.
on the list, with the property that the result of simulating P, on z, for no
more than h(x‘,y..) computation steps is y; for every i, 1<i<n.

The Blums showed that this algorithm is the most powerful among
inductive inference algorithm that are reliable on the partial recursive
functions. A debugging algorithm is called reliable over a class of programs
if, whenever given a presentation of a program in that class it will never
converge on a buggy program. An algorithm is not required to identify a
class of programs to be called reliable over that class, but simply not to
pretend that it has identified a target program in that class by converging
on another, buggy program. The Blums showed that for any inductive
inference algorithm I reliable on the class of partial recursive functions there
exists a recursive function h, uniform in I, such that if I identifies some
program P in the limit then there exists a program P’ with the same
input/output behavior as P, and if P’ applied to z returns y then it does so
in at most h(z,y) steps.
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This and other results of the Blums mark an upper bound on the

" power of any practical debugging algorithm that uses identification ‘in the

limit as its criterion of success. Case and Smith [23] showed that if one
weakens this criteria by allowing errors in the final program, one can obtain
more powerful algorithms.

The practical drawback of identification by enumeration, however, is
not lack of power but inefficiency. We survey some of the approaches that
have been taken to construct more practical inductive inference algorithms.
Angluin and Smith [6] provide a deeper survey of the theoretical work in
inductive inference, as well as of some of the more practical methods
described below.

4.1.3 Speeding up inductive inference algorithms

One approach to obtain a more efficient inductive inference algorithm
is to try to speed up the enumerative algorithm, by taking advantage of the
structure of the hypotheses space. Wharton [08] used structural properties
of context free grammars to speed up inference by enumeration. He found a
set of tests that a grammar for a given sample should pass. If a grammar
fails to pass such a test, then any superset of this grammar also fails this
test. Wharton describes a method that detects a subset of a grammar that
fails a test, and leaps in the enumeration to the next grammar that does not
include this subset. e gives empirical evidence to the utility of such a
procedure. A comparison of the performance of the Model Inference System
with Wharlon's grammatical inference system is given in Section 4.6.

Another approach to speeding up enumerative inference algorithms
was studicd by Biermann et al. [10, 11, 12]. They have considered the
problem of speeding up the enumerative algorithm by using program traces,
rather then input/output samples. They showed that high performance
gains can be achieved, but the resulting algorithms were still impractical for
synthesizing complex programs.

One source of the inefficiency of the identification by enumeration
algorithm that it is not incremental. The algorithm does not try to modify
a refuted hypothesis, but abandons it altogether and looks for the next
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_hypothesis in an arbitrarily ordered list. One way to define the desired
property is as follows.

Definition 4.1: We say that an inductive inference algorithm is
incremental if is satisfies the following two conditions:

1. Its conjectures are sets (of grammar-rules, logical axioms,
state-transitions, ete.).

2. For every i<j<k, and p, If p is in P; and is not in P1
then it is not in P either.

In other words, an incremental algorithm never includes in its
conjecture an element that was once removed from it.

It seems that being incremental is a key property to any practical
inductive inference or debugging algorithm. The incremental algorithms
described below also make use of the structure of the hypotheses space to
prune the search.

Knobe and Knobe [53] suggested a method for the incremental
construction of a context free grammar from samples of strings in some
unknown context free language L. Their method Is based on searching the
space of possible grammars from general to specific. At any given moment
their algorithm has some partial grammar. The algorithm reads the samples
one at a time, and if it finds that it cannot generate some string in L, it
looks for the most general production (under a built-in criterion of
generality) whose addition to the grammar will enable the derivation of the
string to go through. It then generates some strings using the new
grammar, using a probabilistic technique, and queries the user, or teacher,
whether they are legal or not. If no illegal string is generated, it assumes
that the production added is correct.  Although their algorithm is
incremental, it is fairly order dependent, as they do not have a general
strategy for debugging incorrect grammars, but use a heuristic that
resembles patching.

Mitchell [60] developed an incremental algorithm for concept learning.
The hypothesis space, which is the set of patterns in a pattern language, is
partially ordered according to generality. A pattern M, is as general as M,
if M, matches all the instances than M, matches. The algorithm reads
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instances and non-instances of the target pattern, and maintains two sets of
patterns, the set G of most general patterns than match all positive
instances bul no negative instances of the patterns, and a set 8 of most
specific patterns than match all positive instances and no negative instance.
The sct of patterns that lie between the sets G and S is called the version
space. ‘The algorithm converges when the version space is a singleton. It
was applied in the context of Meta-DENDRAL 17}, a system that
inductively synthesizes rules for determining the molecular structure of the
samples of organic chemicals from empirical data about them.

In [82, 84] we describe an incremental algorithm that infers universally
quantified first order theories from ground (variable-free) facts, based on a
search strategy similar to Mitchell’s [60). The logical axioms are partially
ordered by the refinement relation, which is reminiscent of the
subsumption relation, studied by Plotkin in the context of machine
learning [67, 68, 69). The set of most general axioms which are not longer
than some parameter d and have not refuted so far by the facts is
maintained as the conjecture of the algorithm. If these axioms are ever
discovered to imply a negative fact (a ground sentence known to be false)
then an error detecting algorithm, called the contradiction backtracing
algorithm is invoked, leading to the detection of at least one false axiom in
the conjecture. The diagnosis algorithms developed in Chapter 3 grew out
of the experience of implementing the contradiction backtracing algorithm
to debug Prolog programs. If the axioms are discovered not lo imply some
positive fact, then the parameter d is incremented. Since the question of
whether a set of universally quantified sentences imply a ground sentence is
undecidable, a complexity bound is used to limit the resources allocated to
this check, in much the same way as in the Blums’ enumerative algorithms.
The inductive synthesis algorithm and system developed below are the result
of speclalizing this algorithm to logic programs.

A different direction towards provably efficient inductive inference
algorithms was pursued by Angluin [2, 3] and Crespi-Reghizzi [29, 30],
among others. The idea is to look at inductive inference problems in a
restricted domain, and devise specialized, efficient algorithms for them.

’respi-Reghizzi et al. [20, 30] describe efficient algorithms for finding parse
treces from an unknown grammar, given samples of unlabeled parses of
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strings.  Angluin describes in [2] a polynomial algorithm for inferring
patterns, combined of constant and variable symbols, and in 3] a
polynomial algorithm for inferring a class of languages called the k-
reversible languages, which are a subset of the regular languages.

The problem of finding the minimal finite automaton compatible with
a given sample of strings, marked as in and out of some unknown regular
language was shown to be NP-complete by Gold [38]. Angluin [4] showed
that if n, the number of states of the canonical acceptor for the language is
known, and the subset of the sample marked in exercises all transitions in
that acceptor, then there is an algorithm that using queries can find the
acceptor in time polynomial in n and the size of the given sample.

Other approaches to inductive inference and concept learning were
studied by Michalski [32, 59], Langley [85], Young, Plotkin and Lintz {103},
Winston [100), and Brazdil [15], among others. A comparative survey of
some of this work was done by Bundy and Silver [20}.

4.1.4 Synthesis of Lisp programs from examples

The target language In most of the work done on program synthesis
from examples is Lisp. A survey of this work is given by Smith [89].
Hardy [41] and Shaw, Swartout and Green [87] describe heuristic methods
for synthesizing Lisp programs from a given example and a built-in program
scheme. The system of Shaw et al. is interactive, and may query the user
further about the target program, in order to distinguish between plausible
alternatives. The two systems constructed a program on the basis of one
example.

A more systematic approach was taken by Summers [02, 03].
Summers's approach is based on finding recurrence relations between
successive input/output pairs. One interesting property of his method is
that it can introduce auxiliary variables when needed. His method was
studied and extended by Angluin [5] Guiho, Jouannaud and
Kodratoff [50, 51, 52], among others. Most of this work concentrated on
developing special purpose algorithms that detect recurrence relations
between the input/output samples, and hence results in non incremental

algorithms.

Under the assumptions made by Summers, the input/output samples
given to his algorithm effectively convey the information in a trace.
Siklossy and Sikes [88] studied the synthesis of robot programs from traces
of the robot actions. Biermann [0] applied his method for synthesis from
traces to Lisp. Again, the enumerative character of his approach limited the
practicality of the system.

A comparison of the performance of the Model Inference System with
Suminers’s and Biermann’s systems is given in Section 4.6.

4.2 An algorithm for inductive program synthesis

The inductive synthesis algorithm uses the diagnosis algorithms as
subroutines, and behaves as follows: it reads in samples of the behavior of
the target program, one at a time. If the program Is found to behave
incorrectly on some input, it invokes the appropriate diagnosis algorithm
that detects a bug in the program, and modifies the program according to
the result of the diagnosis.

Although the algorithm can be described in general terms, we find that
the strategy it uses to prune the search relies heavily on properties of logic,
therefore they may not generalize to other programming languages the same
way the diagnosis algorithms do. Hence we describe the algorithm in logic
programming terms.

Algorithm 5 below uses the following notions. A fact about an
interpretation M is a pair <A,V> where A s a variable-frce goal and Vis
true if Ais in M, false otherwise. Let S be a set of facls. We say that a
goal A is true in 8 if <A,true> isin S, and that A is false in Sif S has a
fact <A,false>. A behavior of a program s said to be totally correct with
respect to S if it succeeds on any goal true in S, and finitely fails on any
goal false in S. We refer to the set of facts that have been read by the
algorithm at a particular point in time, together with the facts queried by
the diagnosis algorithms at that time, as the set of known facts.

Algorithm 5 is actually an algorithm schema, as ils component that
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Algorithm 8: Inductive program synthesis

Given: A (possibly infinite) ordered set of clauses L,
an oracle for an interpretation M,
an oracle for a well-founded ordering > on the domain of L,
and a definition of X, the parameterized interpretation.

Input: A (possibly infinite) list of facts about M.

Output: A sequence of programs P, P,,... in L each of which
is totally correct with respect to the known facts.

Algorithm:
set P to be the empty program.
let the set of marked clauses be empty.
repeal
read the next fact.
repeat
if the program P fails on a goal known to be true
then find a true goal A uncovered by P using Algorithm 3;
search for an unmarked clause p in L that covers A in X;
add p to P.
i/ the program P succeeds on a goal known to be false
then detect a false clause p in P using Algorithm 2;
remove p from P and mark it.
until the program Pis totally correct
with respect to the known facts.
output P.
until no facts left to read.

if the depth of a computation of P on some goal A exceeds h(A),
then apply Algorithmn 4, the stack overflow diagnosis algorithm,
which ecither detects a clause p in P that is diverging with respect
to > and M, or a clause p in P that is false in M;
remove p from P, mark it, and restart the computation on A. [J
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searches for a covering clause has an interpretation X as a parameter. To
instantiate this scheme one has to substitute some concrete interpretation
for X. Different choices of X and their effects on the bechavior of
Algorithm 5 are explored in Section 4.4. We first investigate aspects of the
algorithm that are independent of this choice; for the sake of concreteness,
the reader may assume during this discussion that X=M.

4.2.1 Limiting properties of the algorithm

As suggested in the discussion of identification in the limit above, to
get a full grasp of the behavior of an inductive inference algorithm one has
to study its limiting properties. In this section we investigate the limiling
behavior of Algorithm 5 on presentations of interpretations.

Definition 4.2: A presenlation S of an interpretation M for a
language L is an infinite sequence of facts about M such that for
any variable-free goal A in the Herbrand base of L, if A is true in
M then <A,true> isin 8, otherwise <A, false> isin S.

For this investigation to be fruitful we cannot assume a fixed bound on
the stack space, lest we restrict ourselves to finite classes of interpretations
only. Therefore we assume that the depth-bound on computations in
Algorithm 5 varles as a function of the goal being solved. More preciscly,
we assume a given computable function h from goals to integers, and
require that for every goal A the depth of any computation on A should not
excced h(A). We say that a program P is h-easy iff for any goal A in H(P),
the depth of any computation of Pon A is at most h(A).

We associate with any depth-bound h a well-founded ordering >, to be
used by the algorithm that diagnoses stack overflow. For any two goals A
and B, we say that A>B iff h(A)>h(B). 1t is easy to see that il the depth
of a computation of P on A exceeds h(A) then the computation also violates
>, as defined in page 58.



89

Definition 4.3: Let L be an ordered set of clauses, M an
interpretation and > a well-founded ordering on the domain of L.
Assume that Algorithm 5 is given a presentation of M.

We say that the algorithm converges on this presentation if
eventually there comes a time when it outputs some program P
and does not output a different program afterwards. We say that
the algorithm identifies M in the limit if it converges to a
program that is totally correct in M.

For each of the search strategies described in Section 4.4 below we
prove an idenlification in the limit theorem, which defines conditions
under which Algorithm 5, equipped with that search strategy, identifies a
target program in the limit. However, the reliability of the algorithm can be
proved in a more general setting.

Theorem 4.41 Assume that Algorithm 5, applied to a
presentation of an interpretation M, eventually reads in every fact,
and converges to some program P. Then Pis totally correct in M.

To prove the theorem, we show that if the algorithm eventually reads
in all the facts, then the following facts hold:

1. The algorithm does not converge to an incorrect program.
2. The algorithm does not converge to an incomplete program.
3. The algorithm does not converge to a program that is not
h-easy.
Together these facts imply the theorem.

Lemma 4.5 Under the assumption of Theorem 4.4, every false
clause included in P by Algorithm 5 eventually gets marked.

Proof: Assume that p=Ao—Bl,Bg....,Bn is a false clause that is included at
some stage in P. Since it Is false there is a substitution @ such that A0 is
not in M, but B#, 1<i<n are in M. Consider the first time in which the
algorithin leaves the inner repeat loop when it knows that A9 is false and all
the B0 are true; such a time must come by the assumption that the

algorithm eventually reads in every fact. By that time PP succeeds on all the
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B,0 and fuils on A0, which implies that P does not include p; but since p
was in P, it follows that p got marked. []

Lemma 4.6: Under the assumption of Theorem 4.4, every
program Algorithm 5 converges to is h-easy.

Proof: Assume by way of contradiction that the algorithm converges to a
program P that is not h-easy. If Pis not correct in M, then a false clause
in it eventually will get marked, by Lemma 4.5.

If Pis correct in M but not h-easy, then there Is a fact <A,V> in the
presentation of M and a computation of P on A whose depth exceeds h(A).
By assumption the algorithm eventually reads the fact <A,V>. When
trying to solve A, a stack overflow would occur, the stack overflow diagnosis
algorithm would be invoked, and a diverging clause in P would get marked.
Both cases contradict the assumption that the algorithm converges to P. ]

Lemma 4.7: Under the assumptions of Theorem 4.4, every
program Algorithm 5 converges to is complete in M.

Proof: Assume to the contrary that the algorithm converges to a program
P which is incomplete for M. Let A be a goal in M that is not in M(P).
Conslder the first time the algorithm outputs P after reading in the fact
< Atrue>; such a time must come since the algorithm eventually reads in
every fact. Since PP does not solve A, there can be two cases: '

1. The depth of a computation of P on A exceeds h(A). In this
case the stack overflow diagnosis algorithm is invoked, resulting
in removing a clause from P.
2. P finitely fails on A without exceeding the depth bound h(A).
In this case the algorithin for diagnosing finite failure is
invoked, resulting in finding a goal B in M uncovered by P,
followed by adding to P a clause that covers B.
In both cases P is modified, in contradiction to the assumption that the
algorithm converges to P. ||

Together, the last three lemmas prove Theorem 4.4. The following
leinma provides a sufficient condition for Theorem 4.4 to show that
Algorithm 5 identifies an interpretation in the limit. We define L to be
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_ the first n clauses of L.

Lemma 4.8: Assume that Algorithm 5 is applied to a
presentation of an interpretation M, and there is an n>0 such that
whenever the algorithm searches for an unmarked clause in L that
covers a goal in X, it finds such a clause in L”. Then the
algorithm identifies M in the limit.

Proof: To prove the lemma, we show that under its assumptions

1. The algorithm converges.
2. The algorithm eventually reads in every fact.

These two facts, together with Theorem 4.4, imply that the algorithm
identifies M in the limit.

By the assumption of the lemma, every program it outputs is a subset
of L, hence it can output only finitely many different programs. Since the
algorithm Is incremental, it never returns to a program it once abandoned.
Hence the algorithm converges.

To show that the algorithm eventually reads in every fact, we show
that the inner repeat loop terminates. Each iteration executes the program
on finitely many goals, possibly invokes a diagnosis algorithm, and possibly
searches for an unmarked clause that covers a goal. The execution of the
program on a goal terminates since it uses a depth bounded interpreter.
The diagnosis algorithms were proved to terminate in Chapter 3. The
search for a covering clause terminates by the assumption of the lemma.

There are only finitely many iterations since each iteration either
marks a clause or adds a clause to P. Both can happen at most n times by
the assumption that only clauses in L are included in the program. ]

When describing the different search strategies in Section 4.4, we
specily conditions under which the assumption of Lemma 4.8 holds, and by
doing so prove an identification in the limit theorem for these strategies.

02
4.2.2 Complexity of the algorithm

We analyze the length of computations of Algorithm 5, as a function
of the sum of sizes of facts it has scen. We say that the a program P works
in length l(n) if the length of any partial computation tree of any goal A of
size n in H(P) is at most i(n). We say that the algorithm works in length
{(n) if the length of its computation until it requests the next fact is at most
I(n), where n is the sum of sizes of facts known at the time of the request.

We show that the length of computations of Algorithm 5 is dominated
by two factors: the running time of the programs it synthesizes, and the
number of candidate clauses it tries; if they are both polynomial, in the
sense explained below, then the algorithm works in polynomial length.

Definition 4.9: Let L be a language and M an interpretation of
L. Then L is said to have a candidate space of p(r) with respect
to M if for any goal A in M of size n, the number of clauses in L
that cover A in M is at most p(n).

Theorem 4.10: Assume that Algorithm 5 is equipped with a
search algorithm over L with a search space of n 1 for some
k1>0, and that any intermediate program constructed by
Algorithm 5 works in length nn, for some k2>0. Then Algorithm
5 works in length of at most cn””u, for some ¢>0.

Proof: In the worst case, every clause in the search space for any positive
fact will be tried (Le. added to P). We apportion the different activities of
the algorithm to the clauses tried.

Testing a program against the current set of facts is apportioned to the
last clause added or removed from the program; thus for each clause, we
charge exccuting the current program against each fact at most twice.

Invoking Algorithm 2 is charged to the clause the algorithm detects to
be false; such a clause is then marked, and is never included in P
afterwards, hence this can happen once for each clause. By Theorem 3.4,
the length of computations of the diagnosis algorithm is linear in the length
of the computation it diagnoses, which is at most nk! by assumption.

When Algorithm 3 is invoked on a goal A, it finds an uncovered goal,
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for which the search algorithm suggests a clause that covers it; we charge
running Algorithm 3 to the clause found; it is at most the square of the
length of the longest computation tree of A. By the assumption that
programs in L work in polynomial length, stack overflow will not occur,
hence Algorithm 4 will not be invoked.

Summing up the length of computations apportioned to a clause, we
get an upper bound of 4n2k), Summing up over the clauses searched we getl
an upper bound of 4n2k1+42, ]

Note that if all the programs generated by the algorithm are
deterministic, then Algorithm 2 can be used instead of Algorithm 3 to
diagnose termination with undefined output, and a bound of O(n““‘?) can
be obtained. Since length of computations of deterministic programs is also
their running time, we obtain in the deterministic case a polynomial bound
on the running time of the algorithm.

The analysis treats the algorithm that searches for a candidate clause
as a black box; a separate discussion of the complexity of the search
algorithm we use is done in Section 4.5. That section also provides an
example of a language for which such polynomial bounds hold.

4.3 The Model Inference System

One day, a merchant came to the studio of an artist and
asked him to paint a picture of a fish. The arlist agreed. The
merchant came back one week later inquiring about his picture.
The artist told him that the picture was not yet ready. The
merchant came back the following week, but discovered the picture
was still not ready. After coming back another week later and
finding the picture not ready the merchant decided that he would
never get his picture.

Three years later the merchant met the artist in the market
and asked what had become of the picture of the fish. The artist
told him that he had finished the picture just that morning and
that he would show it to the merchant if he came to the studio.
They arrived at the studio and on the easel was a blank picce of
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paper. The artist took a brush, made three quick strokes, and had
a beautiful picture of a fish. Why, the merchant asked, had it
taken the artist so long to produce the picture if it only took him a
moment to make? The artist walked over to a door and opened it.
Out poured ten thousand torn-up pictures of fish.

— a Zen parable

We describe a Prolog implementation of the inductive synthesis
algorithm, called for historical reasons the Model Inference System [82, 85).
Originally, the system was concelved of as an implementation of the general
inductive inference algorithm described in [82, 84], which infers first order
theories from facts. It was a later realization that the inductive inference
algorithm, restricted to infer Horn-clause theories, actually synthesizes
Prolog programs from examples; this realization led to the focus of the
current research.

The version of the Model Inference System described here is simpler
and cleaner than previous ones, but apparently comparable to them in
power and efficiency. Similar to the diagnosis system, it is constructed by
augmenting the diagnosis programs with an interactive shell and an error
handler. Algorithm 5 is diffused between these three components, hopefully
in a natural way. The Model Inference System, excluding the diagnosis
component and the search component, is shown as Program 13 below.

The procedure mis implements the outermost repeat loop of Algorithm
5. In addition to facts, it accepts as input the atom check, on which it
checks the consistency of the current set of facts with the current program.
check__ facl(X) checks that the current program performs correctly on all
facts (X,V), and implements the inner repeat loop and the two if
statements. solve(P) solves the goal P using the depth bounded interpreter,
and handles the exception of stack overflow, by invoking the
stack _over flow dingnosis program. handle _error handles errors found by
the diagnosis algorithms: if a clause is found false or diverging then it is
retracted; if a goal is found to be uncovered, the program that searches for a
covering clause is invoked, and the clause found is added to the current
program. Marking a clause is done implicitly, by recording the facts that
refute a clause or the ones that imply it is diverging.



Program 18: The Model Inference System

mis —
nl, ask_ for{’ Next fact’ Fact),
( Fact=check — check _ facl(_) ;

Fact=(P,V), (V=true ; V=/falsc) — asserl__ facl(P,V), check _ facl(P);

write("! Hlegal input’), nl ),
mis.

check _ facl(P) —
write{"Checking facl(s)..."), llyflush,
( facl(P,true), \+solve{ P) —
nl, missing_ solution(P), check _ fact(_) ;
Jact(P, false), solve(P) —
nl, false__solution(P), check _ facl(_) ;
urite(“no error found.’), nl ).

OO,UC(P) -—
solve( P, X),
( X=(overflow,S) — slack__over flow|P,S), solve(P) ; true ).

solve(P,X) ~— see Program 9, page 61.

Jalse _solution(P)— see Program 6, page 47.
missing_solution(P) «— see Program 8, page 55.
stack _overflou{ P,X) — see Program 10, page 62.

handle_ervor{’ false clause’,X)
writel([ error diagnosed: *,X,” is false.’]), nl,
retracl(X), plisting{ X).
handle_error( uncovered atom’,X) +—
writel({ error diagnosed: °,X,’ is uncovered.’)), nl,
search _for _cover(X,C), assert(C), plisting(X).
handle _error{ diverging clause’,X) —
writel(|ervor diagnosed: °,X,* is diverging.’]), nl,

retract(X), plisting( X).

search__for _cover(X,C) « see Program 17, page 124.

We demonstrate the performance of the system on a simple example,
making it infer a program for concatenating an element to a list. The
purpose of the example is to illustrate the control flow of the Model

. Inference System. User input is always preceded by a question mark, all the

rest is the system’s output, some of which the reader may recognize from
the session with the diagnosis system.

| ?— mis.

Nezt fact? concat(a,[b],[b,a]),true.

Checking fact(s)... '

Error: missing solution concal(a,[b],[b,a]). diagnosing...
Error diagnosed: concal(a,[b},[b,a]) is uncovered.

Searching for a cover to concat(a,[b),[b,a])...
Declare concat(X,Y,2)? declare(concat(+x,+(x],—[x]),[total,determinate]).
Procedures called by concal(X,Y,Z)? concat(_, ,_ ).

An error is found and diagnosed; the diagnosis was easy, since the

- program for concat is empty. The search algorithm is then invoked. It uses

the adaptive search strategy, discussed below. The system needs some
information to create the candidate clauses. We declared the type and the
input/output mode of concat, told the system that it is a total and
determinate procedure, and that the only procedure it calls is itself.

Checking: (concal(X,|Y12),|Y,X|2])—true)

Found clause: (concal(X,|}]Z},|Y,X|Z])—true)
after searching 19 clauses.

Listing of concal(X,Y,2):
(concal(N,[Y12},[Y,X|2))—true).

Checking facl(s)...no error found.

The system found a clause that covers the facts. The clause returns in its
output list the input list with the input element inserted its second position.
The clause is correel for input lists of length one only. We give it a more
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complex example.

Next fact? concat(a,[c,b],[c,b,a]),true.

Checking facl(s)... .
Error: inissing solution concat(a,[c,b},[c,b,a]). diagnosing...

Error diagnosed: concal(a,|c,b],lc,b,a]) is uncovered.

Searching for a cover to concal(a,[c,b],[¢,b,a])...
Checking: (concal(X,[Y}2},|V]V))—concat(X,2,V))
Found clause: (concal(X,|Y]2],|Y]W})+—concal( X,2Z,V))
after searching 31 clauses.
Listing of concatl(X,Y,Z):
(concal( X,[Y12),|Y,X]|2))—true).
(concat(X,[112),[1]V))+—concal(X,Z,V)).

Checking facl(s)...no error found.

The initial information concerning type mode and called procedures restricts
the search space for clauses, hence the system needed to search only 31
clauses to find a correct recursive clause for concat. We are not sure
whether the program is correct or not, so we break to Prolog and test it.

Nezxt fact? break.

| Break (level 1))
| 2— concal(a,|c,b},X).

X = [e,a,0] ;
X = [e,b,a] ;
[t} no

It-12
| End Break (level 1) ]
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We found that the program is still incorrect, so we provide the system with
the appropriate fact.

Nezxt facl? concat(a,[c,b),[c,a,b]),false.

Checking fact(s)...

Error: wrong solution concat(a,[c,b],|c,a,b]). diagnosing...

Error diagnosed: (concat(a,[c,b),[c,a,b])—true) is false.

Listing of concal( X,Y,2):
(concat(X,[¥]12),|]V])—concal( X, Z,V)).

A counterexample to the base clause was found, and the clause was
removed.

~ Checking fact(s)...
Error: missing solution concal(a,[b),[b,a]). diagnosing...

Query: concal(a,f),[a])? y. _
Error diagnosed: concal(a,],[a]) is uncovered.

After the wrong base clause is removed, the program failed on one of the
examples; the diagnosis algorithm was applied, and diagnosed the error: a
base clause for concat is missing.

Searching for a cover lo concal(a,]),[a))...

Checking: (concat(X,Y,[X|}V])—true)

Found clause: (concal( X,Y,[X|}Y])—true)
after searching 7 clauses.

Lisling of concal(X,Y,2):
(concal(X,[¥]2),[y]V))+concal(X,Z,V)).
(concal(X,Y,|X|}]))—true).

Checking fact(s)...
Error: wrong solution concal(a,|c,b),[c,a,b]). diagnosing...

The system found an unrefuted clause that covers concat(a,[},[a]), but after



_incorporating it into the program, it now succeeds on a goal known to be
false. The diagnosis algorithm for wrong solutions is then applied.

Query: concal(a,|b),[a,b])? n.

Error diagnosed: (concat(a,[b],[a,b])—true) is false.

Listing of concat(X,Y,2):
(concat(X,[Y]12),[Y]V))+—concat(X,Z,V)).

Checking facl(s)...
Error: missing solution concat(a,[b},[b,a]). diagnosing...
Error diagnosed: concal(a,|],{a]) is uncovered.

The base clause of concat was discovered to be false. After its removal, the
program finittely fails on concat(a,[],[b,a]). The diagnosis algorithm for
missing solution is applied, and it detects that concat(a,[},(a]) is uncovered.
No user query was performed during the diagnosis, since concat(a,[},[a]) is
already known to be true.

Searching for a cover to concat(a,[},[a])...

Checking: (concat(X,Y,[X|Y])—true)

Refuted: (concal(a,[b],[a,b])—true)

Checking: (concat(X,|],[X])—true)

Found clause: (concat(X,[},| X])—true)
after searching 9 clauses.

Listing of concat(X,Y,2):
(concal(X,[Y12},[]V])+—concat(X,2Z,V)).
(concal(X,[},|X])+—true).

Checking facl(s)...no error found.

and after one more iteration the system found the correct base clause. It
needed the following lacts:

concat(a,[b],[b,a]), true.
concal(a,|c,b),|c,b,a]), true.
concal(a,|c,b},|c,a,b]), false.

concal(a,[},[a]), true.
concat(a,[b),|a,b}), false.

The first three were supplied by the user, the last two were asked for by the
dingnosis algorithms. The whole session took 8 CPU seconds on the
DECsystem 2060.

More examples of the behavior of the system are given in Appendix I.

4.4 Search strategies

We describe three search strategies for Algorithm 5, that result from
different choices of X, the parameterized interpretation of the search
algorithm, and investigate the effect of their incorporation on the behavior
of Algorithm 5.

Recall the setting. The search algorithm assumes an ordered set of
clauses L, some of them are marked; it is given a variable-free goal A, and
has to find an unmarked clause p in L that covers A in X. A clause
A'c—Bl,B2....,B , covers a goal A in an interpretation M il there is a
substitution 8 such that A0=A'6, and B,0 are in M, for 1<i<n.

4.4.1 An eager search strategy

The most obvious choice for X is M, the interpretation for which
Algorithm 5 is trying to synthesize a program. We call the resulting search
strategy eager search. The implication of this choice is that for each clause
cncountered by the search algorithm whose head unifies with the given goal,
existential queries will be posed to M's oracle, to find whether the clause
docs cover this goal. This strategy is the most powerful of the three, but
also the most wasteful in terms of human (oracle) resources, as explained
below.



The advanlage of the eager search strategy is that it is order
independent. The following example will give some intuitive basis for this
claim. Assume that the algorithm 1is supplied with the fact
< member(a,|b,a]),true>, that should be solved using the clause
member( X,[V]Z])—member(X,Z), but was not yect supplied with the fact
< member(a,|a])true>.  The eager scarch algorithm will eventually
encounter the above clause when searching for a cover to member(a,[b,a]).
It will then unify the head of the clause with the goal, and test whether the
resulting instance of the body of this clause, which is member(a,[a}), is
satisfiable in M, using existential queries. In other words, it will construct
an instance of a rule even If no such instance is contained in the known
facts.

The disadvantage of the eager strategy is that many of the queries it
performs during the search for a covering clause are superfluous; since oracle
queries are typically answered by the user, they are the operation we would
like to optimize the most. The search strategies described later are more
economical in this sense, as they do not initiate oracle queries.

We demonstrate the performance of the system, incorporated with an
eager search strategy, and then analyze its effect on Algorithm 5.

| ?— mis.

Nezxt fact? call(set(search _stratlegy,eager)).

Nezxt fact? member(a,|b,a]),true.

Checking fact(s)...

Error: missing solution member(a,|b,a]). diagnosing...
Error diagnosed: member(a,[b,a]) is uncovered.

Searching for a cover to member(a,[b,a])...
Declare member(X,)? declare(member(+x,+[x]),[determinate]).
Procedures called by member(X,Y)? member(__, ).

Checking: (member(X,[Y]Z])«—true)
‘ound clause: (member(X,|Y]Z])—true)
afler searching 2 clauses.
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Listing of member(X,Y):
(member( X,[¥]Z])—true).
Checking facl(s)...no error found.

The clause found by the system on the basis of the flact
< member(a,[a]), true> says that any element is a member of any
nonempty list. We give the system a counterexample to that.

Next fact? member(a,[b,c]),false.

Checking facl(s)...

Error: wrong solution member(a,|b,c]). diagnosing...
Error diagnosed: (member(a,|b,c])—true) is false.
Listing of member(X,Y):

The next fact we supplied caused the system to discard that false clause.

Checking fact(s)...
Error: missing solution member(a,[b,a]). diagnosing...
Error diagnosed: member(a,|b,a]) is uncovered.

Searching for a cover to member(a,[b,a])...
Checking: (member{X,[}]|Z])—true)
Refuted: (member(a,|b,c])—true)

Query: member{a,[a])? y.

Query: member(b,[a])? n.

These two queries were performed by the eager search algorithm. The first
was used to determine whether the clause member(X,[}]Z])—member( X,2)
covers member(a,[b,a]), and the answer is positive; the second was to
determine whether member(X,[1]Z])—member(Y,Z) covers it, and the answer
is negative. The reason for this search order will be clarified when the
pruning strategy is discussed, in Section 4.5 below.
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Checking: (member( X,|Y,Z|U})+—true)
Refuted: (member(a,|b,c])—true)
Checking: (member( X,|V]Z])—member( X,Z))
Found clause: (member(X,[}Y]Z])—member(X,2))
after searching 4 clauses.
Listing of member(X,Y):
(member( X,[Y]Z])+—member(X,2)).

The algorithm found the recursive clause for member, even though no
instance of it was supplied by the user initially.

Checking facl(s)...
Error: missing solution member(a,|b,a]). diagnosing...

Query: member(a,[|)? n.
Error diagnosed: member(a,|a]) is uncovered.

The fact <member(a,a]), true> Is known by the system; this saved the
user from answering this query to the missing _solution diagnosis program.

Searching for a cover to member(a,|a})...
Checking: (member(X,|Y]Z])—true)
Refuted: (member(a,|b,c])}—true)
Checking: (member( X,[Y])—true)
- Refuted: (member(b,|a])—true)
Checking: (member( X,[X|2])—true)
Found clause: (member( X ,|X|Z})«true)
after searching 4 clauses.

Listing of member(X,Y):
(member( X,[Y]Z])—member(X,Z)).
(member( X,|X|Z])—true).

Checking facl(s)...no error found.

And the synthesis of member is completed. The facts needed were
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member(a,[b,a]), true.
member(a,|[b,c]), false.

member(a,|a)), true.
member(b,|a]), false.

member(a,[]), false.

The first two were supplied by the user, the next two were asked for by the
search algorithm, and the last one was given as an answer lo a diagnosis
query.

We prove that Algorithm 5, equipped with an eager search strategy,
will identifly an interpretation M in the limit, independent of the order of
presentation of M.

Theorem 4.11: Let L be an ordered set of clauses, M an
interpretation, and h a depth-bound function. Assume that L has
an h-easy correct and complete program for M, and that
Algorithm 5, equipped with an eager search strategy, is given a
presentation of M. Then the algorithm identifies M in the limit.

Lemma 4.12: Under the assumptions of Theorem 4.11, there is
an n>0 such that whenever the search algorithm is invoked it
returns a clause in L, .

Proof: Let n>0 be the minimal index such that L_ contains an h-easy
correct and complete program, say Py. Since Fy is correct in M, no clause
in Py will ever get marked by Algorithm 2. Since Fy is h-easy, no clause in
P will ever get marked by Algorithm 4. These claims follows from the
correctness of the diagnosis algorithms.

Since Pyis complete for M, it covers M, hence any goal A in M has a
clause p in Py that covers it in M. It follows that whenever the search
algorithm scarches for a cover for A, it will either find p or a clause that
precedes p in L. [}

Proof of Theorem 4.11: By Lemma 4.12, there is an n such that the
algorithm always finds a covering clause in L, when searching for one.



105

Hence the assumption of Lemma 4.8, Page 91, is satisfied, and its conclusion
is that the algorithm identifies M in the limit.

The original implementation of the Model Inference System (82, 85|
incorporated an eager search strategy.

An implementation of the eager covers test is shown as Program 14.
veri fy(X) tests whether X is solvable, without actually instantiating X to a
solution. It is implemented via the hack verify{ X)«— not(not(X)).

Program 14: The eager covers test

covers(eager (P—Q),P1) —
veri f{( P=P1, satisfiable(Q) )).

satisfiable((P,Q)) — !,
query(exists,Pytrue), satisfiable(Q).
satisfiable(P) —
query(exists,Pytrue). ||

4.4.2 A lazy search strategy

The next choice of the parameterized interpretation X we investigate
results in a lazy search stralegy. In this strategy X is defined to be the set
of goals known to be true.

The advantage of lazy search is that it does not bother the user with
querics, since, by its definition, existential queries are answered with respect
to the known facts. The disadvantage of this strategy is its order
dependence.  For example, this strategy would not discover the rule
member( X,[Y]Z])—member(X,Z) unless the known facts contain an instance
of that rule, i.e., there is a substitution 8 such that both member(X,[Y|Z])0
and member(X,Z)0 are known to be true.

Two facts like <member(a,[b,a]),true>, and <member(c,[c]),true>
will not do in this case. Thus an adversary ordering of facts, such as
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< member(a,|a]),true>,< member(b,|a,b]),true>,< member(c,[a,b,c]),true>,..

can force the programs synthesized by the system to be arbitrarily large.
This behavior is shown in the following session with the Model Inference
System, equipped with a lazy search strategy.

After giving the system the facts <member(a,[a]), true>, and
<member(a,|z]), false>, it came up with the axiom
(member(X,[X|Z])—true), which says that X is a member of any list whose
first element is X. From there the session progressed as follows.

Nezxt fact? member(b,[a,b]),true.

Checking fact(s)... .

Error: missing solution member(b,(a,b]). diagnosing...
Error diagnosed: member(b,[a,b]) is uncovered.

Searching for a cover to member(b,a,b})...

Found clause: (member( X,[Y,Z|U])—true)
after searching 3 clauses.

Listing of member(X,Y):
(member( X,[X]|Z))—true).
(member( X,|Y,2]U])—true).

Checking fact(8)...no error found.

The second clause found by the system says that X is a member of any list
that has at least two elements. We provide the system with a
counterexample to that axiom.

Nezl fact? member{b,[a,x]),false.
“hecking facl(s)...
Error: wrong solution member(b,[a,z]). diagnosing...
Error diagnosed: (member(b,[a,z])—true) is false.
Listing of member(X,Y):

(member( X,|X|Z])«—true).
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Checking facl(s)...
Error: missing solution member(b,|a,b]). diagnosing...
Error diagnosed: member(b,[a,b]) is uncovered.

Searching for a cover to member(b,[a,b])...

Found clause: (member( X[V, X|U])—true)
after searching 5 clauses.

Listing of member(X,Y):
(member( X,|X|Z])—true).
(member( X,|Y,X|U])—true).

Checking facl(s)...no error found.

The new clause found by the system says that X Is a member of any list of
which X is the second element. Here the difference between the eager and
lazy search strategies becomes apparent: although the clause
member(X,[¥]Z])—member(X,Z) precedes member(X,[Y,X|U])—true in the
enumeration, the search algorithm did not suggest it when searching for a
cover to member(b,|a,b]) since it does not know that member(b,[b]) is true.
Continuing with this ordering of facts, we can force the algorithm to
augment the program with arbitrarily comglex base cases (unit clauses),
that say “X is a member of Y if X is the n'® element of V", for larger and
larger n's, before it finds a recursive clause. Instead, we provide it with a
fact for which it can find a recursive rule.

Nezt fact? member(b,|x,a,b]),true.

Checking facl(s)...

Error: missing solution member{b,|z,a,b]). diagnosing...
Error diagnosed: member(b,[z,a,b]) is uncovered.

Searching for a cover to member(b,|z,a,b))...
Found clause: (member( X ,|Y|Z])—member(X,Z))

after searching 4 clauses.
Listing of member(X,Y):
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(member( X, ,[X |Z})+—true).
(member( X,|Y,X|U])—true).
(member( X,|Y]2])—member(X,Z)).

Checking facl(s)...no error found.

The system found the recursive clause for member when searching for a
cover to member(b,|z,a,b]). The lazy covers test succeeded since the system
knew from previous facts that member(b,[a,b]) is true.

Even though we can force the member program constructed by the
system lo be arbitrarily complex, it will still identily member in the limit,
since evenlually we would have to supply it with the facts it needs for
finding a recursive rule. This is not always the case, however; the following
example shows that adversary orderings of facts may prevent identification
in the limit by Algorithm 5 with a lazy search strategy, even though eager
search strategy would allow identification.

Assume that L contains the I'oliowing clauses, constructed from the
predicate symbols p and g, the one place functions a and b, and the constant
nil.

ma"(X)) — ¢« X), for all n>0.
p(a™(6"(X))), for all m,n>0.
A6"(X)) — g(X), for all n>0.
¢(nil).

‘Assume that the target interpretation is {g(6"(nil)) | n is
even)u {p(a(b™(nil))) | n is even}. A simple program for this interpretation
is

Ma(X)) — o(X).
AHKX)) — o(X)-
¢(nil).

However, If we order the facts so that <p(a(b"(nil))),true> precedes
< g(b"(nil)),true> for any even n, the lazy search algorithm will never
discover a recursive clause for p, but only unit clauses. This implies that
Algorithm 5 cquipped with a lazy search strategy would not converge on
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this presentation, hence will not identify the interpretation in the limit.

Definition 4.13: Let > a well-founded ordering on goals. A
sequence of facts 8 is said to con form with > if for every two facts
<Adrue>, <Bjtrue>, f <A(true> precedes <B,true> in S
then it is not the case that B> A.

We say that S eventually conforms with > if it can be made
to conform with > by reordering some finite initial segment of it.

Consider again the example above, and assume that the presentation
eventually gets ordered according to the well-founded ordering implied by L.
It is casy to see that the lazy search algorithm will find the recursive clause
for p once it sees <q(b"(nil)),true> before seeing < p(a(b")nil)),true>, for
a sufficiently large n. But until this happens, the unit clauses it adds to the
program can be arbitrarily large. The following theorem generalizes this
behavior.

Theorem 4.14: Let M be an interpretation and L an ordered set
of clauses, such that L contains the unit clause A~ for any goal A
in M. Let h be a depth-bound for which L contains an h-easy
correct and complete program for M.

Assume that Algorithm 5, equipped with a lazy search
strategy, Is given a presentation of M that eventually conforms
with >, where > Is the well-founded ordering assoclated with A.
Then the algorithm identifies M in the Himit.

Proof: Similar to the proof of Theorem 4.11, we need to show that there is
an n>0 such that the search for a covering clause always succeeds within
L, .
Assume that the presentation has a finite (possibly empty) unordered
initial segment Sy, and that L, has an h-easy correct and complete program
for M. For each fact <A,true> the search algorithm will not go past the
unit clause A—: this clause covers A in any interpretation, and it will not
get marked since it is true in M and not diverging. Let m be the largest
index of any wnit clause A+ for which there Is a fact <A,true> in S, By
the time the algorithm reads in the first fact not in S, it has included in P
only clausesin L .

The facts that follow S, are ordered according to >, which implies
that for every fact <A,lrue> that follows S in the presentation, all goals
I3 in M for which A> DB are already known to be true. Assume that the
algorithm is searching for a cover for such a goal A, and that it encounters a
true, nondiverging clause p=A'«-—-Bl,Bz,...,B" that covers A in M. Then
the true instances of the B's with which p covers A are all smaller than A
with respect to >, hence they are known to be true, and the search
algorithm selects p. llence, by an argument similar to that of Lemma 4.12,
the algorithm would not include in P at that stage clauses with an index
larger then k. llence n=maz{k, m} satisfies the assumption of Lemma 4.8,
and identification in the limit follows. )

As evident from the proof the theorem, if the presentation is strictly
ordered, then the assumption that L contains unit clauses that correspond
to the positive facts Is unnecessary; hence the following Corollary.

Corollary 4.161 Let M be an interpretation, L an ordered set of
clauses, and h a depth-bound such that L contains an h-easy
correct and complete program for M.

Assume that Algorithm 5, equipped with a lazy search
strategy, is given a presentation of M that (strictly) conforms with
. Then the algorithm identifies M in the limit.

An implementation of the lazy covers test is shown as Program 15.
Program 16: The lazy covers test

covers(lazy((P—Q),P1) —
veri fy(( P=P1, fact_satisfiabl{Q) )).

Jact _satisfiable((P,Q)) !,

fact _satisfiable(P), fact__satisfiable(Q).
fact _satisfiable(P) —

system(P) — P; fact(Pytrue). ]



 4.4.3 An adaptive search strategy

Our third strategy, called adaptive search, is a compromise between
the two strategies described above. In this strategy the parameterized
interpretation X increases both as a function of the facts the algorithm has
seen so far, and as a function of the program it has developed. The
interpretation we choose for X is {A | A is in M{PUS)}, were S is the set of
goals known to be true, and P is the program developed by the algorithm.
This choice implies that to test whether a clause A—B covers a goal A’, we
unify A with A’ and try to solve the resulting B using the program P,
-ugmented with unit clauses C— for each known fact <Cilrue>.

The advantage of adaptive search over eager search is that, similar to
inzy search, it does not query the user during the search; the advantage of it
over lazy search is that it is less order dependent. The following session
with the Model Inference System, equipped with an adaptive search
procedure, demonstrates this.

After giving the system the facts

member(a,|a]), true.
member(b,[a,b]), true.
member(a,|z]), false.
member(b,|a,z]), false.

it came up with the program

member(X,| X|Z])—true.
member(X,|Y,Z|U|)—true.

as it did in the previous example. The session continued from this point as
follows:

Nezt fact? member{b,[a,x]),false.
Checking facl(s)...
Error: wrong solution member(b,|a,z]). diagnosing...
Error diagnosed: (member(b,|a,z])—true) is false.
Listing of member{X,Y):

(member( X,[X|Z])—true).
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The system discarded of the false clause.

Checking facl(s)...
Error: missing solution member(b,[a,b]). diagnosing...
Error diagnosed: member(b,[a,b]) is uncovered.

Searching for a cover to member(b,(a,b})...

Found clause: (member( X,[Y]Z])—member(X,Z))
after searching 4 clauses.

Listing of member(X,Y):
(member( X,|X|Z])«—true).
(member( X,[Y]Z])—member(X,Z)).

Checking facl(s)...no error found.

The system found that member(X,[Y]Z])—member(X,Z) covers
member(b,[a,b]), even though it was not supplied with the fact member(b,[0]),
since it could solve the latter goal using the part of the program it already
constructed: the clause member(X,[X]2]).

We find adaptive search the most useful of the three in synthesizing
the more complex programs. In the following theorem adaptive search is
claimed to be as powerful as lazy search.

Theorem 4.18: Under the assumptions of Theorem 4.14, if
Algorithm 5 is equipped with an adaptive, rather than lazy, search
strategy, then it identifies M in the limit.

Proof: The difference between adaptive search and lazy search is that a
clause may cover a goal according to adaptive search, but fail to cover it
according to lazy search. Since whenever lazy search finds a covering
clause, adaptive search also finds the same clause or a clause with a smaller
index in L, this behavior does not invalidate the bound on the index of
clauses included in P as argued for in the proof of Theorem 4.14. lence
Lemma 4.8 applics. [}

By the same argument, Corollary 4.15 holds also for adaptive search.
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One possible drawback of adaptive search is that it may result in the
program having “dead-code”, i.e. clauses that do not cover any goal in M.
This may happen since the adaptive scarch may erroneously conclude that a
clause covers some goal, due to P being incorrect. This cannot happen with
eager or lazy search, since they do not depend on the correctness of the
program being synthesized. We do not have yet enough experience to
determine the practical consequences of this drawback.

A simplified implementation of the adaptive covers test is shown as
Program 16. The actual implementation, shown in Appendix II, is
complicated by the need to handle the possibility of a stack-overflow in the
computation of fact _ solve.

Program 16: The adaptive covers test

covers(adaplive,((P—Q),P1) —
verify{( P=P1, fact_solve(Q) )).

Jact_solve((A,B)) — !,

Jact _solve( A), fact _ solve( B).
Jact _solve(A) —

system(A) — A ;

Jacl(A,true) ;

clause(A,B), fact_solve(B). |}

4.5 A pruning strategy

When detecting an uncovered goal, Algorithm 5 searches L for a clause
that covers this goal. Typically, the size of that search space is exponential
in the size of the target clause; hence performing linear search would forbid
any practical application of the algorithm.

In this scction we develop ways to prune the search for a covering
clause. We invesligate structural and semantic properties of clauses, and
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develop a pruning strategy based on these properties. The pruning strategy
organizes the search space of clauses according to their logical power, in a
structure called a refinement graph. We study refinement graphs, give
concrete examples of them, and provide evidence to the utility of the
pruning strategy.

4.5.1 The refinement graph

A refinement graph is a directed, acyclic graph in which nodes are
definite clauses and ares correspond to refinement operations, defined below.
Let L be a set of definite clauses and p a mapping from L to finite
subsets of L. We define <_ to be the binary relation over L for which
P<,9 iff there is a finile sequence of clauses Py:Pgs--P, Such that p =p,
p,=q, and p, , isin p(p,), for 0<i<n. We say that P<,9 iff p< q or

" p=q. Note that we do not distinguish between clauses that are variants,

i.e. differ only in the choice of variable names, and interpret p=gq
accordingly.

The mapping p is said to be a refinement operator over L ifl the
following two conditions hold:

1. The relation < , is a well-founded ordering over L.
2. For every interpretation M and goal A, if g covers A in M and
P<,9 then p covers Ain M.
It is easy to see that the union of two refinement operators is a
refinement operator.
We define L(p) to be the set of clauses p for which 0 < p P and say
that p generales L if L is a subset of L{p).
The refinement operators we use employ two syntactic operations on
clauses, which satisly the covering condition:

1. Instantiate a clause.
2. Add a goal to the condition of a clause.

In [82] we showed that there is a refinement operator based on these two
operations that genecrates all clauses over a finite set of predicate and
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function symbols. The existence of such a general refinement operator is
mostly of theoretical interest; we find restricted refinement operators, tuncd
" to a particular application, to be more useful. Examples of some concrete
refinement operators are shown below.

4.5.2 Examples of refinement operators

We assume a given fixed set of predicate and function symbols, and
define the following refinement operator p, with respect to these scts.
Let p be a clause. Then qisin pl(p) Iff one of the following holds:

I.p=0 and g=a(X,X,,..,X ), for some n-place predicate
symbol a of L, n>0 and X &’, +X,, are n distinct variables.

2. q is obtained by unifying two variables in p.

3. q is obtained by instantiating a variable X in p to a term
ux X,. v X, ), where ¢t is an n-place function symbol and
X, Xgree -X,, are variable symbols not occuring in p.
4.pisa deﬂnite clause whose head is A, and g Is obtained by
adding to p's body a goal B, whose size i3 less then or equal to
the the size of A, and every variable in B occurs in A.
In [86] we showed that the class of logic programs generated by this
refinement operator have the following property:

1. For any program P in L(p) there is an alternating Turing
machine [24] T that works in linear space, and accepts A iff A
is in M(P).

2. For any allernating Turing machine T that works in linear
space there is a program P in L{p,) such that the goals in
M(P) are exactly those that teprmnt (under some natural,
fixed encoding) configurations of M that lead to acceptance.

We also showed that if we restrict p; to add at most one goal to the body of
a clause, the resulting class of programs satisfies the above claims for
Nondeterministic Linear Space.

Many relations can be expressed naturally by logic programs within

L(p|). Fxamples are list membership, subsequence, subset, concatenation,
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and binary tree isomorphism.

member( X,| X|}H).

member(X,|1]Z]) — member(X,2).

aubsequence(]],X).
subsequence(|A|X],|A|Y]) «— subsequence(X,Y).
subsequence(X,|A]}]) — subsequence(X,Y).

subsel([},X).
subsel(|X|Xs},Ys) — member(X,Ys), subset(Xs,Ys).

append([},X,X)
append([A|X],Y,[A|Z]) «— append(X,Y,Z)

tsomorphice( X,X).

tsomorphic(t(X1,X2),4(Y1,Y2)) — isomorphi{ X1,¥1), tsomorphie( X2,12).
isomorphic(t(X1,X2),4(Y1,¥2)) + isomorphie X1,¥2), isomorphic( X2,Y1).

Figure 8 shows a portion of the refinement graph for the predicate
member and the terms [} and [X|Y].

0

member(X,Y)

N T—

member(X,X) member(X.[Y]Z]) member([X|Y],Z) member(X,Y) — member(Y,X)

member(X,[X|Z])  member(X,[Y|Z])—member(X,Z)
Figure 68: Part of the refinement graph for member

The second refinement operator we describe, p,, also generates a class
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of logic programs with a characterizable expressive power: the equivalent of
context-free grammars [1). There is a one-to-one mapping between context-
free grammars and definite clauses of a special form, called definite clause
grammars. These grammars and their extensions were studied by
Colmeraiier [27), Warren and Pereira (85}, among others. In this mapping
every nonterminal is mapped into a binary predicate, and every terminal to
an atom. For example, the following context-free grammar

8 = np, vp.
np = del, n.

np = del, n, [that], vp.
np = pname.

vp = v, np.

vp = ilv,

det = [every].

det = [a].

is mapped into the logic program:

8(X,1) — np(X,U), vl(U,)).

e X,Y) — det(X,V), "(U-Y)-

np(X,)) — det(X,V), n(U,|that|W]), vp(W,Y).
np(X,Y) — pname(X,Y).

wp(X,Y) — ty{X,U), np(U,Y).

w(X,Y) — it X,Y).

del([every| X}, X).

det(|a] X],X).

The semantics of a predicate n(X,Y) that corresponds to the
nonterminal n is “the difference between the string X and the string Y is of
syntactic category n". Procedurally, n(X,Y) accepts a string X as input,
chops off it a substring of category n, and returns the rest of the string as
output in Y. The logic program above can be execuled as a recursive-
descent recognizer for the language defined by this grammar.

It can be shown [27] that if a context-free grammar G is mapped into

a logic program P under this transformation, then for each string z and
each nonterminal n, n generates s in G iff P succeeds on n(z,y) in P, for
any two strings z and y whose difference is s.

We define a refinement operator p, that generates the definite clause
equivalent of context-free grammar rules over a given set N of nonterminal
symbols and a set T of terminal symbols. Let p be a clause. Then q isin
py(p) ilf one of the following holds:

1. p=0 and g=n(X,Y), where n is in N.

2. Y is a variable that occurs once in p in the second argument of
some predicate, and g is p{Y—|t|Z}}, where t isin Tand Zisa
variable symbol not occuring in p.

3. Yis a variable that occurs once in p in the second argument of
some predicate, n is in N, and g is obtained from p by adding
to its condition the atom n(Y,Z), where Z is a variable symbol
not occuring in p.

4. Yis a variable that occurs once in p in the second argument of
some predicate, X is the variable symbol that occurs in the
second argument of the predicate in the head of p, and
q=p{¥—X)}.

A session with the Model Inference System equipped with this
refinement operator is shown in Appendix I below.

Theorem 4.10 above says that if L has a polynomial candidate space
for covering cluuses with respect to M, and every program in L runs in
polynomial time, then the algorithm runs in polynomial time. We restrict
Py Lhe refinement operator that generates definite clause grammars, so the
language it generates satisly the two assumptions.

To satisly the polynomial runing time assumption, we restrict the
refinement operator to generate only simple LL1 grammars [I]. A simple
LL1 grammar is a grammar with no e-productions, and in which every right
hand side of a production begins with a distinct terminal symbol. The logic
program equivalent of an LL1 grammar runs in time linear in the size of the
input goal. For a polynomial bound to hold on the size of the candidate
space, we restrict the grammars production to have at most k nonterminals
on their right hand side, for some fixed k.



The definition of py is obtained from that of p2 above by modifying its
first clause t.o read:

1. p=0 and q=n([t|X},Y), where n isin Nand tisin T.

And by adding to its third clause the restriction that the goal is added to
the body of the clause only if it has less than k goals in it.

Let G be a context-free grammar. We say thalt grammar rule R
generates 8 in G il there is a derivation of s in G that starts with R. Let
M be an interpretation that corresponds to the language generated by G.
From the correspondence between context-free grammars and definite clause
grammars it follows that a definite grammar clause p covers a goal n(X,Y)
in M iff the grammar rule that corresponds to p generates the string that is
the difference between X and ¥ in G. Hence we argue about the size of the
candidate space in terms of grammar rules.

Lemma 4.17: Let G be a grammar over the nonterminal set N
and terminal set T, and & a string in the language of G of length
n. Then for any k, there are at most p{n) grammar rules with &
nonterminals that generate s in G, where p is a polynomial that
depends on k and G.

Proof: For a grammar rule R to generate 8 in G, the terminals in the rule
must be a subsequence of s, and every contiguous block of terminals in s
that are missing from R must be generated by at least one nonterminal in
R. Since thére at most k nonterminuls in R, there are at most IT] choices
for the nonterminals, and at most kn2 choices for the contiguous blocks of
terminals in s they represent. Hence there are at most m kn? such
grammar rules over T'and N. ]

We have applied the Model Inference System to infer an LL1 grammar
for the statements of Wirth's PLO programming language [102], without
incorporating the restriction on the number of nonterminals. We have made
the assumption that expressions are in prefix notation, otherwise the
language does not have a simple LL1 grammar. The refinement operator
was given the terminal set {begin, end, if, then, while, do, call, odd, ":=",
=, ’3", +, —} and the nonterminal set {stalement, slatementlist,
condition, expression, ident, number, comparator}. We have supplied the

system with the following initial set of facts:

ezxpression([a),[]), true.

expression(|1),[]), true.

expression([+,a,1},]), true.

expression([—,a,1),[]), true.

condition(|=,a,+,a,1),[}), true.
statemenl([a,:=,+,a,1},[]), true.

statement([call,a},[]), true.
statement(|while,=,a,1,do,a,:=,+,a,1},[}), true.
statement(|if,=,a,1,then,a,:=,+,a,1]},]), true.
statementlisl([;,if,=,a,1,then,a,;:=,+,a,1,end},[}), true.
statement(|begin,call,a,;i f,=.a,1,then,a,;=,+,a,1,end],[]), true.

After working for 110 CPU seconds®, the system came up with the following
grammar rules. The number preceding a clause is the number of clauses
searched before finding it.

(8) (statement(X,Y):—ident(X,[:=|U]),ezpression(U,Y))

(1) (statement(|call] X],Y):—ezpression(X,Y))

(14)  (statement([while| X],Y):—condition(X [do|U)),statement(U,Y))
(14) (statement([i f)X],Y):—condition(X [then|U]),statement(U,}))
(8) (statement([begin| X},Y):—statement(X,U),statementlist(U,Y))
(7) (statementlist([;}X],Y):—statement(X,[end|H]))

(8) (condition(|=]X),Y):—ezpression(X,U),expression(U,Y))

(2) (expression(X,Y):—ident(X,Y))

(2) (expression(X,Y):—number(X,Y))

(8) (expression(|+]|X],Y):—ezpresaion( X U),c:rpreaawn(ll Y))

(8) (expression(|—| X],Y):—ezpression(X,U)ezpression(U,}))

Which contains two errors: the rule for a procedure call is
overgeneralized, as PLO has only parameterless procedure calls, and the rule
for atatementlist is too constrained, as it implies that a statement list has

3Most of the system was not compiled during this experiment, so the timing should
not be considered as optimal.
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only one statement. From this point the session continued as follows. We
first gave the system two additional facts:

statement([call,+,a,1},[]), false.
statement([begin,call,z,”;" a,:=,+,a,b,"; " ,call,y,end),[]),true.

It queried for one more:

query: statemen!(|call,z,;,a,:=,+,a,b;;,call,y,end], X)? y.
which XY [;,a,:=,+,a,b,;,call,y,end).
which X? no.

And corrected the two errors (in 20 CPU seconds). The new grammar rules
are:

(5) (statement([call|X],Y):—ident(X,Y))
(9) (statementlist([;| X],Y):—statement(X,U),statementlist(U,Y))

The system spent most of its time pruning the refinement graph. The
branching factor of the unpruned graph is the number of terminal symbols
for the first refinement, which in this grammar is 13, and the number of
terminals plus the number of nonterminals for all other refinements, which
in the case of this grammar Is 1347=20, plus one refinement that closes the
clause (i.e. unifies the output variable in the head of the clause with the free

oulput variable in the body of the clause). A closed clause has no.

subsequent refinements. The more complex grammar rules, such as the ones
for the while and if statements, were found at depth § in the refinement
graph after searching 14 clauses. In the worst case, the unpruned breadth-
first search for these clauses could have gone through 13+ 13x21 +
13x20x21 13x20%20x21 + 13x20x20x20x21 = 2,208,046 clauses to
search the graph at that depth.

4.6.3 Searching the refinement graph

The pruning strategy we develop Is based on searching the refinement
graph in breadth-first order. It uses the property of refinement graphs that
if a clause does not cover a goal in some Interpretation M, then any
refinement of this clause does not cover this goal in M also. Hence

122

whenever a clause fails Lo cover a goal, the subgraph rooted at this clause is
pruncd. Algorithin 6 below describes this search strategy.

Algorithm 6: A pruning breadth-first search of the refinement graph

Given: An oracle for some interpretation X and
a program for a refinement operator p.

Input: A goal A and a set of marked clauses containing O.

Oulput: An unmarked clause p in L(p) that covers A in X,
il one such exists, or no clause found.

Algorithm:

set Q to (D).
repeal
remove a clause p from Q;
compute R, the set of refinements of p that cover A in X,
using the refinement operator p and the oracle for X;
add R to the end of Q.
until the queue Q is empty or contains an unmarked clause.
if Q is empty
then return no clause found
else return the first unmarked clause in Q. [}

Lemma 4.18 describes the conditions under which this search algorithm
will find a clause as desired.

Lemma 4.18: Let p be a refinement operator, X an
interpretation, R a set of marked clauses, and A a goal. If
Algorithm 6 is applicd to a goal A for which L has an unmarked
clause that covers A in X, then it will terminate and return such a
clause.
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Pr«l)of: It is clear that if the algorithm terminates and returns a clause then
the clause satisfies the required properties. Assume that the algorithm fails
to return such a clause, even though L(p) contains one.

Let p be an unmarked clause in L(p) that covers A in M, whose depth
in the refinement graph is minimal, and p,,p,,...,p,, be a sequence of clauses
such that p,=0, p,=p, and p; , isin Ap;), 1<i<n.

The algorithm can fail to return a clause in two ways: it can
terminate and return no clause found, or it can fail to terminate. For
either of these to happen, p should not be added to the queue. This
implies that the algorithm has to remove p, from the queue, for some i<n,
without adding p; ato it. This can happen only if p, +1 does not cover A.
However, by the assumption that p_ covers A and the definition of a
refinement operator it follows that p; | covers A, a contradiction. 0

The oracle for X appears in Algorithm 6 as a parameter. The
different search stralegies discussed in Section 4.4 above instantiate this
parameter to different interpretations. The pruning strategy, however, is
insensitive to the interpretation chosen.

4.5.4 An implementation of the pruning search algorithm

Program 17 below implements Algorithm 8. 1t doesn’t start from the
empty clause but from the most general term that corresponds to the given
goal.

The procedure search _for _cover(Qhead,Qtail P,C) represents the
queue as a lazy list. The remove operation on the queue removes the first
element from Qhead, the head of the list. The add operation on the qucue
instantiates Qfail, the unspecified tail of the list. The call
bagofo(Y,(refinement(X,Y), covers(Y,P)),Qnew) returns a list Qnew of all
instances of Y for which there is an X that solves the conjunctive goal
(refinement(X,Y), covers(Y,P)). The call to covers is the one that prunes
the search. The actual implementation of the search algorithm is slightly
complicated by the need to generate and handle special data-structures that
are associated with each clause and are used by refinement operator.
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Program 17: A pruning breadth-first search of the refinement graph

search__ for _cover(P,C) —
nl, writel(|’Searching for a cover to *,P,’..."]), nl,
mgt(D, 1),
search __ for _cover(|(P1+—true)| Xs],Xs,P,C).

search _ for _cover(Qhead,Qtail,P,C) —
Qhead==Qlail,
wrilel(|"Can’t find a cover for °,P,”. queue is empty’)),
1, fail.

search__for _cover(|X|Qhead],Qtail,P,C)
bago (Y ( refinement(X,Y), covers(Y,P) ),Qnew),
check _refinements(Qnew,Qhead,Qtail,P,C).

check _refinements(Qnew,Qhead,Qtail,P,C) —
member(C,Qnew), good _clause(C), 1.

check _re finements(Qnew,Qhead,Qlail,P,C) —
append(Qnew,Qnewtail Qtail),
search__for _cover(Qhead,Qnewtail,P,C).

dovers(X,P) — X covers P. See Programs for the covers test, Section 4.4.

good _clause(X) — X is an unmarked clause. ]

4.6 Comparison with other inductive synthesis systems

In [81] we compared the behavior of an older version of the Model
Inference System with the systems of Summers [92] and Biermann [9]. We
summarize the main points found, and add a comparison with Wharton's
system for grammatical inference [98]

We have equipped the Model Inference System with a special-purpose
refincment operator, that generates a class of logic program that were
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sufficiently general to include all of Summer’s examples. The following
program for packing a list of lists into one list Is in that class.

pack(|X|1),2) — pack(Y,V),append(X,V,Z2).
pack([).[})-

We have found that we could infer most of Summer’s examples in less than
one CPU minute. For example, that version inferred the program for pack
in 9 CPU seconds, and from 29 facts, most of them negative. We have
applied the current Model Inference System to the same example. The
result is shown below:

| 7— mis.

Nezxt fact? pack(]},[]),true.
Checking facl(s)...

Error: missing solution pack(|),[)). diagnosing...
Error diagnosed: pack(|),[]) is uncovered.

Searching for a cover to pack([},[])...
Declare pack{ X,Y)! declare(pack(+||z]],—(z]).|total,determinate]).
Procedures called by pack{X,Y)! pack{ _, ),append(_, ,_).

We have declared pack to be a total, determinate procedure whose input is a
list of lists, and its output is a list; we also declared that pack can call
append, and also call itself recursively.

Found clause: (pack({X,[]) — true)
after searching 3 clauses.
Listing of pack(X,Y):
(pack X,[]) « true).
Checking facl(s)...no error found.

After searching for not too long, the system found a program that is
consistent with all it knows so far: on any input, pack would return now the
empty list.

1206

Nezxt fact? pack([[a]},|a]),true.

Checking facl(s)...

Error: missing solution pack(|[a]],|a]). diagnosing...
Error diagnosed: pack{|[a]],{a]) is uncovered.

The new example cannot be handled by the current program; so a search for
a new clause begins.

Searching for a cover to pack([|a}],[a])...
Found clause: (pack(|X|Y],X) «— true)
after searching 8 clauses.
Listing of pack(X,Y):
(pacK X []) «— true).
(pack{[X]|Y¥],X) «— true).

The clause found would return the first element of any nonempty list.

Checking facl(s)...no error found.

Nezt fact? pack([{a],[t]),[a,b]),true.

Checking facl(s)...

Error: missing solution pack(|[a],|b]},[a,b]). diagnosing...
Error diagnosed: pack(|[a],[b]],[a,b]) 18 uncovered.

Searching for a cover to pack([[a],[b]].a,8})...
Found clause: (pack(|X,Y]2),U) ~ append(X,Y,V))
after searching 85 clauses.
Listing of pack(X,Y):
(pack(X,]]) — true).
(pack(|X|4],X) « true).
(pack|X,112),U) — append(X,Y,V)).

Checking facl(s)...no error found.

The program being constructed still seems to be off the track, although it is
consistent with the known facts. The new clause returns the concatenation
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of its first two elements; this clause behaves correctly for lists with no more
than two elements in them.

Next fact? pack(||a),{b],[c]],|a,b)), false.
Checking facl(s)...
Error: wrong solution pack(|[a],[8},|c]].la,B]). diagnosing...
Error diagnosed: (pack(|[a),[t},c],|a,8]) — append(|a},[8],[a,}])) ia false.
Listing of pack{X,Y):
(pacK X []) « true).
(pack(|X|¥],X) « true).

At an earlier stage, we declared append to be a system predicate, which
means that its program is considered to be correct. Therefore the diagnosis
algorithm performed no user queries to detect this false clause.

Checking fact(s)...
Error: missing solution pack({|a),[b]),(a,b]). diagnosing...
Error diagnosed: pack([[a),|b]],[a,b]) is uncovered.

Searching for a cover to pack({(a],[8]},{a,b))...

Refuted: (pack{[[a].[6).lc]},[a,b]) — append(lal,[6],|a,}]))

Found clause: (pack(|X|Y],2) — packY,V),append(X,V,Z))
afler searching 110 clauses.

Listing of pack(X,Y):
(pack(X,[]) — true).
(pack([X|¥],X) — true)
(pack([X¥],2) — packY,V),append(X,V,2)).
After removing the previous clause, pack({[a],[b]},[a,b]) became uncovered.

After searching through 110 clauses, the correct recursive definition of pack
was found. The base clauses still need to be fixed.

Checking facl(s)...
Error: wrong solution pack([[a],|b],|c]],|a,b]). diagnosing...
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Query: pack({[6],[<]}.[6))? n.
Error diagnosed: (pack(|[b],[c]}[8]) «— true) is Ialse
Listing of pack(X,}):
(pack{ X ,[]) — true).
(pack(|X|¥],2) — pack(Y,V),append(X,V,2)).

The first error was detected by executing the new program against thc
known facts, and was diagnosed using one user query. The same is true for
the following error.

Checking facl(s)...
Error: wrong solution pack({[a),[t},[c]}.|a,}]). diagnosing...

Query: pack([[c]L[})? n
Error diagnosed: (pack([[c]),[}) — true) is false.
Listing of pack(X,Y):

(pacK([X]¥},2) — packY,V),append(X,V.2)).

Checking facl(s)...
Error: missing solution pack(]},[]). diagnosing...
Error diagnosed: pack([},[]) ¢s uncovered.

Searching for a cover to pack({},[])...

Found clause: (pack(]},[]) « true)
after searching 4 clauses.

Listing of pack(X,Y):
(pack([X|¥1],2) — pacKY,V),append(X,V,2)).
(pack{[L]) — true)

Checking facl(s)...no error found.

And the correct base clause is found. The session took 19 scconds CPU
time, and the system nceded the following facts.



pack([}.])), true.
pack(|[a]].|a}), true.
pack{([la.[6]}, a,0]), true.
pack[[alohic]la,8), false.
pack([8}clL8), false.
pack([el ), false.

There are two reasons for the slowdown compared with the old version of
the Model Inference System: in this session we have used a more general
refinement operator, and most of the system is not compiled, due to the
Prolog compiler’s inability to handle —. The reason for the improvement in
the number of facts needed is the use of the adaptive search strategy in the
last example, where the old Model Inference System could use eager search
only.

We have also compared the Model Inference System to Biermann’s
system for the synthesis of regular Lisp programs from examples [9].
Biermann's system is strongly influenced by Summers’s method, although is
has an enumerative component which Summer’'s system did not. Again, we
have developed a special refinement operator that handled all the examples
in Biermann’s paper. An example of a program in that class is heads, which
constructs a list of all first elements of lists in a list of Lisp atoms and lists.

heads({},{])-
heads([[X]M|ZL|XIW) « heads(Z,W).
heads(|X|}},2) «— atom(X), heads(Y,Z).

We have been able to synthesize all of Biermann’s programs; the time range
was between 2 and 38 seconds, and the number of facts needed was between
6 and 25; again, eager search was used. Biermann's system needed between
a fraction of a second and half an hour CPU time on a PDP-11 for the same
examples. The hardest example for both systems was heads above.

Wharton'’s system [98] infers context-free grammars from examples.
One of the more complex grammars his system inferred is the following
grammar for arithmetic expressions:

S= A
S= S+A
S = S—-A
S=-A
A=a
A= (9)

His system took 17 CI'U minutes on an IBM 360 to find this grammar. It
was given the following sample of positive strings:

a, —a, a-+a, a—a, (a), —a+a, —a—a, —(a), (—a)
and the fact that no other strings of length less than or equal to four are in
the language.

We have applied the Model Inference System, equipped with an
adaptive search strategy and the refinement operator Py to the same
inference task. After supplying it with the same positive facts, but with no

. negative facts, it came up with the following clauses:

8([a| X], X).

of|-1XT1) — o(X;).
8(|a,+|X],Y) — (X,
8([a| X],) — s(X,1).
#(l(1X1) — s(X,M)

We added three negative facts:
s({a,al,{]), false.

8(""'_’0“”, false.
s(lv“valvl"' /alae.

And the system came up with the program:
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o(lall’],Xj.

8([a,+|X],}) — 8(X,Y).
a(["CIX],Y) «— o(X,1 )" )-
8([a,—1X].Y) — 8(X,Y).
8([—a|X],X) «— true.
8([=1X],1) «— s(X,[+|U])o(U,Y).
o= "CIXLY) — o(X,[') V).
a(-1X}1 — o X,[-|U]).8(U,N).

Which corresponds to the grammar:

S=a
S=a+S.
S=(S)
S=a-S.
S=—a.
S=—-S+S.
S=—-(S)
S=»>-—-S-S.

The whole session took 20 CPU seconds. During the session the system
made two queries:

a({(,a,)l[+IX)?
8(|a,—a],|+|X])?
The answer to which is false. Both answers can be found mechanically,

using the knowledge that for any nonterminal n, a necessary condition for
n(X,Y) to be true is that is has an instance in which Y is a suffix of X.

Chapter b

PROGRAM DEBUGGING

6.1 The bug-correction problem

Theoretically, the approach to program synthesis from examples
developed in Chapter 4 is applicable to program debugging as well. To
upgrade Algorithm 5 to a debugging algorithm one need only parameterize
the initial program to be a program written by a human programmer, rather
than the empty program. Algorithm 5 will then debug that program using
the test-data supplied by the programmer.

It can be shown that the limiting behavior of the inductive synthesis
algorithm 1s independent of the initial program. This property can be
viewed as an advantage, since it implies that the inductive synthesis
algorithm can correct arbitrary bugs in the initial program, but it also shows
the weakness of the algorithm as a debugging tool: it loses much of the
information in the initial program through the debugging process. The
correct part of the initial program is retained by the algorithm, but this is
not true of its incorrect part: if a clause is refuted, or Is discovered to be
diverging, it is removed from the program. When a clause is found missing,
then the search for a new clause starts from scratch, without using the
clause just removed as a “hint” for the search process.

In other words, the inductive synthesis algorithm is incremental at the

program level, but not at the clause level. Our approach to debuging
132
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attempts to correct this drawback. To do so we follow the Program
Mutation Project [18], and make the competent programmer assumption.
We assume that the initial program was written with the intention of being
correct, and that if it is not correct, then a close variant of it is. The
debugging algorithm we develop tries to find such a variant; if it fails, it
depends on the programmer o make the necessary change.

Formally, we make two assumptions. The first one, common in the
field of program testing (e.g. [16, 44, 99]), is that the class of common errors
we try to correct induces an equivalence relation on the set of candidate
clauses. For example, the following two clauses

append(|X]Xs)},Ys,| 21 Zs]) — append(Xs,Ys,Zs)

append(|X|Xs),Ys,|X|Zs]) — append(Xs,Ys,Zs)

are equivalent under the class of errors of misspelled variable names,
discussed below,

The correction algorithm we develop searches the equivalence class
that the current clause is in; If it finds in this class a clause that behaves
correctly, the algorithm proposes this clause as a correction; otherwise it
returns control to the user. The user can either try to correct the wrong
clause manually (i.e. edit it), and by doing so successfully he necessarily
ends up in a different equivalence class; or he can propose another
equivalence class to be searched.

The second assumption we make is that each component of the
program appears there for some reason. This assumption implies that if a
picce of code is found to be incorrect, we cannot just throw it away; rather,
we have to find the reason it is in the program, and find an alternative code
that will satisfy that reason after the incorrect code has been discarded.

Definition 6.1: Let P be the program to be debugged, and M an

interpretation. A reason-set for a clause p in Pis a subset of M

which is intended to be covered by p in M.

For ecxample, the two goals {append([a,b],[c,d],[a,b,c,d]),
append([b},[¢,d],[b,c,d])} can can serve as a reason set for
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append(|X|Xs),Ys,[X|Zs]) — append(Xs,Ys,Zs)

and {append([},|c,d],{c,d])} can serve as a reason set for append(]},Xs,Xs).
We argue that under the above assumptions, the problem of debugging
a program can be reduced to the following bug-correction problem:

Given a reason-sel R, a clause p, an interpretation M, and a sel
of marked clauses, find an unmarked clause p° equivalent to p
that covers R in M.

We consider the two possible situations that occur in interactive debugging,
and show how they can be described as instances of the bug correction
problem.

If the error in the program is an incorrect solution or a diverging
computation, then the appropriate diagnosis algorithm will detect a false or
a diverging clause; such a clause needs to be removed from the program.
Since, by our assumption, p has some reason set R associated with it, we do
not just discard of it; rather, we try to find an equivalent clause to p that
covers R, but is neither refuted nor diverging.

If the error in the program is a missing solution, then the diagnosis
algorithm detects a goal uncovered by the program. We then ask the user
which clause in the program was “supposed to” cover this goal. Given such
a clause p with a reason set R, we try to find an equivalent clause to p that
covers Ru{A}.

Thus the three types of possible errors in a program — termination
with incorrect output, termination with missing output and nontermination
— require a solution to the bug-correction problem. Given an algorithm
that solves this problem, we can develop an interactive debugging algorithm
such as Algorithm 7 below.

The top-level control structure of Algorithm 7 is very similar to the
inductive program synthesis algorithm, Algorithm 5. Since both algorithms
are incremental, i.e. they do not add to the program a clause they once
removed from it, both can exploit the correct component of the initial
program cqually well. They differ in their use of the incorrect part of the of
the program; Algorithm 7 views it as a hint for the search for a correction,
but Algorithm 5 simply discards it.
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Algorithm 7: Interactive debugging

Given: An equivalence relation =~ on clauses,
an oracle for an interpretation M,
and an oracle for a well-founded ordering > on goals.
Input: A program to be debugged, with a reason set associated with
each of its clauses, and a (possibly infinite) list of facts about M.
Oulput: A sequence of programs P, P, ..., each of which
is totally correct with respect to the known facts.
Algorithm:

let the set of marked clauses be the empty set.
read P, the program to be debugged, with a reason-set associated with
each of its clauses.
repeal
read the next fact.
repeat
if the program P fails on a goal known to be true
then find a true goal A uncovered by P using Algorithm 3,
and mark it;
ask which clause p in P with reason-set R was supposed to cover
modify p to cover RU{A} using the bug-correction algorithm.
if the program P succeeds on a goal known to be false
then detect a false clause p in P using Algorithm 2;
modily p to an unmarked clause that cover p's reason-set
using the bug correction algorithm.
until the program P is correct with respect to the known facts.
output P.
until no facts left to read. .
if during a computation of P a stack overflow occurs,
then apply Algorithm 4, the stack overflow diagnosis algorithm,
which either detects a clause p that is diverging with
respect to > and M, or a clause p that is false in M;
mark p and modify it to an unmarked clause that cover p’s reason-set
using the bug correction algorithm, and restart the computation. ]
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The task of the bug-correction algorithm is to search the equivalence
class of p. Typically, the size of the equivalence class is exponential in the
size of its members. In Section 5.2 below we consider restricted types of
errors, and efficient ways to search equivalence classes they induce; in doing
so we use the refinement graph, introduced in Section 4.5. The outcome is
an algorithm that solves the bug-correction problem, given that the class of
errors can be described via a refinement operator.

Algorithm 7 illustrates one possible application for a bug-correction
algorithm.  Its control-structure is rather atypical for an interactive
debugger, as it requires the user to explicitly supply the output for inputs
tried, and it automatically tries all previous input/output samples whenever
a modification is made to the program. We find the control-structure used
in the diagnosis system, described in Section 3.5, to be more natural. This
control-structure is used by the interactive debugging system, described in
Section 5.3.

5.2 A bug correction algorithm

We define common classes of bugs via refinement operators. The
refinement operator is used in turn to define an equivalence class of clauscs,
to be searched by the bug-correction algorithm. The incorrect clause that
needs to be modified serves as a hint for this search, by providing it with a
starting point.

5.2.1 Describing errors via refinement operators
A refinement operator p induces an equivalence relation 2, on L(p), as
follows:

Definition 5.2: Let p be a refinement operator. We say that
p~ q ilf either p< a0 q< P or there is an v such that p=,r
and r~ g.

We give examples of classes of typical errors and their associated



137

refincment operators. The complexity of the refinement operators developed
increases with the complexity of the errors that can be corrected using them,
and since the union of two refinement operators Is a refinement operator,
one can easily combine two classes of errors, and treat them simultaneously.

The first class of errors we consider is misspelled variable names. We
define a refinement operator p, for which P~,q iff p can be obtained from
* q by changing the names of some occurences of'vnﬂables

Definition 65.3: Let p be a clause. Then q is In p”(p) iff
gq=p{X—Y}, where X and Y are variables that occur in p.

Lemma 6.4t If the clause p can be obtained from the clause q by
changing some occurences of variables in g, then p~ &
L 4

Proof: Consider the clause ¢ obtained from p by replacing each occurence
ol' of a variable in p with a new distinct variable name. Clearly r< p and

qll

If we allow misspelled terms also, then the resulting class of errors is
the structure preserving errors studied by Brooks [16] in the context of
program testing.

Another class of errors we consider Is errors In arithmetic test
predicates (<, <, and =), such as a replacement of a < test with a < test,
missing tests, superfluous tests, ete. The equivalence class induced by these
errors is ~ 5 where p, is defined as follows:

Definition 5.5: Let p be a clause. Then g is in p(p) il g can be
obtained from p by adding to p’s body the goal ¢(X,}), where ¢ is
an arithmetic test predicate.

Lemma 5.6 If the clause p can be obtained from the clause g by
adding and/or removing arithmetic test predicates, then p~ p‘q.

Proof: Consider v, the clause obtained from p by removing from it all
arithmetic test predicates. Clearly r< P and r< n¥ 0

In addition to these examples, any of the refinement operators
discussed in the previous chapter can be used for bug correction as well,
although they might be too general to be useful. For example, the
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cquivalence class induced by p,, the refinement operator that generates
definite clause grammars, is L(pz) itsell, which means that a bug-correction
algorithin based on this refinement operator can fix arbitrary bugs in

"grammar rules. In the current context, such generality may be viewed as a

drawback rather than an advantage.

5.2.2 Searching the equivalence class

We describe an algorithm that solves the bug correction problem, for
the case where the equivalence class is induced by refinement operators.
Given a reason set and a clause, the algorithm searches for a refinement of
the clause that covers the reason set. If it fails, then it derefines it, and
iterates. The algorithm terminates when the clause can not be derefined.
Intuitively, the derefinement operation generalizes the clause so it will cover
the goals, by removing from it the components that prevent it from
covering; a concrete derefinement procedure has to be developed for each
refinement operator separately. The property it has to satisly is as follows.

Definition 5.7: Let p be a refinement operator and p a clause. A
derefinement operator for p 1s a mapping from p(L{p)) to L(p),
such that if g is a derefinement of p then g< >

The purpose of a derefinement operator Is to climb up the refinement
graph, where the particular direction and length of each step are not very
important. Theoretically, we could have used the inverse of the refinement
operator for that purpose. However, the inverse of the refinement operator
returns a set of clauses rather than a single clause, and for typical
refinement operators computing it is unnecessarily expensive.

Consider, for example, the refinement operator p,. A dercfinement
operator for it is simple to define: remove some arithmetic test from p.

A derefinecment operation for definite clause grammars, generated by
py (defined in Section 4. 5) is also simple to define: remove the last goal
I'rom the body of p, if the body is not empty; otherwise, if the first
argument of its head s not a variable, then replace it with a variable. A
derefinement procedure for p can be defined in a similar way.

Given a derefinement procedure, the bug-correction algorithm operates



as shown below, in Algorithm 8.

Algorithm 8: A bug-correction algorithm

Given: A refinement operator p and a derefinement procedure for it,
an interpretation M, and a set of marked clauses.

Input: A set of goals R in M and a clause p.

Output: An unmarked clause g that covers R in M and is equivalent to p
* or no clause found

Algorithm:

repeat
search for an unmarked refinement p that covers R in M
using Algorithm 6.
if a covering clause is found then return it,
else if p has a derefinement then set p to it,
elge return no clause found
until a clause is found or p has no derefinement. {J

The bug-correction algorithm Is not guaranteed to find a clause as
desired, even if such a clause exists; the reason is that the derefinement
procedure may not climb high enough or in the right direction in the
refinement graph. The exact conditions under which this algorithm finds a
clause as desired are characterized by the following theorem.
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Theorem 5.8: Assume that Algorithm 8 is applied to a set of
goals R and a clause p. If the set of clauses g such that g~ p and
q covers R in M is finite, and if for every such q there is a clause
v, r< q that can be obtained from p by a sequence of
derefinement operations, then Algorithm 8 will find an unmarked
clause g that covers R in M.

Proofs By the assumption of the finiteness of the candidate space, every
call to Algorithm 6 terminates. Let v be the clause as in the assumption of
the theorem. If no clause Is found earlier by the algorithm, it will
eventually derefine p until it Is equal to r. Since there is an unmarked
clause q that covers R in M, for which r< ) such a clause will be found by
Algorithm 6. [

5.3 An interactive debugging system

Similar to the previous systems, the interactive debugging system is
composed of the diagnosis algorithms, an interactive shell and an error
handler. The interaclive shell is essentially identical to the one in the
diagnosis system described in Section 3.5; the only difference is that the
current system uses Lhe monitoring interpreter that traps errors in the
course of execution, described in Section 3.7. The error handling component
is a somewhat rudimentary program editor, with an option for “automatic
error correction”. This option invokes Algorithm 8, the bug-correction
algorithm, described in Section 5.2.

Since the system does not fit on one page (it requires a page and a
half), we do not show it here. The code appears in Appendix 1.

5.3.1 Debugging quicksort

Below we show a session with the system in which we interactively
debug a quicksort program.

| 7— pds. .
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Error trapped: no solution to partition([3},2,X,Y)
©@[user]. Lrror: missing solulion partilion([3),2,X,Y). diagnosing...
Solving user...

| qsort([X|L].L0) — I'he monitoring interpreter trapped an error while solving the partition

goal, and invoked the missing__solution diagnosis program.

| partition(L,X,L1,L2),

| qsort(1.1,1.3), gsort(L2,L4),

| append(1.3,[X|L.4],L0). Query: partition([3),2,X,1)? y.

| Which (X,1)? [},|3]-

| «declare(qsort(+[x],—[x]),|determinate,total]).

| «—dcclare _ called(qsort(X,Y), Query: partition((],2,[},[)? y-

| lgsort( _,_),partition(_,_, ,_)append(_, , )). Error diagnosed: partition([3],2,]},(3])) is uncovered.

| add (y) or (m)odify a clause? m.

| partition([X|L],Y,L1,[X|L2]) « partition(L,Y,L1,L2), X<Y. which? partition([X|L},Y,L1,[X|L2]) « partition(L,Y,L1,L2), X<Y.

l parl.ftion(l)(lb],Y,[Xll,l],l.2) = partition(L,Y,L1,1.2), X<Y. We have the option to add a new clause to the program, or modify a clause
| partition({],X,[L,{})- in the program to cover the uncovered goal. We chose to modify the clause
I we thought should have covered that goal. Since it does not cover it, it is

| — declare(partition(+|x},+x,—[x],—[x]),[determinate,total]).

first derefined to a covering clause.
| «— declare_ called(partition(X,Y,2,U),

| [partition(_, _, , )_<_, < D o N - ]
| Derefining (partition(|X|Y),Z,U,[X|M) «~ partition(Y,Z,UW),X < 2)

| append(|X|L1),L2,L3) « append(|X|L1},L2,{X|L3]). Found clause: (partition(|X|V},Z,U,[X|W]) « partition(Y,Z,UW))

| append([},L.,L). : after searching 1 clauses.

| | oktn.

| < declare(append(+x],+(x],—[x]),|determinate,total]). We do not like this clause, since we think it should contain an arithmetic
| « declare__called(append(X,Y,Z),lappend(_,_,_)]). test; so the system continues the search.

I

| 12

Found clause: (partition(|X|Y},Z,U,|X|W]) — partition(Y,Z,U,W),Z< X)

user consulted 172 words 1.00 sec. after scarching 5 clauses.

okl y.
We now have typed in our initial gsort program, some type, mode, and I,ist’::ng of partition(X,Y,Z,U):
dependency dceclarations, and proceed to test it. (partition(|X|V),Z,| X|V,W) « partition(Y,Z,V,W),X<Z).
(partition([],X,[},{]) — true).
@qsort([2,1,3),X). : (partition(|X|¥],Z,U,[X|W) « partition(Y,Z,U,W),Z< X).

Solving gsort(|2,1,3},X)... A clause is found to our satisfaction. The new clause can be obtained from
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the original one by exchanging the arguments of the < test. This
modification requires one derefinement — which removes the erroneous test
— and one refinement — which adds the correct test.

The system then automatically tries to solve the original goal, since an
error was encountered during its execution.

Solving gsort([2,1,3],X)...
Error trapped: no solution to gsort([},X)
Error: missing solution gsort([),X). diagnosing...

Query: gsort([},X)? y.

Which X7 |].

Error diagnosed: gsorl([],[]) is uncovered.
add (y) or (m)odify a clause? y.

which? qsort([),[})-

Listing of gsort(X,Y):

(gsort({X|1),2)
partition(Y,X,W,X1),gsort(W,Z1),qsort(X1,V1),
append(Z1,[X|V1},2)).

(gsort([},[}) — true).

The second error the system finds is easy to correct: the base clause for
qsort is missing, so we add it manually. The algorithm tries to solve the
original goal again.

Solving gsort([2,1,3],X)...

Error: stack over flow on gsorl(|2,1,3],X). diagnosing...

append([1},2,3),X) is looping.

Error diagnosed:

(append([1),]2,3],X) — append(|1},[2,3),[1|X])) is diverging.

This time a stack overflow occurred; the error was diagnosed with no user
intervention, since the stack overflow diagnosis algorithm found two
duplicate goals on the stack. We request the system to modily the
diverging clause. The system, in turn, prompted us for a reason for that
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clause, so it would know how to modify it.

retract (y), (m)odify, or (r)eplace it? m.

What is a reason for (append([X|V),Z,U) « append(|X|N,Z,|X|V])))?
append([1,2],[3,4],{1,2,3,4]).

Derefining (append(|X|Y},Z,U) — append(|X|V],Z,[X|U]))

Refining: (append(|X|1},Z,U) «— true)

Query: append([2),[3,4),[1,2,3,4])? n.
Query: append([3,4},[2],]1,2,3,4])? n.
Query: append([3,4),]},(1,2,3,4])? n.
Query: append([},[3,4),[1,2,3,4])? n.
Query: append([2},[4],]1,2,3,4])? n.
Query: append([4},[2],(1,2,3,4])? n.

Query: append([2),[3,4),[2,3,4))? y.

Found clause: (append(|X|}},Z,|X|V]) — append(Y,Z,V))
after searching 85 clauses.

ok? y.

Listing of append(X,Y,2):
(append([),X,X) «— true).
(append(|X|}},Z,[XIV]) — append(Y,Z,V)).

Since the system uses eager search strategy (see Section 4.4) we had to
answer a few queries during the search process, but eventually a correct
recursive definition of append was found. The system tries the original goal
again.

Solving gsort([2,1,3],X)...
solution: qsor(([2,1,3],(1,2,3]); ok? y.



145

no (more) solutions. ok? y.

@qsort([2,1,4,3},X).

Solving gsort(|2,1,4,3},X)...

solution: gsort([2,1,4,3),(1,2,3,4]); ok? y.
no (more) solutions. ok? y.

The program finally returns a correct output on the initial goal. We tried it
on another goal, and it solved it correctly also. The gsort program
constructed Is now correct (this claim does not follow from the previous two;
it is an independent observation). However, to demonstrate other aspects of
the debugging system we proceed to “debug” it into a quicksort program
that removes duplicates. The design decision we make is that duplicates are
to be removed by partition, and we answer queries accordingly.

@gsort([2,1,2,3],X).

Solving gsort([2,1,2,3],X)...

solution: gsort([2,1,2,3],[1,2,2,3]); ok? n.

Error: wrong solution gsort([2,1,2,3},(1,2,2,3]). diagnosing...

Query: gsort([1,2),[1,2])? y.

Query: gsort(|3),[3])? y.

Query: append(|1,2},[2,3),1,2,2,3])? y.
Query: partition((1,2,3},2,(1,2],[3])? n.

Query: partition(|2,3},2,[2],[3])? n.

Error diagnosed:
(partition(|2,3),2,[2),[3]) — partition([3},2,[).I3]),.2<2) is false.
retract (y), (m)odify, or (r)eplace it? m.

Whal 18 a reason for
(partition(|X|1},Z,|X]V),W) «— partition(Y,Z,V,W), X< Z)?
partition({1),2,{1L,])-
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Refining: (partition(|X|V],Z,|X|W,W) « partition(Y,Z,V,W),X< Z)
Found clause:

(partition(|X|V],Z,[X|W,W) «— partition(Y,Z,V,W),X< Z,X < 2)

afler searching 2 clauses.
ok?y.
Listing of partition(X,Y,Z,U):

(partition([),X,[},[]) — true).

(partition(|X|¥),Z,U,|X|W]) ~ partition(Y,Z,UW),Z< X).

(partition(|X|¥]),Z,|X|V,W) — partition(Y,Z,V,W), X< 2,X < Z).

The system found that the test in the false clause was too weak, and it
strengthens < to <; however, since it has no built in knowledge about the
semantics of < and <, it cannot conclude that once the < test is added, the
< test becomes superfluous. It is conceivable that a post-processing stage
can be added in which such an optimization can be incorporated.

Solving gsort([2,1,2,3],X)...
Error trapped: no solution to partition(|2,3},2,X,Y)
Error: missing solution partition([2,3],2,X,Y). diagnosing...

Query: partition([2,3},2,X,Y)? y.

Which (X,1)? [},13).

Error diagnosed: partition(|2,3},2,[},[3]) is uncovered.
add (y) or (m)odify a clause?! m.

which? any.

The original partition program had no special clause for the case where the
first element on the partitioned list and the partitioning element are equal.
So we send the search algorithm off to look for such a clause.

Refining: (partition(X,Y,Z,U) — true)

Checking: (partition(|X|V},Z,[},Y) — true)

Refuted: (partition([3],2,[],[]) — true)

Found clause: (partition(|X|¥],Z,U,V) «— partition(Y,2,U,V))
after searching 39 clauses.
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ok? y. (partition(|X|1,2,U,V) « partition(Y,Z,U,V), X< 2)?

Listing of partition(X,Y,2,U): partition(|2],2,[l.})-
(partition([),X,[.l]) < true). Refining: (partition(|X|V),Z,U,V) «— partition(Y,Z,U,V),X< 2)
(partition([X|V},Z,U,|X|W]) « partition(Y,Z,UW),Z< X). Found clause: (partition(|X|Y],Z,U,V) « partition(Y,Z,U,V),X< Z,Z< X)
(partition(|X|}},Z,|X|V|,W) «— partition(Y,Z,V,W),X<Z X <2). after searching 2 clauses.
(partition(|X|¥},Z,U,V) — partition(Y,Z,U,V)). ok?y.

And after two more modifications, a correct clause is found. Due to the
peculiarities of the refinement operator we use, and our not specifying = as
one of the procedures called by partition, the restriction that X and Z need

Error: wrong solution partition(([3],2,[],[]). diagnosing...
Error diagnosed: (partition(|3),2,]},[1) — partition([},2,[},[]) ¢ false.

The clause found by the algorithm turns out to be false. So we ask the to be equal in that clause is expressed via the double < test. Again, one can
algorithm to modify it. conceive of an optimization that replaces this test with an equality test.
retract (y), (m)odify, or (r)eplace it? m. Listing of partition(X,Y,Z,U):
What is a reason for (partition(|X|V},Z,U,V) «~ partition(Y,Z,U,V))? (partition([],X,[},l]) « true).
partition([2},2,[}.[). (partition(|X|V),Z,U,|X|W]) «— partition(Y,Z,U,W),Z< X).
Refining: (partition([X|V),Z,U,V) «— partition(Y,Z,U,V)) (partition(|X|¥],Z,|X|W,W) « partition(Y,Z,V,W),X<Z,X <Z).
Found clause: (partition(|X|V},Z,U,V) «— partition(Y,Z,U,V),X<Z) (partition(|X|¥],Z,U,V) «— partition(Y,Z,U,V),X< Z,Z< X).
after searching 3 clauses. :
ok?y. Solving gsort(|[2,1,2,3],X)...
Listing of partition(X,Y,Z,U): solution: gsort(|2,1,2,3),[1,2,3]); ok? y.
(partition([},X,[},[}) + true). no (more) solutions. ok? y.

(partition(|X|¥},Z,U,|X|W]) +~ partition(Y,Z,U,W),Z< X).
(partition(|X|},Z,[X]V|,W) « partition(Y,Z,V,W),X<Z X< Z).
(partition(|X|1},Z,U,V) « partition(¥,2,U,V), X< 2).

The final program found by the algorithm is shown below:

Solving gsort(|2,1,2,3],X)...
Error trapped: too many solutions to partition([1,2,3},2,X,Y)

Query: partition([1,2,3},2,(},{3))? n.
Error: wrong solution partition([1,2,3},2,[},[3]). diagnosing...
Error diagnosed:
(partition([1,2,3),2,]),13]) — partition([2,3),2,[],3]),1<2) is false.
retract (y), (m)odify, or (r)eplace it? m.
What is a reason for
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gsort({X]1},2) —
partition(Y,X,W,X1), gsort(W,Z1), gsori( X1,V1),
append(2Z1,|X|N1},2).

goort([}.[)).

partition({},X,{[))-

partition(|X|}],Z,U,|X|W])) +~ partition(Y,Z,UW), Z<X.
partition(|X|}],Z,|X|}W) — partition(Y,Z,V,W), X< Z, X< Z.
partition(|X|}],Z,U,V) — partition(Y,2,U,V), X< Z, Z<X.

append([), X, X).

append([X]|V},Z,|X|V]) — append(Y,Z,V).

It sorts and removes duplicates correctly, although the arithmetic tests in it
are not the most elegant. The session took 41 CPU seconds, and 20 facts.

It may be interesting to note that synthesizing quicksort from
examples seems to be beyond the current power of the Model Inference
System; it can synthesize the program for append and partition, but the
search space for the recursive clause of gsort is too large for the current
implementation. The reason for that is not so much the size of the clause,
but the fact that the procedures it calls are total, which prevents effective
pruning of the search space: if a clause covers a goal and we add to its
body a goal that is total, that clause still covers the goal. Since the
branching factor for the refinement graph for quicksort can be up to 50 at
the depth in which the clause is searched, the ineffectiveness of the pruning
strategy results in a search space beyond the capabilities of the current
implementation.

Chapter 6

CONCLUSIONS

One role of theory is to solve in an abstract setling problems that arise
from practical experience, and provide a way for these solutions to apply
back to the original, concrete problems. Since the major limits we have
encountered so far in Computer Science are the limits of our imagination, |
see Lhe value of theory not only in its applicability to current problems, but
also in its ability to project into the future, to point out new directions of
development, and (o help evaluate current trends.

In these remarks | would like to examine the results of this thesis in
light of this methodology, and draw from them implications concerning the
merit of different trends in programming languages and programming
methodology.

6.1 Algorithmic debugging

Program debugging is a messy problem; so much so that the goal of
many was to develop methodologics and tools that would eliminate the need
to face it altogether. | sce the main contribution of this thesis as showing
that this problem is amenable to theoretical treatment, and that this
treatment yields useful, practical results.

A word of caution is due. Because of the theoretical nature of this
150
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. work, and the fact that it evolved mostly in the context of inductive
inference, | have not implemented the debugging algorithms for full Prolog,
and as a consequences did not use them extensively in real programming
tasks. .
However, | have reasons to think that it is valid to extrapolate from
the sterile environment of inductive inference to the world of real
debugging. The main reason is that the diagnosis algorithms are, in some
sense, just an abstraction and elaboration of what programmers do
intuitively. For example, since 1 invented the diagnosis technique for finite
failure, 1 have been using its underlying mechanism within the standard
Prolog debugger. Even though the algorithm is not implemented within the
debugger, il can be simulated manually by a sequence of commands that the
debugger understands. 1 found the systematic use of it, even in such a
crude form, to be a good diagnosis technique. The divide-and-query
algorithm can not be easily simulated manuslly, but | suspect that the same
conclusion holds.

The diagnosis algorithm for stack overflow can also be viewed in this
" way. When a stack overflow occurs, all the programmer really wants to do
is check the stack to see what's going on. The diagnosis algorithm enables
the programmer to do so, but in a structured way, focusing his attention on
the suspicious component of the stack, le., the part of the stack that
contains a looping procedure call.

A simple implementation of the first two diagnosis algorithms is
available in micro-Prolog [67]; their incorporation in other Prolog systems
and their adaptation to Pascal is also being investigated (73, 74].

6.2 Incremental inductive inference

The second main result of the thesis is the development of a gencral,
incremental inductive inference algorithm, that is simple enough to be
analyzed theoretically, and is amenable to an implementation that compares
favorably with other inductive inference systems. We attribute this success
to the choice of logic as the target computational model.
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The most important aspect of the inductive synthesis algorithm is that
it is incremental, which enables gradual, evolutionary construction of the
hypothesis. It is easier lo achieve this incremental behavior in logic, since
the semantics of a logical axiom is independent of the context in which this
axiom occurs. If an axiom is discovered to be false, then it is false no
matter what theory it is included in, and hence should be discarded and
never tried again. The same cannot be said of Pascal statements, Lisp
condition—action pairs, or Turing machine transitions.

Even though the algorithm is incremental, it has a search component.
For any reasonable computational model, there are exponentially many
programs of any given length; the same is true of logic. However, the
pruning strategy we have developed is able to cope somewhat with this
complexity. Its strategy critically depends on the intimate relationship

between the syntax and semantics of logic, a relation rarely found in other
computational models.

6.3 Prolog as a research tool

I think that using Prolog as the research tool played an invaluable role
in achieving these results; in the following I describe the way this research
has developed to help the reader appreciate this fact. The original problem
1 was concerned with was that of scientific discovery: 1 was intrigued by
Popper’s ideas on the role of refutations in scientific progress [71, 72], and
wanted to test their applicability to computerized inductive inference. The
fist step was the development of the Contradiction Backtracing
Algorithm [82, 84], which formalizes the notion of crucial experiments in
science. This algorithm can detect a false axiom in a theory with a false
conclusion by testing whether certain ground atoms are true, and is the
precursor of the dingnosis algorithms. 1 then incorporated the algorithm
into a general inductive inference algorithm, following ideas of Gold [37) and
the Blums [13].

The next logical step was to implement the algorithm and test it.
Although I did not know Prolog at the time, rumors suggested that it would
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be the ideal implementation language. Only after a restricted version of the
the algorithm was implemented in Prolog did it occur to me that the
Contradiction Backtracing Algorithm was applicable to program debugging,
and that the inductive inference algorithm could be used to synthesize logic
programs from examples. Since then, attempts to improve the performance
of the Model Inference System are responsible for almost all of the
theorelical development that ensued.

One example is the algorithm that diagnoses finite failure. The
original inductive inference algorithm added axioms (o the theory
indiscriminately, in increasing order of size, when it found the theory to be
too weak. The natural improvement (which was natural to Drew
McDermott, not to me) was to add to the theory only axioms that are truly
useful in the derivation. The question of how to detect these axioms
effectively remained open for a while. The diagnosis algorithm for finite
failure was developed to solve this problem.

Another example Is the algorithm that diagnoses nontermination. For
a while | thought that the synthesis of nonterminating programs could be
avoided by restricting the syntactie structure of the target programs.
However, when | attempted to synthesize nontrivial programs, this
restriction became harder and harder to maintain.

A theoretical solution to the problem Is available in the work of the
Blums [13]: allow nonterminating programs, but execute them with an
interpreter that can be supplied with a resource bound. This solution was
never implemented in the Model Inference System since it required the
specification of complexity bounds for which | had no intuitive a priori
estimate, and since programs synthesized by such a system are useless
outside of this artificial environment.

Indeed, people who experimented with the previous incarnation of the
systemn [85], incorporated with refinement operators that 1 thought would
generate only terminating programs, complained that ever so often the
systemn would succeed in synthesizing a clever looping program, and would
not terminate thereafter. This “theoretical bug” in the Model Inference
System was not fixed until the development of the algorithm that diagnosed
nontermination, and the incarnation of the Model Inference System
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described in the thesis is the first to be correct in this sense.

These examples show that attempts to implement a theory can lead to
its enhancement and development. But this is not necessarily the case: if |
had implemented the inductive inference algorithm in assembly language |
might have succeeded, but the theory would have remained untouched. Due
to the nature of Prolog, the problems I faced in the implementation were
interesting and abstract enough to stimulate further theoretical research,
and to make results of this research relevant to their solution.

Prolog helped extend the theory in another way, by allowing easy
experimentation with different ideas. For example, the three search
strategies described in Section 4.4 originated in some Prolog hacks, whose
goal was to reduce the number of queries | had to answer during the
synthesis process. The new search strategies are responsible for the more
interesting applications of the Model Inference System: without the
development of adaptive search, for example, the inference of nontrivial

~ conlext-free grammars would have been prohibitively expensive in human

resources. Laler, these hacks were abstracted, and a theory, spanning about
a dozen pages of this thesis, was developed to justify them. Although these
extensions were difficult to come by conceptually, they were easy to
implement once they were conceived: the code that implements the three
search strategies is but 32 lines long (See Appendix I, page 188).

6.4 Prolog versus Lisp

The importance of implementation in the development of theories has
been the bread and butter of Artificial Intelligence since Its beginnings, and
the need for a high level language in such an endeavor was also recognized.
However, 1 think that Lisp, the language of choice of Al for many years, has
failed to fulfill this promise. With few exceptions, the major Al systems
have failed to come up with a clean, precise, and mathematically valid
theory that dcscribes their underlying mechanism and explains their
performance. As a consequence, it is hard to use past achievements as
building blocks for new theories, and the structure of the resulting science is
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“flat”.

One justification given to this situation is. that the real world is messy,
and if you want to solve real world problems you necessarily end up with
vague, imprecise theories. 1 do not think that this is a valid excuse for
theoretical sloppiness. Even though it is unresolved whether the underlying
mechanisms of the universe are simple and comprehensible, all successful
sciences search for the simplest principles that will help comprehend it.
Computer Science has a great advantage over other experimental sciences in
this respect: the world we investigate is our own creation, and, to a large
degree, we are the ones to determine if it is simple or messy. I think I have
demonstrated this principle in the case of debugging: debugging can be a
messy problem, if one creates a messy environment in which it has to be
solved, but it is not inherently so. The theory of algorithmic debugging
suggests that if the programming language is simple enough, then programs
in it can be debugged on the basis of several simple principles.

Therefore 1 conjecture that there are other reasons for this
phenomenon — the lack of mathematically valid theorles emerging from Al
implementations. One of them may be the use of Lisp as the main research
tool. Although Lisp is considered a high level language, it is not clear that
it encourages precision and clarity of thought. As one Lisp hacker puts
it [91): “Lisp...is like a ball of mud. You can add any amount of mud to
it...and it still looks like a ball of mud!”. This aspect of Lisp s the hacker’s
delight, but the theoretician’s nightmare. [t is known that one may
implement without too much effort a reasonable Prolog in Lisp. However,
the issue is not implementation — the issue is the method of thought. Based
on my experience with both languages I maintain that one’s thoughts are
better organized, and one’s solutions are clearer and more concise, if one
thinks in Prolog rather than in Lisp.

Contrasting my approach and the approach of MIT’s Programmer's
Apprentice  Project [77]  will sharpen these differences in research
methodologies. The aspirations of the Programmer’s Apprentice Project are
similar in depth and much wider in scope than those of this thesis.
However, since they commited themselves to supporting the full arsenal of
Lisp hacks, including rplaca, rplacd and the like, they were bound to resort
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to state transition semantics, and by doing so gave up the potential
advantage of Lisp as a functional programming language. As a result, the
complexity of the formalism they need in order to explain even the simplest
program seems forbidding [76].

My approach was o deliberately restrict the target language to pure
Prolog, at least in the initial stage of the research. As a result | succeeded
in coming up with a clean, relatively simple theory. Surprisingly enough,
the application of this theory to most of Prolog's extensions from its pure
core seems to be not very difficult, as discussed in Section 3.6.

Since no analytic argument can irrevocably resolve a methodological
disagreement, and since both research directions are in the experimental
stage right now, 1 believe that only the future (perhaps with a little help
from Japan) will determine who is right.

6.5 Programming énvironments and simplicity

1 would like to reflect on the choice of Prolog both as the target
language and the implementation language of the debugging algorithms, in
light of Sandewall's discussion on programming environments [81].
Sandewall lists the following properties a programming language must have
to support the development of a programming environment for it:

e “Dootstrapping. An obvious choice is to implement the system
itself in the language it supports; then one needs to work only
with a single language, and the system supports its own
development.

e Incrementality. To achieve real interaction, the basic cycle of
the programming system should be to read an expression from
the user, execute it, and print out the results while preserving
global side effects to its database. The expression itsell may of
course contain such things as procedure calls.

e Procedure oriented. For obvious reasons the language chosen
should be procedure oriented.

e Internal representation of programs. Since most of the
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operations [of a programming environment| are operations on
programs, the language should make it as easy as possible to
operate on programs. Therefore, there should be a predefined
system-wide internal representation of programs... This
structure should be a data-structure in the programming
language, so that user-written programs may inspect the
structure and generate new programs.”

It so happens that these are exactly the properties a programming
language must have to support an implementation of our debugging
algorithms. Sandewall made this list with Lisp in mind, apparently unaware
of Prolog at the time. However, 1 claim that Prolog scores on all these
issues Just as well as Lisp does, and on the most important of them
— bootstrapping — even better. As shown in the Prolog introduction
(Program 3, Page 29), a pure Prolog interpreter written in pure Prolog is
just three simple clauses. All our diagnosis algorithms are augmented
interpreters, hence the ease of implementing and experimenting with them
correlates directly with the ease of implementing and augmenting an
interpreter for the language within the language.

However, one important property is missing from Sandewall’s list:

o Simple semantics. The future programming environment will
not only manipulate programs, but also reason about them. To
facilitate this task, the mapping from programs to their
meanings should be simple and transparent.

1 think that Prolog scores better than other programming languages on this
important point as well.

This argument generalizes to any programming language L. If the
syntax of L is simple then it is easy for programs to manipulate
L-programs. If the semantics of L is simple, it Is easy for programs to
reason about L-programs. For many obvious reasons, it is desirable that
the implementation language for such programs be L itsell. This can be
accomplished only if L can interpret L-programs in a natural way.

One conclusion from this argument is that kitchen-sink languages such
as Ada will lose in the long run, since the effort required to create a
programming environment that understands all their features will be

insurmountable.
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Appendix 1. Applications of the Model Inference System

1.1 Inferring insertion sort

Below is an example of a session in which the Model Inference System,

equipped with an eager search strategy, infers a Prolog program for
insertion sort.

?— mis.

Nezt fact? isort([2,3,1),[1,2,3]),true.

Checking fact(s)...

Error: missing solution isort([2,3,1),1,2,3]). diagnosing...
Error diagnosed: isort([2,3,1),[1,2,3]) is uncovered.
Searching for a cover lo isort([2,3,1},(1,2,3])...

Declare isort(X,Y)? declare(isort(+[x},—[x]),[total,determinate]).
Procedures called by isort(X,Y)? isort(_, ), insert(_, , ).
Query: isori(|3,1],(1,2,3])? n.

Query: inserl(2,3,1},[1,2,3])? n.

Query: isorl([1),[1,2,3])? n.

Query: insert(2,(1},[1,2,3])? n.

Query: insert(3,]1},[1,2,3])? n.

Query: isort(|3,1),X)? y.
Which X7 [1,3).
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Query: insert(2,(1,3],]1,2,3])? y.

Found clause: (isorl(|X|Y],Z)—isort(Y,V),insert( X,V,Z))
afler searching 61 clauses.

Listing of isorl(X,Y):
“(tsorl(| X|Y),2)—isorl(Y,V),insert(X,V,2)).

After searching through 61 clauses, the system found a clause that
covers isorl(|2,3,1},]1,2,3]), which happens to be also the right recursive
definition of insertion sort. It found the necessary facts to determine the
coverage by querying the user, as it uses eager search strategy. An unpruned
breadth-first search through this refinement graph would have gone through
165 clauses before finding this clause.

Checking fact(s)...
Error: missing solution isort([2,3,1),[1,2,3]). diagnosing...

Query: isort([1],X)? y.
Which XT [1].

Query: tsori([},X)? y.
Which X |].
Error diagnosed: isori(|},[]) is uncovered.

And the system found that the base case for isort is missing; the facts
known already by the system saved two queries for the diagnosis algorithm:
isor(([2,3,1],X), and isor(([3,1},X).

Searching for a cover to isort([),[])...
ound clause: (isori([},[])—true)
afler searching 5 clauses.
Listing of isort( X,Y):
(ts0rt(|X|}),2)—isort(Y,V),inser( X,V,2)).
(isort([),[])—true).

Checking facl(s)...



Error: missing solulion isort(|2,3,1),[1,2,3]). diagnosing...

Query: inserl(1,[},[1])? y.
Error diagnosed: inserl(1,]},[1]) i8 uncovered.

Searching for a cover to inserl(1,[},{1])...

Although we haven’t supplied the system originally with facts about insert,
the eager search strategy, together with the initialization information that
tsort calls insert, found facts about insert. Now the diagnosis algorithms
leads the system to find the base clause for insert. We are first prompted
for some initialization information.

Declare inserl(X,Y,2)? declare(insert(+x,+(x],—[x]),[total,determinate])
Procedures called by insert(X,Y,Z)? insert( _, , ), < _.
Found clause: (insert( X,Y,[X|Y])—true)
after searching 8 clauses.
Listing of insert(X,Y,2):
(insert(X,Y,[ X|V])—true).
The clause that was found Is incorrect, but is consistent with the facts we
have supplied to the system so far.

Checking facl(s)...
Error: missing solution isor!([2,3,1),[1,2,3]). diagnosing...

Query: insert(3,[1),[1,3])? y.
Error diagnosed: insert(3,[1),[1,3]) is uncovered.

Searching for a cover to insert(3,(1),[1,3])...
Query: insert(3,[},[1,3])? n.

Query: insert(1,[),{1,3])? n.
Found clause: (inserl( X ,|Y]2),|Y,X|Z])—true)
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afler searching 27 clauses.
Listing of inserl( X,Y,Z):
(insert( X,Y,|X|V])—true).
(insert(X,|V12),|Y,X|Z])—true).

Checking facl(s)...no error found.

Fverything seems fine to the system, so we break to Prolog, and test the
resulling program.

Nezxt facl? break.

| Break (level 1) ]
| 2— isort([2,3,1},X).

X = [2,3,1]

[1] yes
We find an error, so we tell the system about it.

|7— 12

| End Break (level 1) ]

Nexzxt fact? isort([2,3,1],[2,3,1]),false.

Checking facl(s)...

Error: wrong solution isort([2,3,1),{2,3,1]). diagnosing...

Query: insert(3,]1),[3,1})? n.

Error diagnosed: (inserl(3,1),[3,1])—true) is false.

Listing of insert(X,Y,2):
(insert(X,[114),|V,X]|Z])—true).

Checking facl(s)...
Error: missing solution isort([2,3,1],(1,2,3]). diagnosing...
Error diagnosed: inserl(1,]},[1]) 18 uncovered.



Searching for a cover to insert(1,[},[1])...

Found ¢lause: (insert(X,[),|X])—true)
afler searching 9 clauses.

Listing of inserl(X,Y,Z):
(insert(X,[H2),|V,X|Z])—true).
(insert( X, [},| X])—true).

Checking facl(s)...no error found.

Again the system is in equilibrium, so we test the program.

| 17— isort([2,3,1],X).
X=[1,23];

[1] no
| 2= isort([2,1,3),X).

X=[321

(1] yes
The program behaves correctly on the original input, but not on the new
input tried.

Nezt fact? isort([2,1,3],[3,2,1]),false.

Checking facl(s)...

Error: wrong solution isort([2,1,3],[3,2,1]). diagnosing...
Query: isori([3],13])? y.

Query: isort([1,3},[3,1])? n.

Query: insert(1,[3],(3,1])? n.

Error diagnosed: (inserl(1,3},[3,1])—true) is false.
Listing of insert(X,Y,2):
(insert( X,|,[ X])—true).

Checking fact(s)...

Error: missing solution isort([2,3,1),(1,2,3]). diagnosing...

Error diagnosed: insert(3,[1},{1,3]) is uncovered.
Searching for a cover lo insert(3,[1],[1,3])...
Query: insert(3,[},[3])? y.

Query: inseri(1,[],[3])? n.

Found clause: (insert(X,[Y]2],]V,X|Z])—Y<X)
after searching 45 clauses.

Listing of inserl(X,Y,2):
(insert(X,|],| X])—true).
(insert(X,[V12},|V,X|2]))—Y< X).

Checking fact(s)...no error found.
Nezxt fact? break.

| Break (level 1) ]
| — isort(]2,1,3],X).

(1] no

|- 12

| End Break (level 1) ]

Nezxt fact? isort([2,1,3],(1,2,3]),true.
Checking fact(s)...

Error: missing solution isort([2,1,3),[1,2,3]). diagnosing...

Query: isort(|1,3},X)? y.
Which X7 [1,3].
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Query: isorl([3),X)? y.
Which X7 [3].

Query: inserl(1,[3),[1,3])? y.
Error diagnosed: insert(1,[3),[1,3]) is uncovered.

Searching for a cover to insert(1,{3),[1,3])...

Found clause: (insert( X,[}]2),|X,}]14})—X<Y)
after searching 32 clauses.

Listing of inserl(X,Y,2):
(insert( X[, X])—truc).
(insert(X,[1]2),|Y,X|Z])—Y< X).
(insert(X,[112),[X,N12]))—X<YV).

Checking facl(s)...no error found.

There is not evident error in the program constructed, so we test it again,

| 1— isort([2,1,3],X).
X=[1,23];

[1] no
| - isory([3,2,1],X).

X =[1,3,2]

(1] yes

and find an error, which we inform the system via the following fact.

Next facl? isort([3,2,1),[1,3,2]),lalse.
Checking facl(s)...

Error: wrong solutio~ isort([3,2,1],1,3,2]). diagnosing...
Query: isorl([2,1),[1,2])? y.

Query: insert(3,[1,2],{1,3,2])? n.
Error diagnosed: (insert(3,1,2},(1,3,2])—1<3) is false.
Listing of insert(X,Y,2): '
(insert( X, ||| X])—true).
(insert( X,|112),|X,112])—X<Y).

Checking facl(s)...
Error: missing solution isorl([2,3,1),[1,2,3]). diagnosing...
Error diagnosed: inserl(3,[1),1,3]) is uncovered.

Searching for a cover to insert(3,[1],[1,3])...
Query: insert(3,[},[))? n.

Query: inserl(1,[},[PT n. .

Found clause: (insert(X,[Y]2],[V])—insert(X,Z,V),Y<X)
after searching 51 clauses.

Listing of insert(X,Y,Z):
(insert(X,[},|X])—true).
(insert(X,[Y12],|X,112))—X<Y).
(insert(X,|Y]2),[NNV])—insert(X,Z,V),Y< X).

Checking fact(s)...no error found.

The system needed 38 seconds CPU time to synthesize the program,

and 30 facts. 5 facts were supplied by the user:

isor(([2,3,1),[1,2,3]), true.
isorl([2,3,1},|2,3,1)), false.
isorl([2,1,3],]3,2,1]), false.
isorl([2,1,3),[1,2,3)), true.
isort(|3,2,1],[1,3,2]), false.
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13 facts were queried by the search algorithm: strategy, to the inference of a context-free granumar for a subset of Pascal.
isort([3,0,[1,23]), false. We have declared the the set of terminal and nonterminal symbols:
inserl(2,[3,1),(1,2,3)), false. terminal(X) — member(X,
isorl(|1],(1,2,3]), false. |begin, end, if, then, while, do, call, ":=", "}’,
insert(2,[1},[1,2,3)), false. oYy =2 L < =)
insert(3,[1],]1,2,3]), false. nonterminal(N) — member(N,|
isort([3,1],(1,3)), true. statement(X,Y), statementlisi(X,Y), condition(X.,Y),
insert(2,[1,3),1,2,3]), true. expression(X,Y), term(X,Y), factor(X,Y), ident(X,Y), number(X,Y),
insert(3,]),{1,3]), Jalse. comparator(X,Y), plusminus(X,Y), timesdivX,Y) ]).

insert(1,[},(1,3]), false.

¢ . . inals:
insert(3,[}3]), true. The system was given definitions for some of the nonterminals

inserl(1,),[3]), false. ident([X| X 8], X8) — atom(X), \+terminal(X).
inserl(3,[},[]), false. number(|X|Xs),Xs) — integer( X).
insert(1,[),[]), false. plusminus = [+] | [-]-

. . .
and 12 facts were queried by the diagnosis algorithms. i::::'::::t: L] [ll_/__]' I 7<)
isort([1},[1]), true.
tsorl({),[}), true.
insert(1,[],(1}), true.
insert(3,(1),(1,3)), true.
isori(|1,3),[1,3]), true.
insert(3,{1},[3,1]), false.

and these terminals were declared to be system predicates, i.e. to have

~ correct programs from the point of view of the Model Inference System. We

then invoked the system, and provided it with facts concerning Pascal

expressions. The order of facts takes into account the hierarchical
relationship between the nonterminals expression, term and factor.

isort(|3],[3}), true. | 2— mis.

isort([1,3),[3,1)), false.

insert(1,|3),[3,1]), false. ' Nezt fact? factor([a),[]),true.

insert(1,[3],]1,3]), true. Checking facl(s)...

isort([2,1),(1,2]), false. Error: missing solution factor([a),[]). diagnosing...
insert(3,1,2},(1,3,2)), false. Error diagnosed: factor(|a),[]) is uncovered.

Searching for a cover to factor(|a],[])...
Checking: (factor( X,Y)—ident(X,}))
1.2 Inferring a context-free grammar Found clause: (factor(X,Y)—ident(X,}))
after searching 3 clauses.
Listing of factor(X,Y):
(factor(X,Y)+—ident(X,Y)).

In this session we apply the Model Inference systemn, equipped with the
refinement operator p, described in Section 4.5 and an adaptive search
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Checking facl(s)...no error found.

Nezt fact? factor([1],[}),true.

Checking facl(s)...

Error: missing solution factor(|t),[]). diagnosing...
Error diagnosed: factor(|1),(]) is uncovered.

Searching for a cover Lo factor([1],]))-..
Checking: (factor( X,Y)—number(X,Y))
Found clause: (factor(X,Y)—number(X,Y))
afler searching 3 clauses.
Listing of factor(X,Y):
(factor( X, Y)—ident(X,Y)).
(factor(X,Y)—number( X,Y)).

Checking facl(s)...no error found.

Nezt fact? term([a},[]),true.

Checking fact(s)...

Error: missing solution term([a),[]). diagnosing...
Error diagnosed: term(|al,[]) 18 uncovered.

Searching for a cover to term([a},[})...
Checking: (term(X,Y)+— factor(X,Y))
Found clause: (term(X,Y)« factor(X,Y))
after searching 4 clauses.
Listing of term(X,Y):
(term(X,Y)— factor( X,Y)).

Checking facl(s)...no error found.

We have established the simple definitions of factor and term, and are

ready for more complex examples.
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Nezt fact? expression(|a,+,1],[]),true.

Checking facl(s)...

Error: missing solution expression(|a,+,1],[]). diagnosing...
Error diagnosed: expression([a,+,1],[]) is uncovered.

Searching for a cover lo expression(|a,+,1],[})...
Checking: (expression(X,Y)—term(X,U),plusminus(U,W),term(W,Y))
Found clause: (expression(X,Y)—term(X,U),plusminus(U,W),term(W,Y)
afler searching 29 clauses.
Listing of expression(X,Y):
(expression(X,Y)—term( X,V),plusminus(U,W),term(W,Y)).

Checking facl(s)...no error found.

Nezt fact? term([a,*,b},[]),true.
Checking facl(s)...
Error: missing solution term(|a,*,b),[]). diagnosing...

Query: factor(|a,*,b],[])? n.
Error diagnosed: term(|a,*,b},[]) i uncovered.

Searching for a cover to term(|a,*,b},[})...
Checking: (term(X,Y)— factor(X,U),timesdiv(U,W),term(V,Y))
Found clause: (term(X,Y)« factor( X,U),timesdiv( U,W),term(W,Y))
afler searching 20 clauses.
Listing of term(X,Y):
(term(X,Y)— factor( X,Y)).
(term(X,Y)+ factor( X,U),timesdin(U,W),Lerm(W,Y)).

Checking facl(s)...no error found.
Nezxt fact? expression([a),{]),true.

Checking facl(s)...
Error: missing solution expression([a),[|). diagnosing...
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Query: term(|[a},X)? y. Found clause: (factor(X,Y)«—ezpression(X,Y))

Which X7 {]. A after searching 5 clauses.
Which X7 n. Listing of factor(X,Y):

(factor(X,Y)—ident(X,Y)).
(factor(X,Y)—number(X,Y)).
(factor(X,Y)«—ezpression(X,Y)).

Nonterminals in context-free grammars are not delerminate procedures,
hence an existential query may have several different solutions. We supply
all solutions (in this case there is only one), following by no.

Error diagnosed: expression([al,[]) is uncovered.

Searching for a cover to expression(|al,[})...

Checking: (ezpression(X,Y)—term(X,Y))

Found clause: (expression(X,Y)—term(X,Y))
afler searching 5 clauses.

Listing of expression(X,Y):
(expression(X,Y)—term(X,U),plusminus(U,W),term(W,Y)).
(expression(X,Y)—term(X,Y)).

Checking fact(s)...no error found.

Nezt fact? expression(|a,+,'(’,2,*,b,")'],[}),true.
Checking facl(s)...
Error: missing solution ezpression(a,+,(,2,*,b,)),[]). diagnosing...

Query: term(|a,+,(,2,%,0,),X)? y.
Which X1 [+,(",2,*,b,))-
Which X7 n.

Query: term(|(,2,*,0,)},01)? y-

Query: factor(|(,2,*,0,)}.1)? y-
Error diagnosed: factor(|(,2,*,b,)},[]) is uncovered.

Searching for a cover to factor(|(,2,*,,)},]).-.
Checking: (factor(X,Y)«—ezpression(X,Y))

Checking facl(s)...
Error: stack over flow on term([a,*,b},[]). diagnosing...

The following three of the grammar rules found by the system so far

ezpression(X,Y) — term(X.,Y).
Jactor(X,Y) — expression(X,Y).
term(X,Y) — factor(X,Y).

together form a nonterminating program, hence the stack overflow. The
stack overflow diagnosis program is then invoked.

term([a,*,b},[]) is looping.

Is (term([a,*,b),[]), factor([a,*,b],[])) a legal call? y.

Is (factor([a,* b),[)),czpression(|a,*,b].]1)) a legal call? n.

Error diagnosed: (factor([a,*,b},[|)—ezpression([a,*,b},])) is diverging.

We have resolved the trilemma using the knowledge of the hierarchical
relationship between the three nonterminals, expression, lerm, and factor,
and the system responds accordingly.

Listing of factor{X,Y):
(factor(X,Y)—ident(X,Y)).
(factor(X,Y)—number(X,Y)).

Error: missing solution ezpression(la,+,(,2,*b,)}.[}). diagnosing...
Error diagnosed: factor(|(,2,*,8,)},[]) i uncovered.

Searching for a cover to factor([(,2,*,b,)},[])...
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Checking: (factor( X,Y)—ezpression(X,Y))
Looping: (factor(|a,*,b),|])—ezpression((a,*,b},[}))
Checking: (factor(X,})—term(X,Y))

Refuted: (Iad‘"(lav‘v"l'“)'_k""(lav‘cb]v“))

Checking: (factor(|(| X),Y)—ezpression(X,[)|Y]))

Found clause: (factor(|(| X),Y)—ezpression(X,|)|1]))
after searching 26 clauses.

Listing of factor{X,Y):
(factor(X,Y)+—ident(X,Y)).
(Jactor(X,Y)—number(X,Y)).
(factor([(1X),Y)+—ezpression(X,[)|1))).

Checking facl(s)...no error found.

The session so far lasted 95 CPU seconds. The grammar produced is a full
grammar for PLO arithmetic expressions:

(exzpression(X,Y)—term(X,U),plusminus(U,W),term(W,Y)).
(expression(X,Y)—term(X,Y)).

(term(X,Y)+ factor(X,Y)).
(term(X,Y)+— factor{ X,U),timesdi(U,W),term(W,Y)).

(factor(X,Y)+—ident(X,Y)).
(factor(X,Y)—number( X,Y)).
(Jactor([(|X],Y)—ezpression(X,DI))-

12 facts were nceded to infer this grammar:
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Jact(factor(|a),[]),true)

Jact(factor([1],]]),true)
Jact(term(|a},|]),true)

Jacl(expression(|a,+,1],[]),true)
Jact(term([a,*,b},[]),true)
Jacl(ezpression(|a),[]),Lrue)
Jact(term([a),|]),true)
Jacl(expression([a,+,(,2,*,b,)},[]),true)
Jact(term([a,+,(,2,*,6,)],[+,(,2,*,b,)]),true)
Jact(term(|(,2,*,5,)},]),true)

Jact{ factor([(2,* b)) I Arue)
Jact(factor(|a,* b],[]),false)

We then tried to infer a grammar-rule for the assignment statement.

Nezt fact? statement([a,:=,a,+,1},[]),true.

Checking facl(s)...

Error: missing solution statement(|a,:=,a,+,1},[}). diagnosing...
Error diagnosed: statement([a,:=,a,+,1),[]) is uncovered.

Searching for a cover lo statement([a,:=,a,+,1},[])...

Checking: (statement(X,Y)—ezpression(X,[:=|U]),czpression(U,Y))

Found clause: (statement(X,Y)—ezpression(X,|:=|U]),ezpression(U,Y))
after searching 27 clauses.

Listing of statement(X,Y):
(statement(X,Y)—ezpression(X,[:=|U)),ezpression(U,Y)).

Checking facl(s)...no error found.

The rule the system came up with was loo general, so we gave it the

following fact in attempt Lo restrict it o a correct one.

Nezt fact? statement(|a,+,1,:=,a,+,2},[]),false.
Checking facl(s)...
Error: wrong solution statement(|a,+,1,:=,a,+,2},[]). diagnosing...
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Query: expression(|a,+,1,:=,a,+,2],:=,a,+,2])? y.
Query: term(|a,+,2},[+,2])? y.
Query: term([2),[)? y-

Query: expression(|a,+,2},[])? y.

Error diagnosed:
(statement(|a,+,1,:=,a,+,2),[])—ezpression([a,+,1,:=,a,+,2},
[:=,a,+,2)),expression([a,+,2],[])) is Jalse.

Listing of statement(X,Y):

Checking facl(s)...

Error: missing solution statement(|a,:=,a,+,1},[]). diagnosing...

Error diagnosed: statement([a,:=,a,+,1],[]) is uncovered.

The error was diagnosed, and the search for a new clause begins. After
giving the systerhree more negative facts:

statement([a,*,2,:=,a},[}), false.
statement([a,*,2,:=,a},[]), false.
statement([1,:=,a},[]), false.

The system went through some wrong alleys, but finally came up with the
right rule:

(statement(X,Y)—ident(X,|:=|U]),ezpression(U,Y)).

From that point things became easier; we then gave the system the
following facts: .
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Jact(condition([2,*,a,=,b,+,1},[}),true)
facl(statement(|while,a,<,b,do,a,:=,a,*,2],[]),true)
fact(statement([if,a,=,b,then,a,:=,a,+,1},[]),true)
Jact(statementlisi(|a;=,a,+,1,;,b,:=,b,—,1},[]),true)
facl(statement(|begin,if,a,< bthen,a;:=2,* a,;b,:=,b,+,2,end],|)),true)
Jact(factor(|a,*b],[]). false)
Jact(statement(|1,:=,2},[|),false)

And the final grammar it came up with was:

(statement(X,Y)—ident(X,[:=|U}),ezpression(U,Y)).
(statement(|while| X},Y)—condition(X,|do|U]),statement(U,Y)).
(statement([if}X),Y)+—condition(X [then|U}),statement(U,Y)).
(statement([begin| X],Y)—statementlist(X [end|V})).
(statementlist(X,Y)—statement(X,[;|U]),statement(U,Y)).
(condition(X,Y)—ezpression(X,U),comparator(U,W),ezpression(W,Y)).
(expression(X,Y)—term(X,U),plusminus(U,W),term(W,Y)).
(expression(X,Y)—term(X,Y)).

(term(X,Y)+ factor(X,Y)).

(term(X,Y)« factor( X,U),timesdi{U,W),term(W,Y)).

-(factor(X,Y)—idenl(X,Y)).

(factor(X,Y)—number(X,Y)).
(factor(|(|X],Y)—ezpression(X,|)|1])).

Which after macro deexpansion becomes:

atatement = ident, [:=|, ezpression.

statement = [while], condition, |do], statement.
stalement = [if), condition, [then], statement.
statement = |begin] statementlist [end].
-statementlist = statement [;], statement.
condition = expression, comparalor, expression.
expression = lerm, plusminus, term.
expression = lerm.

term = factor.

term = faclor, limesdiv, term.

Jactor = ident.
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Jactor = number.
Jactor = [(], expression, |)].

The whole session took approximately 10 CPU minutes, and we
supplied 35 facts. To see the utility of the pruning strategy, note that the
size of the unpruned refinement graph up to depth 5 is 196,325,608.
Although some of the grammar rules found in this session are in that depth,
the maximal number of clauses searched for each goal was 68.

Appendix II. Listings

This appendix contains listings of the systems described in the thesis.
Most of the code has already appeared in the previous chapters. Instead of
commnets and documentation, we provide pointers to the parts of the thesis
that described the theory behind each piece of code. In some sense the
thesis is one long comment to the code in this appendix.

The systems described in the thesis reside in the following files:

PDSDC. the diagnosis algorithms, described in Chapter 3.

PDS5. the diagnosis system, described in Section 3.5.

MIS. The Model Inference System, described in Section 4.3
PDSREF. The general refinement operator, used in most of the

examples. Not described.

DCGREF. The refinemnent operator for definite clause grammars,
described in Section 4.5, and used in the example of
inferring the subset of Pascal, in Appendix 1.

MISRG. The pruning breadth-first search algorithm, described in
Section 4.5

MISSRC. The test-for-cover strategies, described in Section 4.4

PDSS. The interactive debugging system, described in Section
5.3. :

PDSRG. A derefinement procedure, used in the interactive
debugging system, described in Section 5.2.

PDSDB. Data base module for all systems, and implementation of
the query procedure.

DSUTIL. Utility procedures. These are all the utility procedures
used in the systems described in the thesis.

PDSINIL. Some initialization declarations.

TYPE. Type inference and checking procedures, used by the

general refinement ogerator in PDSREF, not explained.
17
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XREF.DEF A Tfile containing the definition of the predicate
system(_), that, for some reason, is not part of the
standard list of .evaluable predicates (stolen from Prolog’s
cross reference programm, not included here).

The files above contain all the code needed to run the systems
described in the thesis on the Prolog-10. Each file that contains the top
level procedure of the system also contains the list of files it requires to run.

Some statistics on the size of the systems Is provided in Figure 7. A
number that does not appear there is the total number of clause in the
systems, which is 319.

Lines Print pages \Words

PDSDC : 121 3 650
PDS5 : 30 1 162
MIS : 37 1 158
PDSREF : 121 3 673
DCGREF : a1 1 165
MISRG : 45 1 267
MISSRC : 36 1 173
PDS6 : 87 2 401
PDSRG : 24 1 255
PDSDB : 168 3 758
TYPE : 107 2 438
DSUTIL : 206 5 1041

Total: 1123 24 5031

Figure 7: System statistics

II.1 The diagnosis programs

%%%%% I'DSDC
/* the diagnosis component */
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% A depth—bounded interpreter
%% see ’rogram 9, page 61.
solve(P,X) —
solve(P,25,X), ( X\==lrue, ! ; lrue ).

solve(true,D,true) — 1.
solve{A,0,(over flow,[})) — .
solve((A,B),D,S) — 1,

solve(A,D,Sa),

( Sa=true — solve(B,D,Sb), S=Sb ; S=S5a ).
solve(A,D,Sa)

aystem(A) — A, Sa=true ;

D1 is D—1,

clause(A,B), solve{ B,D1,Sb),

( Sb=true — Sa=true ;

Sb=(over flow,5) — Sa=(over flow,[(A—B)|S)) ).

% Tracing an incorrecl procedure by divide—and—query

%% see Program 6, page 47

Jalse__solution(A) —
writel(|" Error: wrong solution °,A,’. diagnosing...’]), nl,
Jem((AW), _0), % just to find W, the length of the compulation
JAW,X) — handle__ervor(’ false clause’,X) ;
write( legal call to fp°), nl.

J(AWa,X) ~
Jom((A,Wa),((P—Q),Wm),Wa),
( Wa=1 — X=(P—Q);
query( forall,P,true) — Wal is Wa—Wm, fp(A,Wal,X) ;
p(P,Wm,X) ).

% An interpreler thal computes the middle point of a compulalion)
% see Program 5, page 48

% fpm((A,Wa),(M,Wm),W) — solve A, whose weight is Wa. find
% a goal M in the compulalion whose weight, Wm, is less then W/2,
% and is the heaviest son of a node whose weight ezceeds (W+1)/2.
Jpm(((A,B),Wab), M W) |,

Jpm((A,Wa),(Ma,Wma),W), fpm((B,Wb),(AMd,Wmb),I}),

Wab is Wa+Wh,

( Wma>=Wmb — M=(Ma,Wma) ; M=(AMb,Wmb) ).
Spm((A,0),(true,0),W) —

syslem(A), !, A;

fact(A,true).



Jom((A,Wa),MW) —
clause(A,B), fpm((B,Wb),MbW),
Wa is WO+1,
( Wa>(W+1)/2 — M=Mbd ; M=((A—B),Wa) ).

% Tracing an incomplete procedure (improved)
% see Program 8, page 55
missing_solulion(A) +—
wrilel(|’ Error: missing solulion °,A,". diagnosing..."]), nl,
querylexists, A lrue), \+solve(A,lrue) —
ip{A,X), handle__error( uncovered atom’,X);
wrile( llegal call to ip°), nl.

ip(AX) —
clause(A,B), ip)(B,X) — lrue ; X=A.
ipl((A,B),X) « \,
( querplexista,Atrue), ( A, ip)(B,X) ; \+A4, ip(A,X)) ).
% cannol use — because need to check all solutions
%% in case of a nondelerminislic procedure.
ipl(A,X) ~
querylezists, A true), ( A — break{ipl(A,X)) ; ip(A,X) ).

% Tracing a slack overflow
% see Program 10, page 62
stack _ over flou{ P,S) —
writel{|’ Error: slack overflow on *,P,". diagnosing...’]), nl,
( find _loop(S,S1) — check _segment(S1) ;
check _segment(S) ).

Jind _loop{[(P—Q)}5},Sloop)
looping _ segment{(P—Q),S,S1) — Sloop=|(P—Q)|S}] ;
Jind_loop{S,Sloop).

looping_ segmen!((P—Q),(P1—Q1)|S},(P1—Q1)ST]) +
same__goal(P,P1) — wrilel{[P,” is looping.}), nl, SI=[] ;

looping__segment((P—Q),S,Sl).

check _segment(|(P—Q),(P1—Q1)}S)) —
query{legal _ call (P,P1),true) —
check __segmen!(|(P1—Q1)|S)) ;
Jalse _subgoal(P,Q,P1,C) — false _solution(C) ;
handle _ervor{ diverging clause’ (P—Q)).
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Jalse__subgoal(P(Q1,Q2),P1,@) —
%% search for a subgoal Q of P to the left of Pl that returned a false
%6 solution.
eN\=="1,
( query({ forall,Q1, false) — Q=Q1 ; false _subgoal(P,Q2,P1,Q) ).

% An inlerpreler thal monilors errors
%% see Program 12, page 75
msolvel P, X) +—
msolve(P,25,X), ( X\==lrue, ! ; true).

maolve{ A,0,(over flow,[})) — !.
maolve((A,B),D,S) « 1,
msolve(A,D,Sa),
( Sa=true — msolve{ B,D,Sb), S=Sb ; S=Sa ).
maeolve{ A,D,Sa) —
system({A) — A, Sa=lrue ;
D1 is D-1,
seto fO{(A,3,Sb), (clause{ A,B), maolve( B,D1,Sb)),R),
resull(R,A,Sa).

resull(R,A (over flow |(A—B)|S(})) —
member{(A,B,(over flow,St)),R), !.
resull(R,A, false) —
member((A, _,false),R), ! ;
member((A,B,true),R), facl(A, false) )\,
Jalse _solution(A) ;
IGC“A,‘NC,, \+(memkr((A,_,lrue),R)), A
missing__solulion(A).
resull([},A, false)
allribute{ A,lotal), !,
writel(|’ Error trapped: no solution to *,Al), nl,
missing _ solution(A).
resull(|A1,A2|R],A, false) —
allribule( A, determinate), !,
writel(|’ Error trapped: loo many solutions to °,Al), nl,
member(A, _, _)|ALAZIR), query(forall, A, false), ,
Julse _solulion(A).
resull(R,A,lrue) «—
member{(A, _,true),R).

182
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11.2 The diagnosis system

%%%%6%0 PDS5.

«— inilialized — true ;
% these files are required lo run pds.
| zref.def’), [pdsde,pdsdb pdsini], compile{|dsutil type]),
asserl(initialized).

% A diagnosis system
€% see Program 11, page 64
pds —
nl, read(’,P), ( P=ezit ; solve _and _check{P), pds ).

solve__and _check{P) —
bagofo{(P,X),s0lve( P,X),S), con firm _solutions(P.,S).

con firm _solutions(P’|(P1,X)|S]) ~

member{(P1,(over flow,X)),S) — stack _ over flow{ P1,X) ;

writel(| aolution: *,P1, *;°]),

( ( system(P1) ; fact(Pl,true) ) — nl, con firm _solutions(P,S) ;
confirm(’ ok’) — assert_ fact{P\,lrue), con Jirm_aolutions(P,S) ;
asserl _ facl(P1,false), Jalse _solution(P1) ).

confirm _solutions(PJ[]) —

wrile{ ‘no (more) solutions.’),

( system(P) — nl ;
confirm{’ ok’) — true ;
ask _ for _solution(P), assert _ Jacl(Ptrue), missing_solution(P) ).

handle_error{’ false clause’,X) « !,

writel(|’error diagnosed: * X,” is false.’]), nl, plisting(X).
handle_error( uncovered atom’,X) ~ |,

wrilel(| error diagnosed: *, X, ia uncovered. ‘1) nl, plisting( X).
handle_error{"diverging clause’,X) + |,

writel(|error diagnosed: ° X, is diverging.}), nl, plisting(X).

I1.3 The Model Inference System

%%%%%c% MIS.
«— inilialized — true;
% These files are required to run the Model In ference System

| zref.def’), compile(|miarg,dsutil,pdsre 1.type]),
{pdsini,pdsdc,pdadb,missre],

asserl(initialized).

%% The Model In ferece System
%% sce Program 13, page 95.
mis «— nl, ask__for(’ Nezl fact’ Fact),
( Fact=check — check _facl(_) ;
Fact=(P,V), (V=true ; V={alse) — assert__facl(P,V), check _ facl(F) ;
wrile( Vllegal input’), nl ),
1, mis.

check _facl(P) —
write{ Checking facl(s)..."), tyflush,
( fact(P,true), \+solve( P) —
nl, missing__solution(P), check _ Jaet(_);
Jac{F, false), solve{ P) —
nl, false _solution(P), check _ facl(_);
wrile{ "no error found.’), nl ).

solve(P) —
solve(P,X),
( X=(over flow,S) — nl, stack _ over flou{P,S), solve(P) ; truc ).

handle _error{’ false clause’,X) ~—
writel(|” Error diagnosed: *,X,” is false.’]), nl,
retracl(X), plisting( X).

handle_error{‘uncovered atom’,X) —
writel{|’ Error diagnosed: *,X,” is uncovered.’}), nl,
search _ for _cover{X,C),
asserl(C), plisting(X).

handle _error{ diverging clanse “X) ~
writel{|’ Error diagnosed: °,X,’ is diverging.”)), nl,
relract(X), plisting( X).

«— asserl(value{aearch _stralegy,adaplive)).

I1.4 A general refinement operator

C"0"6"6% PDSREF.
% General refinement operalor for pds
« public

184
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refinement/2,
create _iof2,
derefine/2.

refinement{((P—Q),(Vi,Vo,VN)((P—Q)(Vi,[L.1)
% Close a clause
Vo\== ,
unisubsel(Vo,Vi),
eqdi fact(V/,Vo|),
noduplicate _atom(P,Q).

refinement(((Pe—true) (Vi,Vo D) ((P—true) (Viz,Vo,[)) —
% inslantiale head, inpuls.
dmember(Var, Vi, Vil),
term _to_ vars{Var,NewVars),
append(Vil,NewVars,Vi2).

refinement(((P—true),(Vi,Vo,[|)),((P—true),(Vi,Vo2,[]))) —
% inslanliale head, outpuls.
dmember{Var,Vo,Vol),
term _lo_ vars(Var,NewVars),
append(Vol,NewVars,Vo2).

re finement(((P—true),(Vi,Vo,[)),((P—true),(Vi1,Vo [}))) —
% unify lwo input vars
dmember(Var1, Vi, Vil),
member(Var2,Vil),
Varl O< Var2, % nol lo create duplicales
Varl=Var?2.
refinement(((P—Q1),(Vi,Vo,V/))((P—@Q2),(Vil,Vo,VN1)))
% add oulpul producing goal
Vo\==(},
body _ goal(P,Q.QV3,QV0),
QVo\==]],
unisubsel(QVi, Vi),
noduplicate__atom(Q,(P,Q1)),
Jree _vars(V[,QVi,QVo,VN1),
append(Vi,QVo,Vil),
geonc(Q,Q1,Q2).

re finement(({P—Q1),(V,[.IN((P—Q2)(Vi, [, —
%% add lest predicale
body _ goal(P,Q,QVi[}),
unisubsel(QVi, Vi),

noduplicate _alom(Q,(P,Q1)),
geonc(Q,Q1,Q2).

body__goall P,Q,QVi,QVo) —
called(P,Q),
inpul _vars(Q,QVi), oulput _vars(Q,QVo).

geone(A,lrue, A) «— I,
geone{A(B,X)(B,})) — !, gcond{ A, X,}).
geonc(A,B(D,A)).

% unisubset(V1,V2) — V1 is a subsel of V2

unisubsel(f}, ) —!.

unisubsel(|X]V1),V2) —
dmember(X,V2,V3), unisubsel(V1,V3).

% dmember(X,L1,L2) «— the difference between list L1 and list L2 is X.
dmember( X | X]L),L).
dmembes( X,|]L1),[YIL2]) —

dmember{X,L1,L2).

% check no goals with duplicate inputs
noduplicate _atom(P1,(P2,Q)) « 1,

( same__goal(PL,F2), !, fail ; noduplicate _atom(P1,Q) ).
noduplicate _atom(P1,P2) —

same__goal(P1,P2), \, fail ; true.

Co eqdi fsel{V1,12,V3) — variable set V1 — V2 is V3.
eqdifset(V,[},V) — L.
eqdi faet(V1,[X|V2),V3) —
egdelmember( X,V1,V4), !,
eqdi fsel(V4,V2,V3) ;
wrilel(|"type con flict in ° eqdifsel(V1,[X]V2],V3)]), break.

% eqilelmember(X,L1,1.2) «— the difference between list L1 and list 1.2 is X.
eqdelmember( X1,[][]) — !
eqdelmember{ X'1,[X2|L},L) — X1==X2, !.
eqdelmember( X,|Y|L1),[1112]) —
egdelmember( X ,11,1.2).
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% creale the inpul set Xi and oulpul sel Xo and free sel X[ of variables
% of a clause P—Q. does also lypecheking.

creale__io((Po—Q),(Xi,XO,.\'])) -
alom _varlype(P,Vi, Vo),
create _iol(Vi,Xi,V0,Xo,||,X/,Q).

% create_iol(Vi,Xi,Vo,Xo,V[,X[,Q) — i Vi, Vo and V/f are given inpul
% variable set, oulput variable sel and free variable set, then together
% with Q, Xi, Xo and X[ are the input, oulpul and free variable sels.

create __iol(Xi,Xi,Xo,Yo,X[,Y{,true) « |,
egdi fael(Xo,Xi,Yo),
eqdi fset(Xo,Yo,X f1),
eqdifsel( X [, X[1,Y)).
create _iol(Xi,}3,Xo,Yo,X[Y{(PQ)) !,
alom _ varlype(P,Vi, Vo),
eqdi fact(Vi, Xi, Vdif),
( Vdis=ll, ,
append(Xi,Vo,Xil),
free_vars(X[Vi,Vo,X11),
1, create _iol(Xi1,¥7,X0,Yo, X1,Y/,Q) ;
wrilel(| uninstantialed input variables *Vdif,” in atom °,F),
Jail ).
creale _iol(Xi,17,X0,Yo,X[,Y[,P) —
creale _iol(Xi,Yi,Xo,Yo, X [,Y[(P,true)).

% [ree__vars(V[,Vi,Vo,V/1) — remove from V[ Vi, and add Vo, gelling V[1.
Jree__vars{V{ Vi, Vo,V[2) -

eqdifaet(V/,Vi,V/1),

append(Vf1,Vo,V[2).

I1.5 A refinement operator for definite clause grammars

%%%%% DCGREF
%% Refinement operator for definile clause grammars.
% See definition of p,, Page 118.
«— public .
refinement/2,
creale__iof2,
nllisting/o,
clearnt /0.
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refinement(((P—Q1),(Vi,Vi,Vo)),((P—Q2),(Vi1,Vil,V0))) —
%% add goal
w\==“v
nonlerminal(Q),
Q=.|F,Qi,Qd],
Vi=|Qi], Vil=|Qo],
\H( P=_|FF,_], Pi==@i)),
qeon(Q,Q1,Q2).

refinement(((P—Q),(Vi,Vi,Vo)),((P—Q)(1.IILIM)
%% Close a clause
Vi\==|}, Vi=Vo.

refinement(((P—Q),(Vi,Vi,Vo)),((P—Q).(Vi1,Vil, Vo))
% inslanliale.
Vi={|X]Xal],
terminal(X),
Vil=|Xs].

gconc(A,lrue,A) +— .

WO”C'A'(BVY,'(BJ’” b !l qconc(A,X,Y).
geonc{A,B(B,A)).

9% creale the input sel Xi and oulput setl Xo and free set X[ of variables
%% of a clause P—Q. does also typecheking.
create _ io{(P—true) (| Xi],| Xi],| Xo])) —

P=.|_.,Xi,Xo].

nllisting +—
nonlerminal( X), \+system(X), plisting( X), fail ; true.
clearnt —
nonterminal( X), \+aystem(X), X=_.|F] _), abolish(F.2), fail ; true.

I1.8 Search strategies

%%% %% MISSRC.
%% An implemenlalion of the search siralegies
covers(C,P) —
( value(search _slralegy,S), member(S,[eager,lazy,adaptive]) — true ;
break{’ Incorrect or missing search strategy’) ),
covers(S,C,P).
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% The eager covers lesl)
% see Program 14, page 105
covera{eager,((P—Q),(Vi,V/,Vo)),P1) +
( @=true ; Vo={| ) — verif{( P=P1, satisfiable(Q) )) ;
veri fy{ P=P1).
% The lazy covers lest)
% see Program 15, page 110
coverallazy{(P—Q), _),P1) +
veri fy{( P=P1, facl__salisfiable(Q) ).
% The adaplive covers lest)
%% see Program 16, page 113
covers(adaptive ((P—Q),_),P1)
veri [f( P=P1, fact _solve(Q) ).

Jact _salis fiable(P,Q)) ~— !,

Jact _satis fiable(P), fact _satisfiable(Q).
]acl_ulu]wbldﬂ -

system(P) — P ; facl(P,true).

Jact _solve(P) ~—
[acl solve({ P,25,X),
( X=({overflow,S) — stack __over flow{P,S), fact _solve(P) ; true ).

Jact _solve{A,0 (over flow,[])) — 1.
Jact _solve((A,B),D,S) ~— 1,

Jact _solve(A,D,Sa),

( Sa=true — facl_solve(B,D,Sb), S=5Sb ; S=Sa ).
Jact _solve{A,D,Sa) —

system(A) — A, Sa=lrue ;

Jacl(A,lrue) — Sa=lrue ;

Dt is D—1,

clause(A,B), fact_solve{ B,D1,5b),

( Sb=true — Sa=lrue ;

Sb=(over flow,S) — Sa=(over flow,|(A—B)|S]) ).

11.7 Pruning search of the refinement graph

%%%%% MISRG.
- pubhc aearch __Jor _cover/?,
check rc]memcnla/ll

good clauac/:l

looping/1,
refuted/1.

€5 A pruning breadth— first search of the refinement graph.
2% sce Program 17, page 124.
search__for _cover{P,Clause) —
nl, writel(|’ Searching for a cover lo *,P,"..."]), nl,
mgt(P,P1), create__iol(P1—lrue),Ve),
search _ for _ cover{[(( P —true),Vs)| Xs], Xs,P,Clause,1).

o aearrh _ Jor _ cover(llcad,Tail Goal,Clause,Length) «
% The list belween Head and Tail i3 the current queue of clauases.
% search in il for a lrue Clause that covers Goal
% Whenever you lake a clause from the Head of the queue, add
% all its refinements thal cover Goal to Tail, selling it lo
% the new Tail of the queue. Length is the number of clauses
%% searched so far.

search _ for _cover{Qhead,Qtail P,C,Qlength) +—
Qhead==Q!ail,
wrilel(| Failed to find a cover for *,P,’. queue is empty’]), nl,
1, fail.

search_ for _cover(|X|Qhead],Qtail, P(‘lmue,QlenyM)

-—(‘\clauu, ), writel{|’ Refining. *,Xclause]), nl,

bagof(Y, X |( refinement(X,Y), covers(Y,P) ),Qnew),
length(Qnew,Qnewlength),
Qlengthl is Qlength + Qnewlength,
% wrilel{|’ New refinements: *|@Qneu],v,nl), nl,
check _refi nements(Qnew,Qhead Qlail P,Clause,Qlengthi).

check _refinements(@Qnew,Qhead Qlail, P,Clause,Qlength) —
‘member((Clause,Cv),Qnew), good _clause{(Clause,Cv),Qlength).
check _refinements(Quew,Qhead Qlail, ,P,Clause,Qlength) —
append(Qnew,Qnewlail Qlail),
search__ for _cover(Qhead,Qnewlai 1,P,Clause,Qlength).

good_ clausel(X,(Xi JJ.IN,L) —

writel{| Checking: *,X]), nl,

( refuted(X), Y, writel((’Refuted: °,X}), nl, fail ;
loopingd X), !, wrilel(|’ Looping: °,X]), nl, fail ;
uritel(| Found clause: °,X]), nl,
wrilel(|"  after searching °,L,” clauses.’|), nl).

looping{(P—Q)) —



\+lega'_c¢;lla( r.Q).
refuled((P—Q)) —
Jacl(P, false), fact _salis fiable(Q).

I1.8 The interactive debugging system

%%%%% PDSS.

«— inilialized — lrue ;
%% filea required to run the interactive debugger
|"zref.def’), compile(|dsutil type,misrg,pdsre/)), |pdade,pdsdb pdsini],
|missre,pdsrg,pdsref],

asserl(inilialized).

%% An inleraclive debugging system.
Co See Section 5.3
pds —
nl, read(’,P), ( P=ezit ; solve _and _check(P), pds ).

solve _and _check{P) ~—
wrilel(|’ Solving *,P,"..."]), nl,
bago f{(P,X),msolve( P,X),S), con firm _solutiona(P,S).

con firm _solutions(P,|(P1,(over flow,S))]) — !,
atack _overflou{ P,S),
solve_and _ check({P).

confirm_ solutions(P,|(P1,false))) — !,
soive_and _ check(P).

con firm oolultonn(Pl(l’l,X)lS]) -

wnlell[ solution: * P, °;’)),

( ( system(P1) ; fact(Pl,lrue) ) — nl, con firm _solutions(P,S) ;
con firm(° ok’) — assert _ fact(P1,true), con firm _solutions(P,S) ;
asserl _ facl(P1, false),

Jaloe _ “solution(P1), aolve__and_check{P) ).
confirm aolulumn(l’[l) -

wnle( no (more) solutions.’),

( system(P) — nl ;
con firm(’ ok’) — lrue ;
missing _solution(P), solve_and _check{P) ).

handle__error{’ false clavse’,X) « !,
writel({’ Error diagnosed: *,X," is false.’]), nl,
X=(P-Q),
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ask _then _dof

[retract (y), (m)odify, or (r)eplace it"],

|( fatse, true),

(true, retract(X)),

(r, ( ask__ for{| with what’],C),
retract( X), assert(C) ) ),

(m, (mgl(P’,P1), clause(P1,Q1, _), veri f((P—Q)=(P1-Q1))),
% can 't wse Ref because of a Prolog bug.

0 modi fy{(P1—@1),1), retract(X), asseri(Y) ) )

plisting(P), \.
handle__error(’uncovered alom P 1,
writel(|’Error diagnosed: *,P," is uncovered.’]), nl,
ask__then _dof
| add (y) or (m)odify a clause’ ],
[(false, true),
(true, ( ask _ for{"which’,C), assert(C) ) ),
(m, ( ask__for{ ‘which’,Cl1),

( C1=(_+ )\, retract(C1), C=C1 ;
Cl=any, |, mgi{P,P1), C=(Pl—true) ;
C=(Cl«lrue), retract(C1) ),

modify{C,FY), assert(Y) ) )

plisting(P), 1.

handle__error{ diverging clause’ (P—Q)) !,
writel(|* Error diagnosed: *(P—Q),’ is diverging.)), nl,
X=(r—Q),
ask_then _do{
| retract (y), (m)odi fy, or (r)eplace it°),
[(falae, true),
(true, retract( X)),
(r, ( ask _ for{|  with what’],C),
relracl(X), asserl(C) ) ),
(m, (mgl(P,P1), clause{ P1,Q1, _), veri fy(((P—Q)=(P1—Q1))),
% can 't wse Ref becauae of a Prolog bug.
modi f{(P1—Q1),}), retracl(X), assert(}) ) )

1
plisting(I), ).

modi fy{ X,}) —
reason(P’,X), modi fy( X,P,Y).

modify(\,I')) —
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search _rg( X,P,Y), con firm(ok), ! ; break(modi fy{ X.PY).
reason(P,\) —
reasoni(P,X) — lrue ;

ask_ for{|'Whal is a reason for ", X],F) —
asaserl(reasoni(X,P)).

«— asserl{value(search _slralegy,eager)).

11.9 The bug-correction program

%%%%% PDSRG.

% A bug—correclion algorithm.

% See Algorithm 8, Page 139.

search _rg{X,P,Y) — % scarch for Y that covers P, starting from X.
create _io{X,V1), 1,
search _rgl((X,Vz),P,Y).

search _rgl(X,PY)
covers(X,P), X=(Xe,_), \+looping(Xc) —
check _refinements(|X],Xs,Xs,PY 1) ;
derefine{ X,X1,P), search _rgi(X1,PY).

% derefine(X,Y) — Y is the resull of derefining X. which means,
% in the meantime, omilling the last condition from X.
derefine{(X,Vz)Y, )~

writel(|’ Dere fining °,X,’..."}), nl, derefined((X,Vz),Y).
derefinel(((X+—X5s),Vz),}) — )

deconc( Xs,Ys), creale__io{(X+—Vs),Vy), neu(((X+Ys),Vy),Y).
derefinel((( X —true),Vz),((Ye—true),Vy)) —

mgl(X,1), \+variants(X.Y), create _io((Ye—true),Vy).

%% delete the last conjunct .
decone{(X1,{X2,X3)),(X1,Ys)) — |, deconc((X2,Xs),Ys).
deconc{(X1,X2),X1) — .

deconc( X, true) — X\==true.

11.10 Database interface utilities

%6°0%6%% PDSDD
% Dala base for pds.

% The base relation is solulions(P,S), which denotes that

% the solutions of goal P are exactly S. This relalion stores

% resulls of existential queries.

%5 On lop of it, we compule the relation facl(P,V), which says P is knoun

%% o have truth value V, were "known’ is defined in the broades! way possible.
T% i.c., can contains any clauses thal represent our current knowledge.

% Using the  fact’ relation, we encode constralnls, ele.

Jacy(P)V) —
var(P’) — ( solutions(_,S), member(P,S), V=true ;
solutions(P,[}), V=/false ) ;
solutions{P,S), ( member(P,S), V=true ; \+member(P,S), V= false ).

listfacl(P) —
JacyP,V), write( fact(P,V)), nl, fail ; true.

is__instance(P1,P2)
% Pl is an instance of P2
veri fy{( numbervars(P1,0, ), P1=F2))).

asserl _fac{P,V) —
Jact(P V1) — ( V=W, |, true ; break(assert _ facl(P,V)) ) ;
\+ground(P) — break{assert__ facl(P,V)) ;
% writel(|” Asserting: *,fact(P,V)}), nl,
( V=true — asserl(solutions(P,|H)) ;
V=false — asserl(solutions(P]])) ;
break{assert _ facl(P,V)) ).

query(ezists P,V) —
aystem(P) — ( P — V=true ; V=/false ) ;
mgl(P,P1), solutions(P1,5), is__instance{P,P1) —
( member(P,S), V=true ; \+member(P,S), V=false ) ;
Jacl(P,true), V=lrue ;
ask__for __solulions(P,S) —
( S=[| — V=/alse ; member(P,S), V=lrue ).
query( forall, P,V) —
ground(P) — querylerists,P,\V) ;
break{query( forall,PV)).
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query{solvable,P,V) —
aystem(P) — ( P — V=lrue ; V=false ) ;
Jact(PV1) — V=V1;
ask__ for{|'Query: *,M,V1,(Vi=true;V1=false)) - V=W.

ask _ for _solutions(P,S) —
bagof)(P,ask _ for _solution(P),S),
% wrilel(|” Asserting: *, solutions(P,S)]), nl,
asserl(solutions(P,S)).

ask__for _solution(P) —
nl, ask _ for(| Query: °,A\,V(V=lrue,V=false)),
( V=/alse — fail ;
ground(P) — true ;
varand(P,Pvars),
repeal,
writel(| 'Which °,Pvars,’? °]), ttyflush,
reade{ Answer),
( Answer=false, !, fail ;
Answer=Pvars — true ;
wrile|"does nol uni fy; try again’), nl ),
( attribute{ P,determinate), ! ; true ) ).

query(legal _call(P1,P2),V)
same_goal(P1,F2), !, V=/{alse ;
legal _ call{(Q1,Q2),V1), same_ goal(P1,Q1), same__goal(F2,Q2), !,

ctmﬁrm(l:la ‘(PL,P2)," a legal call’)), !,
asserl(legal _call((P1,P2),true)), V=true ;
asserl(legal _call((P1,P2), false)), V= faise.

known _illegal _call(P1,F2)
same_goal(P1,P2), !, V=false ;
legal _call((Q1,Q2),false), same _ goal(P1,Q1), same__goal(2,Q2).

same _goal(P,Q) ~— .
Junctor(F,F,N), functor(Q,F,N),
inpul _vars{P,Pi), inpul_vars(Q,Qi), !, variants(Fi,Qi).

satis fiable{{ P,Q)) !,
querylezials, P lrue), satis fiable(Q).

salis fiable{P) —
query(ezisls, P true).

legal _calls(P,true) +!.
legal _calls(P,Q) —
(Q=(Q1,Q2), !, true ; Q=0N, Q2=lrue),
( known _illegal _cv 32", Q1), Y, fail ; true),
( Jact(Q1,true), !, legal _calls(P,Q2) ; true).
% for all true solutions to Q1, Q2 shouldn 't loop.

clear —
abolish(aolutions,2),
abolish(legal _call,2).

clear(P) —
( retract(solutions(P,_)), fail ; true ).

edil _ facls ~—
solutions(P,S),
con firm(|’ Retract ° solutions(P,S5)}),
retract(solutions(P,S)),
Jail ; true.

/* Information about a procedure:

« declare(P,A), where
P is, for example gs(+|z],—[z]), and
A is, for ezample |determinate,total]

This will create the resulling dala:
declared( P,Inv,0ulV,A), where InV (OutV) are pairs of input (output)
variables and their types, and
A is the lisl of allribule.

*/

declare{Pmode,P’s) —
mgt('mode, "),
P=_|F\Pargs),
Pmode=_.|F|Fargs),
varplusminua(Pargs,Fargs,InV,0utV),
( retract(declared\(P, _, ,_)), fail ; true),
% writel{|’ Declaring ° (P,InV,0utV,Ps)}), nl,
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assert(declared)(P,InV,0utV,P’s)).

varplusminus{|V|Pargs|,|+(T)|Fargs],|(V,T)| lusV],MinusV) « 1,
varplusminus(Pargs,Fargs,PlusV,MinusV).
varplusminus(|V|Pargs),|—(T)|Fargs|, PlusV,|(V, )| MinusV]) « 1,
varplusminus(Pargs,Farge,PlusV,MinusV).
varplusminus({},{}.1}.I}) — !-
varplusminus(Pargs,Fargs, PlusV,MinuasV) —
break( varplusminus(Pargs,Fargs,PlusV,MinusV) ).

declared(P,I%,Po ) —
nonlerminal(P), P=..| _,P,Po).

declared(P,P5,Po,Pa) ~—
declared1(P,Pi1,Pol,Pal), |, Fil=Fi, Pol=Po, Pal=Pa ;
ask _ for(| Declare °,F\,declare{ Pv,Pa)), declare{ Pv,Pa),
declared(P,Pi,Po,Pa).

allribule{X,Xa) —
declared(X, , ,Xas), !, member(Xa,Xas).

inpul _vars(P,InV) —
declared(P,InV, , ).

oulput _vars(P,0utV)
declared(P, _,OutV, ).

atominfo{P, _, , )« break( atominfo(P,_, , )).
declare__called(P,Ps)
( retract(called)(P,_)), fail ; true ),
asserl(called1(P,Ps)).

called(P,Q) ~
system(P), \, fail ;
called)(P,Qs), |, member(Q,Qs) ;
ask _ for{|’ Procedures called by *,F|,Ps),
and__lo_lisl(Ps,Psi),
declare__called(P,Ps1).

11.11 General utilities

96%%6%% DSUTIL.
/* Utilities used in the debugging system */

«— public
member/2, append /3, reverse/2, rev/3, sel/2, add1/2, ask__ for/2,
ask _ for/3, confirm/1, writel/3, write/2, writel/\, read/2,
reade/1, direclive/1, writev/\, letlervars/1, unify_vars/2,
break/1, varand/2, varlisl/2, mgl/2, size/2, verify/1, ground/1,
varianls /2, list _lo_and/2, and _lo_ lisl[2, and_member/2,
Jorall/3, portray/\, portrayl /1, bagof0/3, setof0/3, new/2,
plisting/1, ask _then _do/2.

—mode{member(?,+)).
member(X [ X]_]).
member(X,|_|L]) ~— member(X,L).

append((],L,L).
append(|X|L1},1.2,|X]L3]) — append(L1,L2,13).

reverse{ X)) — ref X ||,V).
ren(|X]Xs),Ys,Z3) «— re Xs,|X]Ys],2s).
rev|],X's,Xs).

sel(PV) —
retract(valuc(P,)), ", sel(P,V) ;
asserl{value{P,V)).

add)(P V1) —
retracl(value{P,V)) , integer(V), |,
V1 is V41, assert{value(P,V1)) ;
writel(|'no value for °,P,", initializing it to 1°}), nl,
sel(P0), Vi=1.

ask _ for{Request, Answer,Test) —
repeal,
ask _ for{Request, Answer), Test, \.

ask _ for{Request, Anawer) —
repeal,
writel{ Request), write{*? °), ttyflush,
reade(\),



( directive(X) , !,
(X,!; write{"?°), nl ),
ask_for{Requesl,Answer) ;
Answer=X ), !

confirm(P) —
ask _ for(P,V),
( V=true !, true;
V=false, !, fail ;
con firm(P) ).

% writel(L,E,S) — write list L, with list elements format E and
€% seperalor S.

wrilel(LE,S) «—
var(L), !, write(E,L) ;
L=}, ", true;
L=}, , write(EX)
L=[X]L1}, \, writel(X,E,nil), write(s,S), writel(L1E,S) ;
write(E,L).

write{w,X) — write(X).
write{v,X) ~ writer{X).
wrile(s,S) —
S=nil, !, true ;
S=nl, |, nl;
=bl, !, wrilc( : ‘) ’
S=comma, !, write{ ", ) ;

write(S).

writel(L) —
writel(L,v,nil).

read(P,X) « prompl(P1,P), read(X), prompl(P,P1).
reade(X) +~

read(X1),

( expand(X1,X), !, tree ; X=X1).
ezpand(l,true). ezpand(yes,irue). expand(y,true). ezpand(/, false).
ezpand(no, false). erpand(n,false). ezpand(a,abort). ezpand(bbreak).
erpand(push exe).

directive{abort).
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directive(lrace).

directive(break).

direclive{in fo).

directive( X)
X=lrue, !, fail ;
‘\'=(_=<_), !' !lll.' H
X=(_<_)\, fail;
X=‘__>_)t !, Jail ;
X=(_>=_),", fail;
system(X).

wriler{ X) —

lettervars(X), wrile(X), fail.
write X).

letlervars(X) «
varlist(X,V1),
% sorl(V1,V2),
=,
unify _vars(V2,
X520, U,V WX, 20, UL, VL, W,
X2 N B, U VR WY X3 YR, 237, U, VB, WS,
‘X4°,°Y4',°Z4°,°U4° VA WR),

unify_vars([XILILIX|L2]) — 1,
unify vars{L1,L2).

unify_vars(_|LA}|_|L2]) ~ !,
unify _vars(L1,L2).

unify vars(_,_ ).

break(l) «— portray(D), nl, call{break).

«— mode varlist(+,—).
% varlial{T,L,|]) — L is all occurances of distinct variables in term T
varlist( X L) — varlist(X,L,[)), !.

«— mode varlist(+,—,?).
varlist{\ |X|L),L) — var{X),!.
varlis)(T,[0,1) — T =.. [F]A), !, varlisti(A,LO,L).

varliat)(|TIA},10,L) «— varlist(T.10,L1), !, varlist}(A,L1,1).
varlisti({],L,L).
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portray{ X).
—mode mgt(+,—-).
mgl(P,10) —
Junctor{ P,F,N), portrayl{ X,N) —
Junctor{ FO,F,N). N1 is N-1,
( var(X), !, write(X) ;
atomic( ), !, write(X) ;
veri f ) — \+(\ +(P). N=0, 1, write{ "#°) ;
X=|_|_, 1, write(’['), portray_list(X,N1,5), write{’]’) ;
ground(P) «— numbervars(P,0,0). X=(_,_)\, write(’("), portray _and(X,N1), write(’)’);
. X=.[HA}, \, portray _term(F,A,N1) ;
variants(P,Q) — break{portrayi(X,N)) ).
veri fy{( numbervars{P,0,N), numbervars(Q,0,N), P=Q )).
porlray _args(X,N) —
varand(P,Val) — X=||, |, true;
varlist(P,Vs), X=(1, !, portrayi(Y,N) ;
list_to _and(Vs,Vel). X=|1Ys], !, portrayl(Y,N), write(’,’), !, portray _args(Ys,N).
list_to__and([],true) — 1. portray_lisl{(X,N,D) —
list_to__and(|X],X) 1. var(X), !, portrayl(Y,N) ;
list_to__and(|X]Xs|,(X,Ys)) 1, : X=|), !, true ;
list_to _and(Xs,Ys). D=0, !, write{".#°) ;
X=|[11|}2}, ¥Y2==|), \, portrayi(Y1,N) ;
and_to_list((X,1)|X]2]) 1, X=[V1112], var(}2), 1, portrayl(V1,N), writd *|'), !, portrayl(¥2,N) ;
and_lo_lisi(Y,2). '={¥1,¥2|¥3}, !,
and_lo_ list(truef]) — 1. portrayi(Y1,N), write(’,’), D1 is D1, !,
and_to_lisi(X,|X]) — !. portray _list([V2|Vs],N,D1) ;
X=[Y1|¥2}, 1, portray)(Y1,N), write("|), !, portrayl(Y2,N).
and_member(P(P,Q)). portray _and(X,N) —
and _member(P(P1,Q)) « !, and_member(P,Q). var{\), !, portrayl(X,N);
. and_member{P,P). X=(Y.Ys), !, portrayl(Y,N), write{,"), |, portray__and(Ya,N) ;
portrayl{X,N).
Jorall(X,PY) «—
selofAY,X'1P,S), forall}(S). portray _tlerm(F |A],N) —
current_op(P,T,), 1,
Jorall1(|)). urile(F), write{" °), portrayl(A,N) .
Joralli(|X]5]) — X, forall}(S). portray _term(F|A,B|,N) —

current_op(P,T.F), !,
portrayl(A,N), uritelF), portrayl(B,N).

porlray(X) porlmy_lerm(f',A,M.‘— . o
lettervars(X), wrile(F), write{ '(°), portray__args(A,N), write(’)’).
portrayl(X,8),

Jail.
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. bagof{X,P,S) —
bagofAX,P,5), \, true ; S=|].

scloﬂl(‘.\'.”,S] -
selofiX,P,S), !, true ; S=||.

new{X,}) — % Yia a fresh copy of X (with new variables)
abolish(’grosa hack’,1),
asserl(’gross hack’(X)),
retracl(’gross hack’(Y)).

plisting{{}) — .
plisting([P|Ps]) — !,
plisting(P), nl, !, plisting{Ps).
plisting(X) —
(X=(P-_)", m!‘(””l) mgl(X,P1)),
uritel(|’ Listing of *,P1,":")), nl,
( clause(P1,Q), tab{4), wnlcv((Plo—Q)), write"."), nl, fail ;
true ), nl.

ask_then_do{Queation,Responses) —
T 9% display question. A response is a list of (Anaw,Aclwn) pairs;
°6 veri fy thal the answer the user gives is in a pair;
% if 80, perform the action associaled with .
ask for{Queslion, Answer),
member{{Answer,Aclion),Responses) — Action ;
seloflAnswer, Action lmcmber'(Anawer,Achon),Reamnea),Anawcn)
writel( legal answers are °,Answers), nl,
ask_then _do{Question,Responaes).

11.12 Initialization

%%%%% PDSINI.

% initialization stuff.

« declare{gsori(+|z),~[z]) |determinate,total]).
« declare _called(qsort(X,Y),
[qaorl(? U),partition(V,WV,X1,Y1),append(Z1,ULV1),d(W1,X2,}2)]).
« declare{partition(+|z},+z,—|z],—[z])|determinate,total]).
« deelare _ called(partition{X,Y,Z;U),|partition(V.W,X1,11), Z1<ULVI=<WI|).

+ declarelappend(+|z],+|z],—|z]),|determinate, total)).
+ declare _called(append(X,Y,7), append(U,V,W)}).
« declare(le(+0,40),|determinate]).

« declare__called(le{ _, _),{le{Z,U))).

« declare{inaeri(+z, +|z| —[z]),|determinate,total]).

« declare_called(insert(X,Y,Z) |insert(U,V.W), X2< Y2, X1=<V1|).

« declare{isort(+|z],—[z]).|determinate total)).

+ declare _called(isort( X,Y),[isort{ ZU),insert(V,W,X ).
o declare{+z" =< "+ 1z,|determinate]).

«— declare(4+z° < "+z,|determinale]).

I1.13 Type inference and checking

%%%%% TYPE
%%%% Typing ulilities for pds

+— public
term _lo_vars/2,
typed term/2,
alom_wr(ype/&

varlype/4,
type _check/1.

«—mode type(1,?,—,—).
% type{Type, Name,Terms, TermsType).

type{z,object,[}[}).
typef,integer,j0,s( ) |5(0)]).
typel1,integer,jo).I]).
type( 10,boolean,

fo.Lmol( _)and(_,_)orl _, ),

[not(01),and(01 01),0r(01 mm
typefiobinaryfniliol _),i( ) lolio)itio)])
typel 1,4t {111 _|_ ). Talll])
typel XY, it of I_| _ILIXIXTI.
typelbl(L), binary tree’,

leafl ), lea ALMUSHLIBLI).
type{Ibi( X)), labeled binary lree’,

[néte( _, _, Lt X), X, 16¢( X)))).
typetti(L),’ hm-—lhree tree’,

Heaft_ WA _._,_Dltea(L)HL.L{tee(LIN).
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type{terminal,terminal,[X],[}) —
terminal(X).

%% inpul a variable and its lype, inslantiate il to a lerm and
%% relum a list of the variables in the term + their types.
term _to_ vars((Term,TermType),Vars) «
term__of\TermType, Term),
setof _vartypel(Term,TermType),Vars).

term _ofType,Term) —
type(Type, _,TermList, ),
member{Term,TermList).

typed _lerm{Type,Term)

type(Type, _, _,TypedTerms),
member{Term, Typed Terms).

% atom _varlype{ P,Vi,Vo) — get type of vars in P.
atom _ vartype(P,Vi,Vo) —
inpul _vars(P,P%),
outpul _vars(P,Po),
terms__lo_vartype| Y, Vi),
terms _lo__ varlype{Po,Vo).

% terms__lo__ varlype(T,V) — take a list of (Term,Type) and return a list

€ of (Var,Type) for all vars in the lerms

terms_lo_vartype({]|).

terma __to_vartype(|(Term,Type)|T),Ve) —
selof _vartype((Term,Type),Vsl),
terms_lo_ varlype(T,Va2),
append(Vs1,Vs2,Vs).

setof _vartype{(Term,TermType),Vars) —

selo fi(Var, Type),varlype{ Term , Term Type,Var, Type),Vars), 1.

setof _vartype((Term,TermType),|)).

%% vartype{ Term,TermType,Var,VarType) —
% The type of variable Var that occurs in
% term Term of type TermType is VarType
%% reporls on lype violalion?
varlype(Var,Type, Varl, Typel) —

var{Var), !,

Var=Varl,

Type=Typel.

varlype(Term, TermType Var,VarType)
Term=..|Funclor|Args],
typed _term(TermType,Terml), Termi=. [Functor|ArgsType|,
vartypel(Args,ArgsType,Var,VarType).

«—mode varlypel(+,+,—,1).

vartypel(|Term| _|,[TermType| _|,Var,VarType) —
varlype{Term,Term Type,Var,VarType).

vartypel{(| _|Args|,| _|ArgsType],Var,VarType) —
varlypel(Args,ArgsType,Var ,VarType).

+—mode type _check{+).
type__check{—(F,Q)) « !,

type _check(P), type _ check(Q).
type _checl{(F.Q)) — !,

type _check(P), type _ checHQ).
type__check{ Atom) +

type(Atom, _, _|AtomType]),

type _ check{ Atom,Alom Type).

«—mode type _check{+,+).
type__check{Term,TermType) —
term_of\TermType,Term),
( atomic{Term) ;
Term="_.[Functor|Args],
typed _lerm(TermType,Term1),
Terml=..[Functor|ArgaType],
type _checkl(Args, ArgsType) ).

+—mode lype _checkl(+,+).
type_ check )}
type_check)({Term|Args),|TermType| ArgaType])
type _check{Term, TermType),
type _check1(Args, ArgsType).
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