Translational Lemmas, Polynomial Time,

and (log n)J—Space

Ronald V. Book
Research Report #32

September 1974

- This research was supported in part by the National Science Foundation under
Grant GJ-30409. ’

ABSTRACT

Translational lemmas are stated in a general framework and then
applied to specific complexity classes, Necessary and sufficient conditions
are given for every set accepted by a Turing acceptor which operates in
linear or polynomié.l time to be accepted by a Turing acceptor which

operates in space (log n)) for some jz 1.

Introduction

. There has been a great deal of effort expended iﬁ attempting to
determiné how different complexity classes relate to one another. In this
W§rk certain '"translational'' techniques appear and reappear in different
~ guises, and the .notion of a set which .is "class-comﬁlete" with respect to
certam redu01b111t1es plays an important role. The purpose of this paper
is to draw attention to the use of these translatmnal techniques and complete
sets, and in particular to clarify the strategy used in [1, 2] where it is
shown that cervtain classes are distinct (i.e., not 'equal to one another)
without indicating whether one is contained in the other.

In Section 2 we state translational lemmas in general terms in order
to describe the techniques- used in [1,2,6,7,9,12,13]. InSection 3 we
illustrate the use of these fechniql;.es by studying some specific complexity
classes. | |

One of the important underlying questions in automata-based compu-
tational complexity is that of time-space'trade‘aoffs: if a process takes a
given amount of time (space) to perform, how mﬁch space (time) does it
bta.ke? Recently it has begn conjectured that for a suitable bounding function
f, every set aécepted by a deterministic or nondeterministic Turing
acceptor which operates within time bou.nc_i f(n) can be accepted by a
deterministic Turmg machine which operates within space bound
(log f(n))J , for j=2. InSection 3 of this paper, we establish necessary
and sufficient conditions for this to occur when f(n) =n and j21 |is
any integer. In particular, it is shown that this relationship ;axists if and

only if every set accepted by a Turing machine which operates within

-3-

/
polynomial time can be é.ccepted by a Turing machine which operates
withiﬁ a space bound which is polynomial in log n. From these
conditions it is shown that certain.classeﬂs- defined by time bounded‘
acceptors are not equal to certain classes defined by space bounded

acceptors.

Sectio_n 1,

The classes studied here are specif_ied by deterministic and non-
deterministic multitape Turing acceptors which operate within time
bounds or spé.ce bounds. The functions f used t6 bound the amount of
time used in a Turing acceptor's computation are such that for all
nz20, f(n)= n, andare ''self-computable with respect to time' in
the sense that there is a deterministic Turing machine M which, upon
input w, runs for precisely f(|w]|) steps and ha.li:s.l The functions f

used to bound the amount of space used in a Turing acceptor's computa-
tion are such that for all n=2 0, f(n)= logn, and are ''self-computable
with respect to space'' in the sense that there is a deterministic Turing
macﬂine M which upon input w marks pi‘ecisely 1(Iw[), consecutive
tape squares and halts. |

For a Turing acceptor M, L(M) is the set of strings accepted
by M. It is assumed that the reader is familiar with the notion of
multitape Turing acceptors which operate Within time bounds or space
bounds. Both on-line and off-line Turing acceptors are considered.

An on-line acceptor reads its input from left to right. An off-line
acceptor can read its input in both directions. An auxiliary pushdown
acceptor [4] is an off-line Turing acceptor which has an auxiliary
storage tape which is restricted by the speéiﬁed space bound and a

~ pushdown store which is unrestricted. 3

1}?‘or a string w, [Wl is the length of w.

2Functions which are ''self-computable with respect to time"
or "'self-computable with respect to space' are often called "linearly
honest''. ,

3An auxiliary pushdown acceptor can be either deterministic or
- nondeterministic. When considering the class of sets accepted within a
specified bound, there is no difference in the computational power.

-5-

‘Notation. Let f be a bounding function.

(i) DTIME(f) = {L(M) | M is a deterministic on-line multitape

Turiﬁg acceptor which operates within time bound f}, and NTIME(f) =
{L(M) | M is a nondeterministic ron-lilne multitape Turing acceptor
which operates within time bound £} . | |

" (ii) DSPACE(f) = {L(M) I M Vis a deterministic off-line mﬁltitape
Turing acceptor which operates within time bound £}, and NSPACE({) =
{L(M) | M is a nondeterministic off-line multitape Turing acceptor
which operates within space bound {}.

(iii)) APDA(f) = {L(M) [M is an auxiliary pushdown acceptor which

operates within space bound f}.

Some of the classes considered here are defined by taking a
union of complexity classes where the union is taken over the positive
integers. A simple notation is adopted for the most frequently studied

" classes with hopes of making uniform the entire notational scheme.

Notation.
© " .
kgl NTIME(n), so that DTIME (poly(n))

is the class of sets accepted by deterministic Turing acceptors which

(i) Let DTIME(poly(n)) =

-

operate in polynomial time,
' oo
(ii) Let NTIME(poly(n)) = kL=J1 NTIME(nk) , so that NTIME(poly(n))

is the class of sets accepted by nondeterministic Turing acceptors
which operate in polynomial t'm'ne.

(iii) Let DSPACE(poly(log n)) = kok_;l DSPACE((log n)¥), and let
APDA ((poly(log n)) = ka:l APDA((log).

-6-

' The class of sets accepted by deterministic Turing acceptors
which operate within pblynomial time is DTIME(poly(n)). Cobham [3]
discussed the importaﬁce of the class of (‘f.unctions computed in poly-
nomial time; the subclass of characteristic functions corresponds to
DTIME (poly(n)). (In [1,5,7,10] this class is referred to as P.) The
class of sets accepted by nondeterministic Turing acceptors which
operate in polynomial time is NTIME (poly(n)). “Recently Cook [5]
and Karp [10] have shown the importance of the class NTIl\/LE(poly~(n))
in the study of concrete computational complexity. (In [1,5,7,10] this
class is referred to as NP.) |
| Iﬁ [4] it is shown that for any bounding function f, APDA(f) =
v DTIME(2°f). Thus, APDA(log n) = DTIME (poly(n)). Here

c0

- :
the class APDA(poly(log n) =) DTIME('°E ™) s also of interest.

There are several well known results concerning time-space
tradeoffs. In particular, for any bounding function f it is known that
DTIME(f) C N.TIME(f) C DSPACE(f) € NSPACE(f) ¢ APDA(f) =

ck>JO DTIME(ZCf). It is not known which of these inclusions is proper,
although at least one must be pro‘per since DTIME((f) 3_ cL>JO DTIME(ZCf),
Here the classes DTIME(poly(n)) and NTIME(poly(n)) are compared
to the classes DSPACE(poly(log n)), APDA(poly(log n)), and for any
52 1, DSPACE((log n))), NSPACE((log n)}), and APDA((log n)).
Réc;a.ll that for any ?f, NSPACE(f) c DSPACE(fz) [13] (Where
£%(n) = (f(n))%). Thus, DSPACE(poly(log n)) = kotjl NSPACE((log n)Y).

It should be noted that the methods used here can be applied to

other classes specified by subelementary bounds.

-1-
Section 2.

In this section we describe the translational lemmas.

.The scheme that we use is based on the notion of ";:educibility"
studied in recursive function tﬁeory [11]. We use the notion of
@ -reducibilities' for a‘class ‘%’ of functions, that is, we specify
that the reducibilities come from a given class € of functions. We
use.the notion of a set which is ""complete for a class with respect to
@ -reducibilities, ' emphasizing that completeness depends on the type

of reducibility used. Finally, we define the notion of a class ''closed o

under @¥-reducibilities.,"

Deﬁ‘nition. Let € be a class of functions.

(i) For fe€€¢, a set Ll is reducible to L2 via f if

L, ¢ domain(f) and f (L)) =L

1 |

(ii) A class Ql of sets is ¥-reducible to a class QZ

-1 . . (
.2’1 c ¢ ‘(QZ),_ i.e., for every 'Ll € Ql there e:gst Lze JZ

of sets if

is reducible to L. via f.

and fe% such that Ll 2

(iii) let 2 be a class of séts. A set L0 is @-complete for

if LjeZ and £ is ¢-reducible to {Lo}.

(iv) A class % of sets is closed under qg-reducibilities‘if

¢ 2 c 2

These notions are by no means new. We define them here in
order to emphasize the dependence on the type of reducibility used.

Further, the notion of a class being ''closed under @ -reducibilities"

-8

uﬁderlies vma,ny of the arguments in the literature regarding ''complete"
sets foi' various complexity classes. However, this idea has not been
‘made explicit previously; we believe that this is a useful concept.
See [1,2,5,7,9,10,13] for examples.

The first translational lemma follows immediately from the
definitions above. Its statement represents an attempt to abstract

the use of translational techniques in [1,2,5,9, 10, 12].

Lemma 2.1, Let Ql. '-QZ’ and 23 be classes of sets, and let

€ be a class of functions. Suppose that Ql is %-réducible to

%, andthat @, is closed under @-reducibilities. If - 2,S 2y,

then. 2’1 € %5
H sz is a class which is closed under €-reducibilities and

1

then Ql c 56’2 if and only if LO € 522 This has been the main use

of '"class-complete'' sets in the comparison of complexity classes

.?1 is a class containing a set LO which is @-complete for 2.,

found in the literature. See [2, 5,17,10, 13] for examples, We extend

this technique to include its use in [1,2].

Lemma 2.2, Let € bea élé.ss of functions. Let Q2 be a class of

sets such that there exists L0 which is €-complete for Q Let

&£ be a class of sets such that for some index set I, ;Q= iLGJI Qi

3 /where each Qi is a class of sets which is closed under €¥-reducibilities.

Then the following are equivalent:

(i) there is some i such that Ly€ Z 5
(ii) there is some i suchthat Qc Qi; .

(iii) Qc 2.

Proof. Since L0 is ¥-complete for 2, for every L ¢ there

exists f€¢® suchthat L is reducible to LO via f. If there is .
' somé i such that L0 € Qi, then since .Qi is closed uﬁder

€ -reducibilities, this implies that every L€ isin Qi, so that

(i) implies (ii). Since £-= igl gi, (ii) implies (iii) and (iii) implies (i). o
Lemma 2. 3. Let € be a class of functions. Let £ be a class of

sets such that there exists LO which is #¥-complete for . Let £

be a class of sefs such that for some index I, £=_U_ &% where each

= i€l i

2z, is a class of sets which is closed under @¥-reducibilities. If for
all iel, £ # % then Qf2.

Proof. If Q2 c %, then by Part (ii) of Lemma 2. 2 there is some i

such that Q¢ Qi $ Q.. Hence, N #%Z. 0O

| 'Thé notions specified abové have been used widely in the study
of complexity classes. In particular, Lemma 3 describes t.he strategy.
- used in [1,2] (and in Section 3 of this papgr) where it is shown that
certain classes are distinct without showing that one Ais or is not

_contained in the other.

ST e B PR NAC R N W iy

-10-

Section 3.

In this section we develop several results concerning the classes

NTIME (poly(n)), NTIME(n') for j> 1, DSPACE(poly(log n)), etc.

These results are established for their own sake as well as providing
examples Ain the use of the translational lemmas of Section 2.

First we describe the classes of reducibilities that we use.

Notation.

(i) Let II be the class of all functions f of the following form: for .
some finite alphé.bet Z, some c¢dZ, and some constant k=1, f
is defined for all we % by f(w) = we'™ where lwcml = _lw[k

lcecl m = [wlk- lwlc

(ii') Let % be the class of all homomorphisms between free rhohoids,
i.e., fe &#. if and only if there exist finite alphabets £ and A such
that f:$% o5 A% is a function with the property that f(e) =e and for

all n=1 and?.ll ajr...0a €L, f(al-uan)=f(al)---f(an).

The class II is a subclass of the class of functions computed by

- Turing machines in polynomial time. In particular, every function in

I can be computed by an on-line deterministic Turing machine which

operates in polynomiél time and log n space. Notice that these

- functions are one-to-one. One uses such a function to '"pad" the length

‘of a string by an amount which is a polynomial in the length of the

string being padded.
" The class & has been used for many purposes in automata and
formal language theor;r. A class is closed under #-reducibilities if and

only if it is closed under inverse homomorphism,

-11-

In order to compare classes de,fined by time-bounds and space-
bounds, we need to show that the space-bounded classes are closed
~under [I-reducibilities and under F-reducibilities. We accomplish

this in the following lemmas.

Lemma 3. 1.. Each of the following classes is closed under [I-reducibilities:
DSPACE(poly(log n)), APDA(poly(log n)), and for every j=1,
DSPACE((log n))), NSPACE((log n))), and APDA((log n))).
Proof. We give a proof for the case of DSPACE((log n)j) for fixed
J» the proofs for the cases NSPACE((log n)j) and APDA((log n)j)
being the same,. | |

Let L1 and L_ be two languages such that for .some fel,

2

L1 is reducible to L2 via f. Thus, for some finite alphabet ¢,

some symbol c¢d £, and some integer k= 1,

(i) f: %5 (2 U {c})* is defined by f(w) = we™ where lwcml = I_w[k '

for every w g ZI¥%;

(i) L, cZ*;and

(iii) for all weZ*, w¢ L1 if and only if f(w) ¢ LZ'

Suppose that L, ¢ DSPACE((log n)’), so that there is a

deterministic off-line Turing acceptor M, such that L(Mz) = L2

2

~and M2 operates within space bound (log n),

We must show that L1 € DSPACE((log n)j). From M construct

Z’
a deterministic off-line Turing acceptor M 1 which behaves as follows.
Upon input wI*, M, firstwrites lwlk in binary on part of its

storage tape (this takes log lw[k tape squares), and then simulates

Mz's computation on wc'™, where lwcTnI = lwlk. M1 performs.

-12-

this simulation by reading w on its own input tape and simulating Mz's

reading of c™ on that part of its storage tape which records lwlk.

Thatis, M, performs this simulation by reading w on its own input

1

tape and simulating Mz's action on w. When M2 wishes to move
to the right of w in order to read c's, M1 simulates the read head

on M_'s input tape by keeping track of the position of Mz's head

2
relative to the rightmost letter of w, on that part of its storage tape

which records lek in binary, and simulates the activity on M;Z's
storage tapes on its own storage tapes. When M2 moves back and

forth within the c's, M, keeps track of the position of the head on

' Mé's input tape on that portion of Ml's storage tape which contains

y.lw[k and simulates the activity on M

Z'S‘ storage tapes on its own

storage tapes.
We claim that M1 accepts w if and only if M
Further, M

2 accepts f(w),

so that L(Ml) =L uses no more space on input w

I 1
2 did on f(w). Now M2 operates within space bound (log n)?
where n = Ide[= |w|k. But (log lvvlk)J = kJ(log IWI)J, so that

than M

’ Ml operates within space bound k‘](log n)). Since DSPACE(kj(log n)J) =

DSPACE((log n)’), this means that L, ¢ DSPACE((log a)).

1 2

" languages such that for some f¢ll, L1 " is reducible to L2 via f.
© ‘

" 1f L, € DSPACE(poly(log n)) =J.L=J1 DSPACE((log n)’), then there is some

Now consider DSPACE(poly(log n)). Let L, and L_ be two

k such that L, ¢ DSPACE((log n)%). But we have shown that

1

to L, via f implies L, ¢ DSPACE((log n)%) ¢ DSPACE (poly(log n)).

Thus DSPACE(poly(log n)) is closed under [I-reducibilities. Similarly,

DSPACE((log n)k) is closed under [I-reducibilities so that L, reduces

APDA (poly(log n)) is closed under II-reducibilities. O

-13-

Lemma 3.2. Each of the following classes is closed unef .f}'-x;educibilities:

i DSPACE(poly(log n)), APDA(poly(log n)), and fqr every j=1,
DSPACE((log n)’), NSPACE((log n))), and APDA((log n)}).

A_I_’r_o_gf_.v We give a proof for the case of DSPACE((log n)j) for fixed j,
the proofs for the cases - NSPACE((log n)j) and APDA((log n)j) being
the same,

Let Ll and L2 be two languages such that there is a homomofphism

h:Z* 5 A* such that for all we¢Z*, weL, ifand onlyif h(w)e€ LZ’

1

where Ll_C_Z* -~ that is, .Ll is reducible to L2 via he #.

Suppose that LZ € DSPACE((log n))), so that there is a deterministic

off-line Turing acceptor M_ such that L(MZ) =1L and M_ operates

2 2 2
within space bound (log n)J. We must show that L1 € DSPACE((log n)J).

From M2 construct a detérminis’tic off-line Turing acceptor Ml which

ey each aiez‘,, M1 imitates

the action of MZ on h(al- . an) = h(al) s h(an). Since there is a

behaves as follows.l Upon input a

fixed boﬁnd k such that forall a¢y, 0= [h(a)] < k, M1 can

remember the entire string h(a), ' a€y, inits finite state control

2

of space on ay°+ra, as M, useson h(al- . -an). Smce M2

within space bound (log n)) and h(al- .. é.n) < kn, this means that

while imitating M, on h(a). Now Ml- will use the same amount

operates
M1 operates within space bound (log kn)! < kj(log n)j. Thus ,

"L, =L(M)) ¢ DSPACE((log n))) = DSPACE({log n))).

1
To show that DSPACE(poly(log n)) and APDA(poly(log n))
are closed under F-reducibilities, one uses an argument just like that

in Lemma 3. 1. 0O

L

-14- .

To compare NTIME (poly(n)) with space-bounded classes, we
shall depend upon the fact that NTIME (poly(n)) is [-reducible to
" NTIME (n) and that there is a set which is & -complete for NTIME (n).

These results are obtained in the following lemmas.

Lemma 3.3. The class NTIME(poly(n)) is I-reducible to the class

NTIME (n).
. (e o] .
Proof. If L, ¢ NTIME(poly(n)) = jgl NTIME(n!), then there exists a

iz 1 such that L1 € NTIME(nJ), and hence, there exists a nondeter-

ministic Turing machine M, such that L(M 1) = L. and such that

1 1
2M1 operates within time bound n). Let Z be a finite alphabet such

that L, c =%, andlet c¢d X be anew symbol. Let

1

L, = {wcml wel,, l.wcml = [wlj }. From M, onme can construct

a nondeterministic machine M_ to recognize L_ as follows. Initially,

2 2

' M2 reads input symbols from £ and imitates M1 on that initial

portion of the input. While imitating M, on w, M2 simultaneously

checks whether the number of c¢'s is precisely [w[J - [wl The

1

‘imitation of M1 on w takes at most [WIJ steps since M1 operates

within time bound nJ, and having recorded lwl while reading w,

MZ' can check whether there are exactly lwlj - [w| e's in real time.
Thus, M2 can be made_to operate in real time, i.e., within time,’-
bound n, so that L2 ='L(M2) € NTIME(ﬁ). If f:2%5 (U {c})*

" is defined by f(w) =wc'" where m = [wlj - |w|, then fen

and clearly L1 is reducible to Lz via f. Since L1 was taken

arbitrarily from NTIME(poly(n)), we have the result. g

«15-

Lemma 3.4, For every j=1, there exists a language LO which is

& -complete for NTIME (nJ).

Proof. This is established in [2]. The language given in [2] is the set

1 2

nondeterministic multitape 'Turing acceptor which operates within time

bound nJ, each ;‘1 is the encoding of an input symbol of M, and

of all strings of the form a, Ma., M --- ;n_M where M encodes a

ayeea is accepted by M. For further details, see [2]. O

.~ To show that NTIME(poly(n)) is included in DSPACE(poly(log n)),

itis enough to show that NTIME(n) is so included.

Theorem 3. 5. The following are equivalent:

(i) NTIME (poly(n) € DSPACE(poly(log n)) (resp., APDA(poly(lpg n)));
(ii) NTIME(n) c DSPACE(poly(lo'g n)) (resp., APDA(poly(log n)));

(iii) there exists j= 1 suchthat NTIME(n) c DSPACE((log n)‘])

- (resp., APDA((log n)j));

(iv) there exists j= 1 suchthat NTIME (poly(n)) < DSPACE((log n)’)

(resp., APDA((log n)))).

Proof. We i)rove the result for DSPACE(), the probf for APDA()
being the same. It is immediate from the definitions that (i) implies (ii),
(iii) implies (ii), (iv) implies (i), and kiv) implies (iii)

"To prove that (ii) impliés (iii), we use Lemma 2,2, By Lemma 3.4,

there is a language L whichis F-complete for NTIME(n). By

0
Lemma 3.2, for every j=1, DSPACE((.log n)J) is closed under
& -reducibilities. Suppose NTIME(n) c DSPACE(poly(log n)). Then

by Lemma 2.2, there exists some k=1 suchthat NTIME(n) c

DSPACE((log n)k),

-16-

‘To prove that (iii) implies (iv), we use Lemma 2.1. By Lemma 3. 1,
for evéry j=1, DSPACE((log n)j) is closed under II-reducibilities.
By Lemma 3.3, NTIME(poly(n)) is II ;‘feducible to NTIME(n).
Suppose that for some k= 1, NTIME (n) c DSPACE((log n)k). By

Lemma 2,1 this implies-that NTIME(poly(n)) ¢ DSPACE((log n)k), o

From the equivalence of (i) and (ii) in Theorem 3. 5, we see thé.t
NTIME (poly(n)) DSPACE(poly(log n)) if and only if NTIME (n) ¢
DSPACE(poly(log n)), By.Lemma 3.4, there exists a language Lo]
which is #-complete for NTIME(n), and by Lemma 3.2 DSPACE(pbly(log n))

is closed under F-reducibilities. Thus we have the folldwing result.

.Coréllarz. Therg exists a languagé Lo'e NTIME(n) such that
NTIME (poly(n)) < DSPACE(polY(log n)) (fesp. , APDA(poly(log n)))
if and only if L € DSPACE(poly(log n)) (resp., APDA(poly(log n))).
~ The fact that the space-bounded maciqines were deterministic
played no role in the proof of Theorem 3.5. Thus, if NSPACE()
is substituted for DSPACE() throughout, the resulting statements
 still hold. | |

There.are éther classes which may play the role of NTIME(n)
in Theorem 3. 5. In particular it is eaéy to prove that for any j=1

the following are equivalent:
(i) NTIME(n) c DSPACE((log n)));

(ii) every language accepted by a simple nondeterministic Turing

acceptor which operates within time bound nlogn is in DSPACE((log n)J);4

A simple Turing machine has exactly one tape upon which input
is written and work is performed, and has only one read-write head on
that tape.

-17-

(iii) every language accepted by a nondeterministic on-line, one
storage tape Turing acceptor which operates in linear time is in

DSPACE((log n))).

There are several results which follow from Theorem 3,5 and

its proof.

Theorem 3. 6. NTIME(poly(n)) # DSPACE(poly(log n)) and

NTIME (poly(n)) # APDA(poly(log n)).

Proof. In [14] it is shown that for every j=1, DSPACE((log n)j) %
DSPACE((log n)j+1). Thus, for all j, DSPACE((log n)J gDSPACE((poly(log n)).
Similarly, by results in [4] and [8] it can be shown that for all j,

APDA((log n)J) $ APDA(poly(log n)). Thus this result follows frorﬁ

Theorem 3.5 and Lemma 2. 3. 0O

Theorem 3.7, For every jz= 1, NTIME(’nj) £ ISSPACE(poly(log n)) and
NTIME (n)) # APDA (poly(log n)). |

Proof. As noted in the proof of Theorem 3. 6 for every j= 1,
DSPACE((log n $ DSPACE (poly(log n)) By- ‘Le.mma 43. 2, for every
j=1, DSPACE((log n)) is closed under &-reducibilities. By

Lemma 3.4,.for every k; 1, there is a set which is %-complete

for NTIME(nk). From Lemma 2. 3 we conclude that for every k=1,
NTIME(nk) # DSPACE(poly(log n)). The proof that NTIME(nk) #

APDA (poly(log n)) is the same. O

Theorem 3,8, For all j, k=1, NTIME(n)) # DSPACE((log n)")

and NTIME(n)) # APDA ((log n)~.

-18-

-Proof. Suppoée that for some j, k=1, N'I‘IME(nj) c DSPACE((log n)k).
Then NTIME(n) C DSPACE((log n)*). By the equivalence of (iii) and

(iv) in Theorem 3.5, this implies' that NTIME (poly(n)) ¢ DSPACE((log n)k).
Since for all j, NTIME(n)) ¢ NTIME(poly(n) [1, we have

NTIME (o)) ¢ DSPACE((log 2%, o

Again, if DSPACE() is replaced by NSPACE() in Theorem 3.8,

then the resulting statements are true.

In Theorems 3. 5-3.8 the classes specified by time bounds involve
only nondeterministic acceptors. The results still hold if one considers
deterministic acceptors instead of nondeterministic acceptors. .However, .
' the proofs must be altered slightly.‘ In particular, Lemma 3. 4 does not
hold for deterministic acceptors; 'To obtain the deterministic counter-
parts of Theorems i3. 5-3. 8, one must note that there is a language
L, € DTIME (n?) with the property that for every L ¢ DTIME(n) there
is a function fe & suchthat L is reducible to L, via f. This

provides the appropriate counterpart of Lemma 3.4. We state the

counterparts of Theorems 3.5-3. 8 without proof.

Theorem 3.9. The following are equivalent: .

(i) DTIME (poly(n)) ¢ DSPACE (poly(log ‘n)) H

(i) DTIME(n) ¢ DSPACE(poly(log n)) ;
(iii) there exists j=1 suchthat DTIME(n) ¢ DSPACE((log n)’) ;

(iv) there exists j= 1 such that DTIME (poly(n)) c DSPACE((log n)’).

-19-

Theorem 3. 10.

e

© (i) DTIM.E(poly(ﬁ)) # DSPACE(poly(log n)) ;
(i) for every j=1, DTIME(n)) # DSPACE(poly(log n)) ;

(ii) for every j, k=1, DTIME(n)) # DSPACE((log n)").

The results in Theorems 3.6, 3.7, 3.8 and 3. 10 are of the same
form. They state that two classes, specified in different ways, are
not equal. But no information is given in the statement of the result
or in the proof as to whether one class is a subclass of the other.

In [1] it is shown that NTIME(poly(n)) = DTIME (poly(n)) if
and only if NTIME(n) ¢ DTIME (poly(n)). The proof (rephrased in
terms of the concepts used here) is based on Lemma 3, 3 and the

observation that DTIME (poly(n)) ' is closed under H-reducibilities;

Greibach [7] has extended this result to show that NTIME(poly(n))
DTIME (poly(n)) if and only if DTIM.E(poly(n)) contains every
language of the form h(Llﬂ LZ) where Ll and L2 are linear
context-free- lé.nguages and h is a nonerasing'homomorphism. The
languages used in Greibach's proof are linear context-free and in

DSPACE(log'n). This leads to the following observation.

Proposition. For any j=2 1, if DSPACE((log n)J) (resp., NSPACE((log n)J),
_ APDA ((log n)J)) contains the image under nonerasing hbmomorphism of
DSPACE(log n), then NTIME (poly(n)) < DSPACE((log n)J) (resp.,

NSPACE((log n)}), APDA((log n))).

-20- v‘ . '/,/ .
~Some of the inclusion relations between the classes studied here
are illustrated in Figure 1. Some of the statements of inequality of
classes are given in Figure 2. The statements that a class specified
by time-bounded machines is not équal to a class specified by space-

bounded machines are new results.

-21-

ACKNOWLEDGMENT

I wish to thank Celia Wrathall for many helpful comments

on this work.

. APDA (@!y(log n))

7

* DSPACE (poly (logn)) | o

APDA ((log m)¥)

'DSPACE ((logn)¥)
T

DSPACE (log n)

%, - = &, redeos e DTIVE (n)

| ;f\ C-/%»afz_ |

| / i
APDA (log n) = DTIME (poly ()

CDTIME (nd) "

J/

=22

. NTIME (poly(n })

NTIME (n))

NTIME (n)

/
7

23

APDA (poly(log n))

APDA ((log n)K, k>1 #

APDA(logn) Z | #

DSPACE (poly(log‘ n)) Pl A 2

~ DSPACE ((log n)k) 21 ?21?|#

- DSPACE (log n) 2l2 12 | #1|# |

NTIME (poly (n)) 2l212lzl2|? \

NTIME (n),] >1 VN IR I VN R e

NTIME (n) #l A2 # 22 2]

DTIME (poly(n)) #l#E|= 2|27 |?]|#

pTIME (n)) #2227 #

DTIME (n) IR Rl R O #
- : Fleure 2
| i' ? ;fZ.A. /ub(cx;re‘s TUAT 1T IS MoT

kﬁowb wt:en{E(z ‘;E\ = r?_ or Gf‘ %of; .

-24-

References

1. R. Book, On languages accepted in polynomial time, SIAM J,
Computing, 1 (1972), 281-287,

2. R, Book, Comparing complexity classes, J. Computer System

' Sci., 9 (1974).

3. A. Cobham, The intrinsic computational difficulty of functions,
Proc. 1964 Congress for Logic, Math,, and Phil., of Sci.,
North-Holland, 1964, 24-30.

T 4, S. Cook, Characterizations of pushdown machines in terms of
time-bounded computers, JACM, 18 (1971), 4-18,

5. S. Cook, The complexity of theorem-proving procedures, Proc.
Third ACM Symposium on Theory of Computing, (1971), 151-158.

6. S. Cook, A hierarchy for nondeterministic time complexity,
Proc. Fourth ACM Symposium on Theory of Computmg, (1972),
187-192.

1. S. Greibach, The hardest context-free language, SIAM J.
Computing, 2 (1973), 304-310,

8. J. Hartmanis and R. Stearns, On the computational complexity
of algorithms, Trans. Amer. Math. Soc., 117 (1965), 285-306.

9. O. Ibarra, A note concerning nondeterm1n1st1c tape cornplemhes,
JACM, 19 (1972), 608-612.

10. R. Karp, Reducibilities among combmatmrial problems, in R. :
Miller and J. Thatcher (eds.) Complexity of Cornp_uter Computations,
Plenum Press, 1972, 85-104.

11. H. Rogers, Theory of Recursive Functions and Effective Computab111ty,
McGraw-Hill, 1967. .

12, S. Ruby and P, C. Fis cher, Translational methods and computafional
complexity, Conf. Record IEEE Sicth Annual Symp. on Switching
Circuit Theory and Logical Design, (1965), 173-178,

) 13, W. Savitch, Relationships between nondeterministic and deterministic
tape complexity, J. Comput. System Sci., 4 (1970), 177-192,
14, R. Stearns, J. Hartmanis, and P, Lewis, Hierarchies of memory

limited computations, Conf. Record IEEE Sixth Annual Symposium

on Switching Circuit Theory and Logical Design, (1965), 179-190,

-25-

Footnotes.
i N For a string w, lwl is the length of w.
2. Functions which are ''self-computable with respect to time'' or

"gelf-computable with respect to space'' are often called 'linearly

honest. "

-3, An auxiliary pushdown acceptor can be either deterministic or
nondeterministic. When considering the class of sets accepted
within a specified bound, there is no difference in the computational

power.

4, A simple Turing ,machine has exactly one tape upon which input
is written and work is performed, and has only one read-write

" head on that tape.

