
LUX ETVERITA
S

Yale University

Department of Computer Science

FISHSPEAR: A PRIORITY QUEUE ALGORITHM
(Extended Abstract)

Michael J. Fischer and Michael S. Paterson

YALEU/DCS/RR-333
August 1984

(reformatted and reissued August 2009)

Fishspear: A Priority Queue Algorithm†
(Extended Abstract)

Michael J. Fischer

Yale University
New Haven, Connecticut

Michael S. Paterson

University of Warwick
Coventry, England

Abstract

The Fishspear priority queue algorithm is presented
and analyzed. Fishspear makes fewer than 80% as
many comparisons as heaps in the worst case, and its
relative performance is even better in many common
situations. The code itself embodies an unusual recur-
sive structure which permits highly dynamic and data-
dependent execution. Fishspear also differs from heaps
in that it can be implemented efficiently using sequen-
tial storage such as stacks or tapes, making it possibly
attractive for implementation of very large queues on
paged memory systems. (Details of the implementation
are deferred to the full paper.)

1 Introduction

A priority queue is an abstract data type consisting of
a finite multiset P over a linearly ordered universe D
together with the following operations:

makeempty: Sets P := ∅.

empty?: Returns true if P = ∅, false otherwise.

insert(x): Sets P := P ∪ {x}.

delete min: Sets P := P − {y} and returns y, where
y is a least element in P .

Priority queues find application in discrete event simu-
lation, computational geometry, shortest path compu-
tations, and many other areas of computer science.

A simple implementation of priority queues keeps the
elements in an ordered list. Insertions are performed
by binary search and take dlog he comparisons to yield
a list of size h, and the remaining operations take no
comparisons.1 However, the time per insertion is Ω(h),

†This work was supported in part by the Office of Naval Re-
search under Contract N00014-82-K-0154, and by the National
Science Foundation under Grant MCS-8116678.

1All logarithms are taken to the base 2 unless specified oth-
erwise.

making the algorithm unattractive in practice for all
but very small queues.

The heap [1] is a standard data structure for imple-
menting priority queues which, like the ordered list,
uses O(log h) comparisons per operation, but the time
per operation is linear in the number of comparisons
and so is also O(log h). Indeed, heaps are so common
as to be often identified with the abstract data type
which they implement. So there is no confusion, by a
“heap” we mean a balanced binary tree with elements
xi labelling each node i such that for any nodes i, j, if
i is an ancestor of j, then xi ≤ xj .

One of the first applications of heaps was to an algo-
rithm for sorting n items using O(n log n) comparisons
[5]. Since Ω(n log n) is a lower bound on the number of
comparisons for sorting, it follows that the amortized
cost2 of a priority queue operation is Ω(log n) in the
worst case, where n is the length of the operation se-
quence. Since heaps achieve this bound, they are in
some sense optimal.

Another intriguing property of heaps is that they ex-
ploit the ability to randomly access memory. The pat-
tern of memory accesses is dynamically determined by
the data, and there is no apparent way of implementing
heaps while maintaining the logarithmic amortized op-
eration cost on more restrictive types of memory such
as tapes or stacks.

Other data structures such as 2-3 trees, etc. can
also implement priority queues with similar complexity
bounds, but all require random access storage. Thus,
priority queues have seemed to be an example of an
abstract data type whose efficient implementation re-
quired random access storage, and heaps are a simple
implementation which seemed optimal.

In this paper, we show that both intuitions are wrong
by presenting a new priority queue algorithm, Fishs-
pear, which can be implemented with sequential stor-
age (using a fixed number of pushdown stacks), and
which is more efficient than heaps in two senses which

2The amortized cost of a sequence of operations is the total
cost of the sequence divided by the number of operations [3], [4].

1

are made more precise in the next section. First of
all, it has similar amortized efficiency to heaps in the
worst case (O(log n) comparisons per queue operation),
but the coefficient of log n is actually less (1.2 versus
1.5) on sequences that start and end with the queue
empty. Secondly, the number of comparisons is “little-
oh” of the number made by heaps for many classes
of input sequences that are likely to occur in prac-
tice. For example, if the queue builds to a certain size
h and then receives alternately a very large number
of insert and delete min operations, where the ele-
ments to be inserted are drawn randomly with uniform
distribution from the unit interval, then the amortized
number of comparisons made by heaps for each such
pair is about 3 log h (log h for the insert and 2 log h
for the delete min), whereas the amortized cost for
Fishspear is O(1). (The queue at any time during this
procedure contains the h largest elements ever inserted;
hence, the size of the smallest of these approaches 1, so
the probability that a newly-inserted element will be
deleted by the very next operation also approaches 1.
Fishspear is particularly efficient in this situation.)

More generally, the number of comparisons required
by Fishspear depends only on the size of the “active”
part of the queue, not on the overall size. In the above
example, the active part shrinks over time as the queue
fills with larger and larger elements. This notion is
quantified more precisely in the next section.

Fishspear can be implemented using sequential stor-
age such as tapes or stacks so that the overall run
time is proportional to the total number of compar-
isons.3 Sequential storage algorithms such as Fishs-
pear are attractive on typical paged computer systems
since they tend to exhibit better paging performance
than truly random-access algorithms such as heaps.
This, together with the better behavior on common but
restricted classes of operation sequences, could make
Fishspear an attractive alternative to heaps in certain
practical situations. We hope eventually to obtain ex-
perimental data to support such a claim.

The principal disadvantages of Fishspear are that it
is more complicated to implement than heaps, and the
overhead per comparison is greater.

Fishspear is similar to self-adjusting heaps [3] in that
the behavior depends dynamically on the data and the
cost per operation is low only in the amortized sense—
individual operations can take time Ω(n) even though
that occurs only rarely. Important differences are that
self-adjusting heaps support an additional operation,
meld, which Fishspear does not, but Fishspear does
not require random access storage. We do not know

3Details are deferred to the full paper.

the relative performance of the two algorithms on re-
stricted classes of operation sequences.

2 Performance Bounds

We now look in some detail at how to measure the
performance of priority queue algorithms.

The speed of sorting algorithms, for example, is often
expressed in terms of the worst-case or average num-
bers of comparisons used in sorting n input elements.
They are useful expressions in that context since in
many applications it is reasonable to assume that all
initial orderings of the inputs are about equally prob-
able and thus the parameter n provides an adequate
description of the problem. We need the further as-
surance that the running time can be closely related
to the number of comparisons made so that the more
combinatorial analysis of the number of comparisons
yields results on program performance.

The case of priority queues presents no such single
natural parameter. The total number of insert and
delete min operations performed is one possible mea-
sure but in many applications the maximum length of
the queue attained is expected to be far less than the
total number of elements inserted. We require a mea-
sure more sensitive to the demands made on the prior-
ity queue.

A performance measure we shall use is based on the
sequence h = h1, . . . , hn denoting the size of the queue
immediately after the insertion of each of n elements.4

The sequence h is called the size profile for that run
of the priority queue, where by run we shall mean
any sequence of priority queue operations for which
delete min is never applied to an empty queue and
the queue is initially and finally empty. For a run with
size profile h, the usual heap implementation may use
log hj comparisons at the jth insertion and a corre-
sponding 2 log hj comparisons for that deletion which
subsequently first takes the queue from size h down to
size h − 1. Hence an upper bound for the worst-case
number of comparisons is approximately 3

∑
log hj .

The comparisons for the naive list implementation are∑
dlog hje. As a lower bound, we have

Theorem 1 The worst-case number of comparisons
used by any priority queue algorithm on runs with size
profile h is at least

n∑
j=1

log hj

 .
4Here the parameter n is the number of insertions, not the

total length of the operation sequence.

2

Proof: Consider all possible queue runs with size pro-
file h and distinct input elements. The priority queue
algorithm is required to determine the unique correct
order of the output elements. Elements simultaneously
in the queue are output in order, so each possible way
of inserting a new element into the queue yields a dis-
tinct output sequence. There are hj−1 + 1 = hj places
where the jth element can be inserted relative to the
other elements in the queue at that time, and each of
these yields a different output order; hence, the number
of runs which must be distinguished is

∏
hj . By the

usual information-theoretic argument, any algorithm
requires at least dlog

∏
hje = d

∑
log hje binary com-

parisons to distinguish among these runs.

Fix a run and let xi be the ith element inserted into
the queue. Now consider any element y in the queue
at a particular time. It will be convenient to associate
with each such y a distinct i such that y = xi. If the
xi are all distinct, the association is obvious, but since
we permit the queue to be a multiset, there may be
more than one way to make the correspondence. For
definiteness, if the queue contains k copies of y at a
particular time τ , we associate those copies with the k
largest elements of {i ≤ nτ | y = xi}, where nτ is the
number of insert operations up to time τ . Implicit in
our use of the notation “xi” is that i is associated with
the element xi, so we say “xi is in the queue at time
τ” to mean that xi is contained in the multiset at time
τ and is associated with index i.

We now define a strong total ordering ≺ on the xi’s.
xi ≺ xj if either xi < xj , or xi = xj and i < j. By the
conventions of the preceding paragraph, it is clear that
if xi ≺ xj and xi, xj are simultaneously in the queue,
then xi will appear as output before xj .

The depth of xi at a time when it is in the queue is
one plus the number of elements xj ≺ xi in the queue at
that time. There are several applications where most
of the elements inserted attain only a relatively shal-
low depth during their residence in the queue. An ex-
ample is when the input elements are drawn from a
uniform distribution and the profile remains at an ap-
proximately constant level for long periods. We would
like to take advantage of such behavior with an al-
gorithm which does not disturb the deeper elements
unnecessarily.

For a more refined analysis of complexities, we may
define the max-depth profile m for a run as the se-
quence m1,m2, . . ., where mj is the maximum depth
attained in the queue by element xj during the run.
While the usual heap implementations appear to de-
rive no advantage when m � h, our main theorem

shows that Fishspear requires at most

c

n∑
j=1

logmj +O(n)

comparisons on a run with n insertions (and n dele-
tions), where the coefficient c is less than 2.4.

Less apparent is that the upper bound for Fishspear
holds even if “mj” is replaced by “hj”. Indeed, an
individual element can attain depth in the queue much
greater than the size of the queue when it was first
inserted. Nevertheless, on the average, the m’s are no
bigger than the h’s.

Theorem 2 Consider a priority queue run with max-
depth profile m and size profile h. There exists a per-
mutation π such that mi ≤ hπ(i) for all i, 1 ≤ i ≤ n.

Proof: Suppose there is some pair i, j with i < j and
xi � xj , where xi, xj are adjacent in the total order-
ing ≺ of all the elements. We consider the effect of
interchanging xi and xj in the run.

If xi leaves the queue before xj enters, this inter-
change does not affect mi or mj . If not, let M be
the maximum depth attained by xi before xj enters
and let M ′ and M ′′ be the maximum depths attained
by xi and xj respectively after this time. Note that
M ′ > M ′′. Before the interchange,

mi = max{M,M ′} and mj = M ′′,

while after

mi = max{M,M ′′} and mj = M ′.

We consider two cases and compare the pairs 〈mi,mj〉
before and after the interchange.

1. M ≤M ′.
Before: 〈M ′,M ′′〉. After: 〈max{M,M ′′},M ′〉.

2. M ′ ≤M .
Before: 〈M,M ′′〉. After: 〈M,M ′〉.

In each case the pair, regarded as a multiset, increases
in value in one element or remains the same.

We can repeat this process wherever there is a pair of
elements with adjacent values where the larger value is
inserted first. The final result will be a “FIFO” run in
which the elements are inserted in order of increasing
value. For such a run, mi = hi since the initial depth of
any element, which will be hi here, cannot be increased
by subsequent insertions. Since each interchange on
the way to constructing the “FIFO” run could only
increase the values of {m1,m2, . . .} as a multiset, the
result follows at once.

3

3 The Fishspear Algorithm

The algorithm which we present in Section 3.2 is an
instance of a general class of (non-deterministic) algo-
rithms which all operate on the same data structure
called a fishspear. The correctness of such algorithms
is fairly easy to see. What is not obvious is that there
is a deterministic rule for making choices that leads to
good behavior.

3.1 Fishspear Data Structure

The Fishspear data structure represents a priority
queue as a collection of sorted lists called segments.
The collection is partially ordered by the rule that
U ≤ V iff x ≤ y for every x ∈ U and y ∈
V . A k-barbed fishspear consists of (possibly empty)
segments U,Wk, . . . ,W1 and Vk, . . . , V1. Segments
U,Wk, . . . ,W1 are linearly ordered and form the shaft
of the spear, that is, U ≤ Wk ≤ Wk−1 ≤ ... ≤ W1.
Segments Vk, . . . , V1 are the barbs of the spear and sat-
isfy U ≤ Vk, U ≤ Vi and Wj ≤ Vi for all i, j with
k ≥ j > i ≥ 1. A spear is illustrated in Figure 1.

U p Wk p Wk−1 p . . . p W1

Q
Q
QQ
Vk
Q
Q
Q
Q
Vk−1

Q
Q
QVk−2

Q
Q
Q
Q
Q

V1

Figure 1: A k-barbed fishspear.

Five primitive operations can be performed on the
data structure:

pmerge: Assumes Wk is non-empty. Performs a “par-
tial merge” of Vk with Wk by comparing the first
element in Wk with the first element in Vk and
appending the smaller one to U . (If Vk is empty,
the first element of Wk is appended to U .)

barb merge: Assumes k > 1 and Wk is empty.
Merges Vk into Vk−1, and sets k := k − 1. The
result is a (k − 1)-barbed fishspear.

top cat: Assumes k = 1 and W1 is empty. Appends
V1 to U and sets k := 0. The result is a 0-barbed
fishspear (i.e. the entire queue is sorted and resides
in U).

barb create(X): Creates a new segment Vk+1 ini-
tialized to X. Sets Wk+1 := U , U := NIL, and
k := k + 1. The result is a (k + 1)-barbed fishs-
pear.

delete sharp: Assumes U is non-empty. Deletes and
returns the leftmost (i.e. smallest) element of U .

In addition to the above, we assume the existence of
basic operations for testing and comparing the lengths
of the various segments.

The priority queue operation empty? is imple-
mented by testing if all of the fishspear segments are
empty, and makeempty can be defined in terms of
empty? and delete min. To do insert(x), one
merely performs barb create({x}) on the fishspear
data structure. To do delete min, an application of
delete sharp suffices, provided that U is non-empty.
The following algorithm is a lazy approach to making
sure U is non-empty:

if U is empty then begin
while k > 1 and Wk is empty do barb merge;
if Wk is non-empty

then pmerge
else top cat

end

Performing this code before every delete min opera-
tion will result in a correct, albeit inefficient, priority
queue algorithm.

It is easy to construct examples which cause the
above code to make Ω(n2) comparisons on an n-
element input sequence. For example, such behavior
results on any sequence of n insertions followed by
n delete min operations. The n insertions produce
an n-fishspear with one element in each barb and an
empty shaft. At the time of the first delete min, the
above code combines all n barbs in a series of unbal-
anced merges requiring Ω(n2) comparisons.

3.2 A Particular Algorithm

The strategy of our algorithm is to selectively perform
pmerge, barb merge and top cat operations before
each priority queue operation so as to maintain a kind
of balance on the sizes of the various segments of the
fishspear. Exactly what kind of balance our algorithm
actually achieves is unclear. Through an involved anal-
ysis, we provide a good upper bound on the total num-
ber of comparisons, but we have been unable to obtain
a simple inductive condition on the fishspear which our
algorithm preserves and from which our bound follows.

Because of the stack-like quality of the fishspear, it
is natural to present our algorithm recursively. How-
ever, it is not the queue operations such as insert and
delete min that are defined recursively but rather a
process Q which runs autonomously, alternately mas-
saging the fishspear and processing priority-queue op-

4

erations. In other words, we regard Q as a black box
to which we send priority queue operations to be per-
formed and which sends answers back to us in response
to those operations. Q is separate from the “user” pro-
cess which is issuing the priority queue operations, al-
though Q could be implemented as a coroutine just as
well. This view is illustrated in Figure 2.

User Q
queue operations -

�
returned values

Figure 2: Process structure of the Fishspear algorithm.

We assume two synchronized primitives for interpro-
cess communication, send(m) and receive, where m
is a message. (Cf. CSP [2].) A process executing
receive blocks until the other process is ready to exe-
cute send(m) for some m, at which time the receive
operation returns m as its value and both processes
continue. Similarly, a process executing send(m) is
forced to wait until the other process is ready to exe-
cute receive.

Messages are elements of D ∪ {‘del’, ‘empty?’} ∪
{‘yes’, ‘no’}. A message in D denotes an element to
be inserted, if sent by the user process, or the mini-
mum element just deleted from the queue, if sent by
Q. Messages ‘del’ and ‘empty?’ are requests by the
user process to perform a delete min or empty? op-
eration on the priority queue. ‘yes’ and ‘no’ are re-
sponses by Q to the ‘empty?’ request. We assume the
user process performs receive immediately following
each send(‘empty?’) and send(‘del’) request in order
to receive the response.

Q maintains two pieces of global data—an integer k
and a k-fishspear stored in variables U , Vj , and Wj ,
j ≥ 0, as described above. All of the manipulations of
this data are performed by the five fishspear primitives,
which are invoked by Q.

The heart of the algorithm is the recursive procedure
S. When S is called, U is assumed to be non-empty.
S performs one or more receive operations, carries
out the actions specified by the messages received, re-
sponds to each ‘del’ or ‘empty?’ request by issuing an
a send with the answer, and modifies the fishspear
to reflect the changes in the queue contents. When S
eventually returns, the length k of the fishspear is one
greater than when it was called, and Wk = ∅.

The code for S is given in Figure 3. β is a tuning
parameter. We are able to prove the best worst-case
bounds for β = 0.7034. . ., but any value between 0
and 1 yields a correct algorithm. In this program, and

elsewhere in this paper, we follow the convention that
segments and sets are named by upper case letters and
their cardinalities are denoted by the corresponding
lower case letter. Thus, u denotes the length of U , etc.

Procedure S:
1. uα := u
2. BASE
3. while wk > 0 do
4. if vk ≥ u or u ≥ βuα then pmerge
5. else {vk < u} begin
6. S; barb merge
7. end

Figure 3: The recursive procedure S.

The actual processing of messages takes place in the
routine BASE, which is given in Figure 4. When BASE
is called, U is assumed to be non-empty. BASE pro-
cesses messages until either a new element is inserted
into the queue or U becomes empty. In either case,
BASE calls barb create just before returning, so the
resulting fishspear is one longer than at the time of call.

Procedure BASE:
1. repeat
2. x := receive
3. if x = ‘empty?’ then send ‘no’
4. else if x = ‘del’ then send delete sharp
5. until x ∈ D or u = 0
6. if x ∈ D then barb create({x})
7. else barb create(∅)

Figure 4: Code to process queue operations.

Finally, we give the top-level code for process Q
which runs the priority queue algorithm by repeatedly
calling S. Since S can only be called when the fishspear
is non-empty, Q itself reads and processes messages
whenever the queue is empty.

4 Complexity Analysis

We present an upper bound on the worst-case number
of comparisons, Comp(m), made by fishspear on an
input sequence with max-depth profile m.

Theorem 3 For all β, 0 < β < 1, there exist c, c′

such that for all runs with n insertions and max-depth
profile m,

Comp(m) ≤ c
n∑
i=1

logmi + c′n.

5

Process Q:
1. k := 0; U := ∅
2. repeat forever
3. if u = 0 then begin
4. x := receive
5. if x = ‘empty?’ then send ‘yes’
6. else if x = ‘del’ then error
7. else barb create({x})
8. end
9. else begin

10. S
11. end
12. top cat

Figure 5: The top-level driver.

In particular, for β = .7034, we may take c = 2.4.
(Further details on the interdependence of c, c′ and β
are given in the analysis below.)

The proof consists of several parts. First, we clas-
sify each comparison made by the algorithm as being of
Type I or Type II, and we observe that at most n Type
I comparisons are made in the course of the algorithm.
We analyze the number of Type II comparisons by set-
ting up a toll “economy” in which tolls are charged to
queue elements at various points in the algorithm and
are used to pay for comparisons. The tolls collected
are sufficient to pay for all the Type II comparisons,
and each element xi is charged only c logmi + c′′ tolls.
Summing over all the elements gives

Type II comparisons ≤ tolls collected

≤ c
∑

logmi + c′′n.

The theorem then follows by summing the upper
bounds for the two types of comparisons and taking
c′ = c′′ + 1.

4.1 Comparison Types

A comparison which results in an element first entering
the shaft of the fishspear is of Type I; all other com-
parisons are Type II. An examination of the algorithm
shows that there are only two places in which elements
are compared: within the pmerge of line 4 of S, and
within the barb merge of line 6 of S. pmerge com-
pares the first element of Vk with the first element of
Wk and appends the smaller (higher priority) to U .
Thus, that comparison is of Type I if the smaller ele-
ment came from Vk and is of Type II if the smaller
element came from Wk. All comparisons made by

barb merge are of Type II, since no elements enter
the shaft.

Lemma 1 The algorithm makes at most n Type I
comparisons.

Proof: Once an element enters the shaft, it remains
there until eventually deleted from the queue. Hence,
at most n Type I comparisons are made in the course
of the algorithm since each element enters the shaft
only once.

4.2 The Progress Lemma

We now take a more detailed look at the recursive
structure of the algorithm and the actions which it per-
forms. We first introduce some notation to allow us to
talk about the way the fishspear changes over time. At
any time τ , let Uτ be the set of elements in segment U ,
let Vτ be the set of elements in segment Vk, let V ′τ be
the set of elements in segment Vk−1, assuming k > 1
at that time, and let Wτ be the set of elements in Wk.
These definitions depend on the current value of k, so
in particular, Vτ always refers to the top barb of the
fishspear, and V ′τ always refers to the second-from-top
barb. As usual, the corresponding lower case letter
refers to the cardinality of the set, so uτ = |Uτ |, etc.

Now consider a single instance of a call on S and the
computation that takes place between the time α of the
call and the time ω of the return. Let α′ be the time
just before line 3 of S is executed for the first time, and
let τ be a time at which control is between lines of S
such that α′ ≤ τ ≤ ω. We define the following sets of
elements:

INτ = set of elements inserted into the
queue after time α and still present
in the queue at time τ ;

OUTτ = set of elements present in the queue
at time α but gone from the queue
by time τ ;

U old
τ = Uτ ∩ Uα, the set of old elements in

U at time τ ;
U new
τ = Uτ ∩ INτ , the set of new elements

in U at time τ .
We often omit the subscript τ when τ is clear from
context. The relationships that exist among these sets
are given in Figure 6 and are easily proved by induction
on τ , for τ between α′ and ω.

Lemma 2 (Progress Lemma) Let τ be any time, α′ ≤
τ ≤ ω, such that the test u ≥ βuα in line 4 of S has

6

W

OUT
U old U new V

U︷ ︸︸ ︷
︸ ︷︷ ︸

Uα

︸ ︷︷ ︸
IN

Figure 6: Relations among the basic sets after time α′.

never evaluated to ‘true’ anytime during the interval
from α′ to τ , and control is between lines of S. Then

vτ ≥ u old
τ − 1.

Proof: To begin with, observe that if the condition
u ≥ βuα once becomes true, then it remains true for
the duration of that execution of S, for as long as it
is true, the ‘then’ branch of the condition in line 4
is always taken, and pmerge does not change uα nor
decrease u.

We proceed to prove the lemma. At time τ = α′, U is
empty, so u old

τ = 0 and the lemma holds. Subsequently,
the only places where U or V are modified are in lines 4
and 6 of S. We consider them in turn.

Suppose τ is a time just after the pmerge in line 4
of S has been performed, and suppose the conditions
of the lemma are satisfied at time τ . Then uτ < βuα,
so v ≥ u ≥ u old just before the pmerge. The pmerge
moves one element from either Vk or Wk into U . If it
moves an element from Vk, then v decreases by 1 but
u old remains unchanged (since Vk consists entirely of
new elements). If it moves an element from Wk, then
u old increases by 1 but v remains unchanged. In either
case, v ≥ u old − 1 afterwards.

Now consider the effect of line 6 on U and V . The re-
cursive call on S modifies U and adds a new barb to the
fishspear. The call on barb merge then merges the
top two barbs together, leaving the fishspear with the
same number of segments as it had before the recursive
call. Line 6 can only decrease (or leave unchanged) the
size of U old, for the segment U immediately after the
recursive call consists entirely of elements that were in
U just before the call together with new elements (that
is, elements inserted into the queue during the recursive
call), and barb merge does not affect U . Line 6 can
only increase (or leave unchanged) the size of V , for its
overall effect is to add to V those elements which the
recursive call on S placed in the new barb, and these
are all new elements inserted during the recursive call.
Hence, lines 6 preserves the truth of the conclusion of
the lemma. The lemma then follows by induction.

The following is a direct consequence of the Progress

Lemma.

Lemma 3 For any execution of S, either

inω + outω ≥ uα − 1

or
inω ≥ βuα − 1.

Proof: There are two cases, depending on whether the
test u ≥ βuα in line 4 of S ever evaluated to ‘true’.
Case 1: The test never evaluated to ‘true’. Then by
Lemma 2, vω ≥ u old

ω −1. Also, wω = 0 since the ‘while’
loop of line 3 terminated. Thus, using Figure 6, we see
that inω = u new

ω + vω and outω = uα − u old
ω . Hence,

inω + outω ≥ uα + u new
ω − 1

≥ uα − 1.

Case 2: The test first evaluated ‘true’ in an execution
of line 4 which began at time τ . Then by Lemma 2,
vτ ≥ u old

τ − 1. From time τ to ω, only pmerge’s are
done, and no elements are deleted from the queue, so

inω = u new
ω + vω = u new

τ + vτ .

Hence,

inω ≥ u new
τ + u old

τ − 1 = uτ − 1.

Since the test was about to evaluate ‘true’, we have
uτ ≥ βuα, so

inω ≥ βuα − 1.

4.3 The Toll Economy

We now describe our method of analyzing the number
of Type II comparisons. We associate with each ele-
ment inserted into the queue two infinite sets of tokens,
the in-tokens and the out-tokens. The tokens in each
set are numbered sequentially beginning with 1. In ad-
dition, each element has two base-tokens. The value of
in-token (out-token) number d is tI/d (tO/d), and the
value of the base token is tB, where tI, tO, and tB are
positive constants to be specified later. They will de-
pend on a parameter δ which can be chosen arbitrarily
from the open interval (0, β/2).

We collect tolls by removing tokens from elements
that are or were in the queue. The tolls collected T is
the total value of all tokens so taken. We ensure that
any in-tokens and out-tokens taken satisfy the follow-
ing:

7

Tolling Rule The number p of the highest
numbered token collected from any ele-
ment xi satisfies p < (mi + 1)/δ.

We remark that for any set X of elements simultane-
ously present in the queue and still possessing token
p, the Tolling Rule lets us collect token p from all but
bδpc − 1 elements of X, for those elements all have
depth at least bδpc > δp− 1.

Lemma 4 Any manner of collecting tolls according to
the Tolling Rule results in

T ≤ 2tB + (tI + tO)

[
n∑
i=1

lnmi +
(

ln
2e
δ

)
· n

]
,

where lnx denotes the natural logarithm of x.

Proof: Since the largest token allowed by the tolling
rule is at most b(mi + 1)/δc, we have

T ≤ 2tB + (tI + tO)
n∑
i=1

b(mi+1)/δc∑
d=1

1
d

≤ 2tB + (tI + tO)
n∑
i=1

(
1 + ln

mi + 1
δ

)

since
btc∑
j=1

1
j
≤ 1 +

∫ t

1

1
x
dx = 1 + ln t

≤ 2tB + (tI + tO)
n∑
i=1

ln
2mie

δ

= 2tB + (tI + tO)

[(
n∑
i=1

lnmi

)
+
(

ln
2e
δ

)
· n

]
.

Fix a run of the queue. We will associate each to-
ken collected with a particular execution of S. Before
describing exactly how this is done, we introduce a no-
tation for naming such executions.

We define Sσ inductively for certain strings σ of pos-
itive integers. Let i ≥ 1. Si denotes the execution of
S which results from the ith execution of line 10 of the
top-level program Q, assuming Q executes line 10 at
least i times in the run, and otherwise Si is undefined.
Inductively, suppose σ is a string of natural numbers,
and suppose Sσ denotes an execution of S which per-
forms line 6 a total of r times. Then Sσi denotes the
execution of S which results from the ith execution of
line 6 by Sσ, 1 ≤ i ≤ r. Sσi is undefined if i > r or if

Sσ is undefined. Also, Se is undefined, where e denotes
the empty string.

Let α(σ) and ω(σ) denote the endpoints of the time
interval spanned by the execution Sσ. The interval of
Sσ contains in the interval of Sσ′ if σ is a prefix of σ′,
and the intervals are disjoint if neither σ nor σ′ is a
prefix of the other.

Sσ is eligible to accept a token t if the following con-
ditions hold:

• t is a base token of element xi, and xi was inserted
or deleted during the interval spanned by Sσ.

• t is in-token number p of element xi, xi was in-
serted into the queue during the interval spanned
by Sσ, and p < min{uα(σ), (mi + 1)/δ}.

• t is out-token number p of element xi, xi
was deleted from the queue during the interval
spanned by Sσ, and p < min{uα(σ), (mi + 1)/δ}.

We associate t with the lowest level execution which
is eligible to accept it, that is, among the executions
Sσ eligible to accept t, we associate t with the one for
which the length of σ is maximal. That this is unique
follows from the fact that two distinct strings of the
same length describe non-overlapping executions. If t
is associated with Sσ, we say that t is collected by Sσ,
or that v tolls are taken by Sσ, where v is the value of
t as defined above.

Looked at from another perspective, the following
tokens are collected by Sσ if permitted by the Tolling
Rule:

• A base token from whatever element was inserted
or deleted from the queue by the execution of
BASE in line 2 of Sσ.

• In-tokens uα(σi) through uα(σ)−1 of element x if x
was inserted in the queue during the ith execution
of line 6 of Sσ.

• Out-tokens uα(σi) through uα(σ) − 1 of element
x if x was deleted from the queue during the ith

execution of line 6 of Sσ.

This characterization holds because we assume β < 1,
so the test in line 4 of S then ensures that uα(σi) <
uα(σ). Thus, if p ≥ uα(σi), it follows inductively that
Sσiγ is not eligible to collect any token number p for
any string γ.

In the remainder of this section, we assume that
δ, β ∈ (0, 1), δ < β/2, and that t′I, t

′
O, tI, tO, tB are pos-

itive constants which satisfy the following:

t′I ≥ max
{

2 + β

β(1− lnβ)
,

1
− lnβ

}
. (1)

8

t′Iq − (t′Iq + t′O(1− q)) ln q − 2− q ≥ 0 (2)

holds if 0 < q < β.

t′I ≤ tI

(
1− δ

β

(tI + tO)
tI

)
. (3)

t′O ≤ tO

(
1− δ

β

(tI + tO)
tO

)
. (4)

tB ≥ tI(1− δ). (5)

Let T (σ) be the total value of all tokens collected by
Sσ. We now derive a lower bound on T (σ).

Lemma 5 (Tolls Lemma). Let Sσ be an execution of
S, and let α = α(σ) and ω = ω(σ). Then

T (σ) ≥ 2uα + vω.

Proof: Consider the times α(σi), i = 1, 2, . . . imme-
diately preceding the successive executions of line 6
during the while-loop of S. Let µ1 = α(σ1) and let
µr+1 = α(σi) where i is the least number such that
Sσi is defined and uα(σi) > uµr . Finally, let s be the
largest index for which µs is defined. As a notational
convenience, we write 〈j〉 for µj .

Each of IN〈j〉, INω, and OUTω are sets of elements
which are simultaneously in the queue—the elements
of IN〈j〉 are all present at time µj , the elements of INω
are all there at time ω, and the elements of OUTω were
all in the queue at time α. By the remark following the
Tolling Rule, we can collect in-token number p from all
but bδpc−1 of the elements in IN〈j〉 or INω. Similarly,
we can collect out-token p from all but bδpc − 1 of the
elements of OUTω.

We now total up the tokens we know are collected
by Sσ, thereby giving a lower bound on T (σ).

1. At least one base token is collected by Sσ since
the call on BASE in line 2 of S causes at least one
element to be inserted or deleted. It has value

T1(σ) = tB. (6)

2. Let 1 ≤ j ≤ s and let u〈j−1〉 ≤ p ≤ u〈j〉 − 1.
(For technical convenience, we take u〈0〉 = 1.) By
the remark following the Tolling Rule, in-token
number p is collected from all but bδpc − 1 of
the elements in IN〈j〉 for a total value of at least
tI(in〈j〉− (δp−1))/p. Summing over j and p gives
a total value of

T2(σ) =
s∑
j=1

u〈j〉−1∑
p=u〈j−1〉

tI(in〈j〉 − (δp− 1))
1
p

(7)

3. Let u〈s〉 ≤ p ≤ uα − 1. By the remark following
the Tolling Rule, in-token p is collected from all
but bδpc − 1 of the elements in IN〈s〉 ∪ INω for a
total value of at least

T3(σ) =
uα−1∑
p=u〈s〉

tI
(

max{in〈s〉, inω} − (δp− 1)
)1
p

(8)

4. Let u〈s〉 ≤ p ≤ uα − 1. By the remark following
the Tolling Rule, out-token p is collected from all
but bδpc − 1 of the elements in OUTω for a total
value of at least

T4(σ) =
uα−1∑
p=u〈s〉

tO
(
outω − (δp− 1)

)1
p

(9)

Thus, T (σ) ≥
∑4
k=1 Tk(σ).

By Lemma 2 and Figure 6, in〈j〉 ≥ u〈j〉 − 1. Since
also u〈j〉 > p in the summation, Equation 7 yields

T2(σ) ≥
s∑
j=1

tI(1− δ)u〈j〉
u〈j〉−1∑
p=u〈j−1〉

1
p
. (10)

Using the fact that

u〈j〉

u〈j〉−1∑
p=u〈j−1〉

1
p
≥ u〈j〉 − u〈j−1〉,

we in turn get

T2(σ) ≥
s∑
j=1

tI(1− δ)(u〈j〉 − u〈j−1〉)

= tI(1− δ)(u〈s〉 − 1) (11)

By Lemma 2 and Figure 6, in〈s〉 ≥ u〈s〉 − 1, and
by Lemma 3, we have βuα ≤ inω + outω + 1 ≤
max{u〈s〉, inω + 1}+ outω + 1. Using the fact that

uα−1∑
p=u〈s〉

1
p
≥ ln

uα
u〈s〉

, (12)

Equation 8 then yields

T3(σ) ≥ tI
(

max{in〈s〉, inω} − (δuα − 1)
) uα−1∑
p=u〈s〉

1
p

≥
[
tI max{u〈s〉, inω + 1}

−tI
δ

β
(max{u〈s〉, inω + 1})

−tI
δ

β
(outω + 1)

]
ln

uα
u〈s〉

. (13)

9

Also, Equation 9 yields

T4(σ) ≥ tO
(
outω − (δuα − 1)

) uα−1∑
p=u〈s〉

1
p

≥
[
tO(outω + 1)

−tO
δ

β
(max{u〈s〉, inω + 1})

−tO
δ

β
(outω + 1)

]
ln

uα
u〈s〉

. (14)

Combining Equations 13 and 14 with 3 and 4, we get

T3(σ) + T4(σ)

≥
[
tI

(
1− δ

β

(tI + tO)
tI

)
max{u〈s〉, inω + 1}

+tO

(
1− δ

β

(tI + tO)
tO

)
(outω + 1)

]
ln

uα
u〈s〉

≥ [t′I max{u〈s〉, inω + 1}

+t′O(outω + 1)] ln
uα
u〈s〉

(15)

From Equation 3, we have tI(1 − δ) ≥ t′I. Thus,
adding together Equations 6, 11, and 15, and using
Equation 5, we get

T (σ)

≥ tB + tI(1− δ)(u〈s〉 − 1)

+[t′I max{u〈s〉, inω + 1}+ t′O(outω + 1)] ln
uα
u〈s〉

≥ t′Iu〈s〉 + [t′I max{u〈s〉, inω + 1}

+t′Ooutω] ln
uα
u〈s〉

. (16)

To complete the proof of the lemma, we show that

t′Iu〈s〉 +
(
t′I max{u〈s〉, inω + 1}+ t′Ooutω

)
ln

uα
u〈s〉

≥ 2uα + vω.

Let

p =
u〈s〉

uα
, q =

inω + 1
uα

, and r =
outω
uα

.

and define

F = t′Ip− [t′I max{p, q}+ t′Or] ln p− 2− q.

It suffices to show F ≥ 0 since inω + 1 ≥ vω.

We make use of two constraints on p, q, r. First of
all, the test in line 4 of S ensures that u〈s〉 < βuα, so
p < β. Secondly, Lemma 3 implies that either q+r ≥ 1
or q ≥ β.

Before proceeding, consider the partial derivative
when p < q:

∂F

∂p
= t′I − [t′Iq + t′Or]

1
p

= t′I

(
1− q

p

)
− t′O

r

p

< 0.

This shows that F decreases as p increases to q.
We now consider three cases depending on how q

relates to p and β.
Case 1: q ≤ p < β. Then q+r ≥ 1, so r ≥ 1−q ≥ 1−p.
Also, p < 1 since β < 1, so ln p < 0. Hence,

F = t′Ip− [t′Ip+ t′Or] ln p− 2− q

≥ t′Ip− [t′Ip+ t′O(1− p)] ln p− 2− p.

By Equation 2, F ≥ 0 as desired.
Case 2: p < q < β. Again r ≥ 1− q. Since the partial
derivative of F with respect to p is negative, we can
replace p by q to get

F = t′Ip− [t′Iq + t′Or] ln p− 2− q

≥ t′Iq − [t′Iq + t′O(1− q)] ln q − 2− q.

Again, Equation 2 gives F ≥ 0 as desired.
Case 3: p < β ≤ q. Again the partial derivative of F
with respect to p is negative, so we can replace p by β
and r by 0 to get

F = t′Ip− [t′Iq + t′Or] ln p− 2− q

≥ t′Iβ − t′Iq lnβ − 2− q

= [t′Iβ − 2]− q[t′I lnβ + 1]. (17)

We now consider two subcases.
Subcase 1: β ≥ −2 lnβ. Then by Equation 1 we have
t′I ≥ −1/ lnβ ≥ 2/β. Hence,

F ≥ [t′Iβ − 2]− q[t′I lnβ + 1]

≥
[(

2
β

)
β − 2

]
− q

[(
−1
lnβ

)
lnβ + 1

]
= 0.

Subcase 2: β < −2 lnβ. Then by Equation 1 we have

t′I ≥
2 + β

β(1− lnβ)
.

10

Hence,

t′I lnβ + 1 ≤ (2 + β) lnβ + β(1− lnβ)
β(1− lnβ)

≤ 2 lnβ + β

β(1− lnβ)
(18)

< 0.

Thus, using the assumption that β ≤ q, Equations 17
and 18 give

F ≥
[

2 + β − 2 + 2 lnβ
(1− lnβ)

]
− β

[
2 lnβ + β

β(1− lnβ)

]
= 0.

Thus, in all three cases, F ≥ 0, completing the proof
of the lemma.

We now relate the tolls collected to the comparisons
made by the algorithm.

Let gain(σ) = T (σ)− typeII(σ), where typeII(σ) is
the number of Type II comparisons made by Sσ but
excluding comparisons made by the subrecursive calls.

Lemma 6 Let Sσ be an execution of S, and let α =
α(σ) and ω = ω(σ). Then

gain(σ) ≥ uα + vω.

Proof: Proof is by reverse induction on the length of
σ, starting with the longest words σ for which Sσ is
defined.

Suppose Sσ is an execution of S and the lemma has
been proved for all executions Sσ′ with σ a proper
prefix of σ′. Consider the ith execution of line 6 of
S (which begins at time α(σi)). The test in line 4
ensures vα(σi) < uα(σi). By induction, gain(σi) ≥
uα(σi) + vω(σi). Hence, gain(σi) ≥ vα(σi) + vω(σi). The
number of comparisons made by barb merge in line 6
is at most vα(σi) + vω(σi), since it simply merges to-
gether the two segments V ′ω(σi) = Vα(σi) and Vω(σi) in
the straightforward way. Hence, the net gain of all of
the executions of line 6 is non-negative.

We now consider the pmerge in line 4. At most
uα Type II comparisons are made, since each such
comparison removes an element from Wk, and Wk ini-
tially (just after line 2) has size uα. By Lemma 5,
T (σ) ≥ 2uα+vω. Hence, gain(σ) ≥ uα+vω as desired.

Putting all this together gives us

Lemma 7 The total number of Type II comparisons
made by Fishspear on a run with n insertions and max-
depth profile m is at most

2tB + (tI + tO)

[
n∑
i=1

lnmi +
(

ln
2e
δ

)
· n

]
.

Proof: The run can be partitioned into segments of
operations which are processed directly by Q and seg-
ments which are processed by a top-level call on S. The
former require no comparisons. That the total number
required for the latter satisfies the bound in the lemma
is an immediate consequence of Lemmas 4 and 6.

To complete the proof of Theorem 3, it is necessary
to analyze the constants. First, note that for any δ, β ∈
(0, 1) with δ < β/2, there exist values of t′I, t

′
O, tI, tO, tB

which satisfy Equations 1–5. Use Equation 1 to define
t′I. The left hand side of Equation 2 as a function
of q is bounded from below over the interval (0, β),
and as a function of t′O, it is linear with a positive
coefficient that is bounded away from zero. It follows
that Equation 2 is satisfied for sufficiently large t′O.
Similarly, Equations 3 and 4 can be satisfied by taking
tI = tO sufficiently large, for then 2δ/β < 1 and the
right hand sides are linear in tI = tO with positive
coefficient. Finally, Equation 5 can be used to define
tB. The constant c of Theorem 3 is given by

c = (tI + tO) · ln 2, (19)

and one can take

c′ = 2tB + 1 + (tI + tO) · ln 2e
δ
.

We get our best bounds by choosing β = −2 lnβ =
.7034 Plugging in to Equation 1 yields t′I =
2.843 Calculus together with numerical evalua-
tion shows that t′O = .5674 . . . satisfies Equation 2,
and equality holds (to within the limits of our preci-
sion) for q = .141 (The function of Equation 2
over the interval (0, β) is shown in Figure 7.) Thus,
t′I + t′O = 3.410 By choosing δ sufficiently close to
0, we can make tI + tO arbitrarily close to 3.410
Finally, plugging into Equation 19 shows that the con-
stant c of Theorem 3 can be chosen arbitrarily close
to

ln(2)× 3.410 . . . = 2.363

In particular, c = 2.4 works.

11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0 0.2 0.4 0.6 0.8 1β
Values of q

Figure 7: The function t′Iq−(t′Iq+t′O(1−q)) ln q−2−q
for t′I = 2.844 and t′O = 0.5675.

Acknowledgement

We are grateful to T. C. Brown of the University of
Warwick for drawing our attention to a bug in a pre-
vious version of the algorithm and to Neil Immerman
of Yale University for helpful discussions.

Bibliography

[1] Aho, A. V., Hopcroft, J. E., and Ullman,
J. D. The Design and Analysis of Computer Al-
gorithms, Addison-Wesley, Reading, MA, 1974.

[2] Hoare, C. A. R. Communicating sequential pro-
cesses. Comm. ACM 21, 8 (1978), 666-677.

[3] Sleator, D. D., and Tarjan, R. E. Self-
adjusting binary trees. In Proc. 15th ACM
SIGACT Sympos. on Theory of Computing (April
1983), 235-245.

[4] Sleator, D. D., and Tarjan, R. E. Amor-
tized efficiency of list update rules. In Proc. 16th
ACM SIGACT Sympos. on Theory of Computing
(April-May 1984), 488-492.

[5] Williams, J. W. J. Algorithm 232: Heapsort.
Comm. ACM 7, 6 (1964), 347-348.

12

