PSPACE Survives Three-Bit Bottlenecks

Jin-yi Cai and Merrick L. Furst
YALEU/DCS/TR-528
March 1987




PSPACE Survives Three-Bit Bottlenecks

Jin-Yi Cai* Merrick L. Furst!

Abstract

Barrington recently discovered that polynomial-size logarithmic-depth circuits are equiva-
lent to constant-width branching programs [B]. We discuss the relationship between constant-
width branching programs and a hierarchy of languages that lies between P and PSPACE. We
also introduce the notion of logspace-serialisability. For relativized computations, this notion
corresponds to logspace-uniform, constant-width branching programs. Applying Barrington’s
method we show that PSPACE is logspace-serialisable.

1 Introduction

Constant-depth circuits have come to play an important role in clarifying the structure and nature
of complexity classes. The fact that circuits of constant-depth and polynomial size cannot compute
functions such as parity or majority [FSS] means that AC?, the set of langauges acceptable by
constant-depth, polynomial-size circuits, is smaller than some of the other complexity classes below
Logspace. Just as the hypothesis that PTIME is less powerful than NPTIME leads to a natural
notion of Polynomial-time reducibility between NP problems, the fact that ACP is definitely weaker
than Logspace leads to a natural notion of AC? reducibility between problems much lower in the
complexity picture. Exactly what the structure and relationships are among these low-level classes
under ACP? reductions remains to be determined.

Constant-depth circuits play a role in the study of the structure of the much richer Meyer-
Stockmeyer polynomial-time hierarchy which may lie properly between P and PSPACE. The def-
inition for constant-depth circuits was originally motivated by the relationship bewteen depth-k
circuits and levels of the polynomial-hierarchy.

A language L is in the *? level of the Meyer-Stockmeyer hierarchy if and only if the membership

predicate “z € L” can be described by a sentence of the form

PPy QCuR(z, 1, - -, %)

*Department of Computer Science, Yale University, New Haven CT 06520
tDepartment of Computer Science, Carnegie-Mellon, Pittsburgh, Pa. 15213

1




in which there are 1 alternations of quantifiers (Q; is V or 3 as 1 is even or odd), each of which
quantifies over values whose lengths are polynomially bounded, and in which R is a polynomial-
time predicate. A further refinement of the hierarchy appears if we distinguish between sentences
that begin existentially, (Z;), or universally, (II;). The class P is £ = Iy, the class NP is &;, and
co-NP is II;. Whether any of the levels of the polynomial-hierarchy are distinct is unknown and
tantamount to whether P is different from PSPACE.

The polynomial-hierarchy may be constructed relative to an oracle set A in a natural way.
One noramlly thinks about computation relative to an oracle A as computation that is, perhaps,
enhanced by the ability to answer questions about membership in A. It also makes sense to turn
this computational image around. Relativized computation on an input z may be thought of as a
question (posed as z) that is intended to determine a property of the oracle. That is, the purpose
of the computation on a given input can be thought of not as determining a property of the input
string, but rather as determining a property of the oracle set. For example, on input 1" a machine
could be asked to accept or reject depending upon the parity of the number of length n strings in
the oracle set. By turning the picture around in this way, the problem of separating language classes
by oracles becomes the problem of determining which predicates of oracle sets can be computed.

In addition to showing that parity is not computable by polnomial-size, constant-depth circuits,
Furst, Saxe and Sipser [FSS] proved that any predicate of an oracle A that is in the *? level of
the-relativized polynomial-hierarchy, 2;‘, can be computed by circuits of depth ¢ + 1 and size
nPologn  This was the original motivation for constant-depth circuit lowér bounds. A Turing
machine running in PSPACE and having access to an oracle set A can certainly determine if an
even or odd number of the strings of length n are in the set A. By proving that parity cannot be
computed by circuits of constant-depth and less than almost-exponential size, Yao [Y] established
the existence of an oracle A such that PSPACE“ is different than the polynomial-hierarchy relative
to A. Cai showed that not only do these circuits fail to compute the parity function, but they err
almost 50% of the time, thus proving that almost every oracle A separates PSPACEA from the
Polynomial-hierarchy relative to A [C].

Constant-width branching programs (the definition is omitted here) are a slightly more powerful
model of computation than are constant-depth circuits. Branching programs are provably more
powerful since a width-2, length-n branching program can already compute parity. Barrington
recently proved a surprising result regarding constant width branching programs. He showed that

the class of width-5, polynomial-size branching programs is equivalent to nonuniform NC? circuits.

2




His method is a key ingredient of our proof and will be outlined later.

It turns out to be natural to ask the following question: “Is there a hierarchy that corresponds
to constant-width branching programs as the polynomial-hiearchy corresponds to constant-depth
circuits?” The i*! level of the polynomial hierarchy corresponds to depth-(i + 1) circuits. Is there
anything similar between P and PSPACE that relates to constant-width branching programs?

There is a hierarchy of languages between P and PSPACE, the levels of which correspond to
functions computable by constant-width branching programs. This hierarchy is almost certainly

distinct at its first few levels. It then collapses.

2 Safe-Storage, or Bottleneck, Machines

Consider a Turing machine with a read-only input tape and a read/write worktape. Provide the
machine with two additional devices: a read-only, polynomially-long tape used as a binary counter
(a clock), and a device called the “safe store” that can only be in a constant, 1, number of states.

Define a computation of such a “safe-storage” machine as follows. With the input on the
input tape, the “safe store” in a designated initial state, and the counter tape set to all zeroes,
begin phase 0. In phase t the machine may perform any reasonable computation; however, after a
polynomial number of steps it is obligated to terminate phase t by going to a distinguished state at
which point the worktape is erased, all tape heads are reset to their original positions, the counter
is incremented by 1 and the computation proceeds from the start state. All that is left of the
computations in the previous phases is the state of “safe-store,” and the counter indicating which
phase the machine is in. An input string is accepted if and only if the machine finishes the last
phase (counter tape having all 1’s) with the safe-storage tape in a particular state. (In the special
case of a safe-store that has only 1 state, acceptance is defined by having the Turing machine enter
an accepting state.)

A safe-storage computation can be simulated in PSPACE. Intuitively, safe-storage computa-
tions should be different from PSPACE since every so often the computation is squeezed into a
“bottleneck” through which very little information about the past is passed.

There is a natural hierarchy of languages lying between P and PSPACE which is derived from
safe-storage machines. The #* level of this safe-store hierarchy contains all languages L that can
be recognized by a safe-storage machine having only ¢ safe-store states. That is, SF; is the union,

over all polynomial-time bounded Turing machines and over all polynomial lengths for the counter,




of languages accepted by safe-store machines having ¢ states of safe-storage.

Theorem 2.1
SFy =P, and

SF, 23Ul

proof: The acceptance behavior of a machine with 1 safe-storage state is completely determined
by what happens in the final polynomial-time phase. Thus, SF; is the same as P. To see that SF,
contains ¥;, observe that one can use the counter to quantify over all polynomially-long strings
and that 2 states of the safe-store are enough to keep track if at least one of the strings satisfies a
polynomial-time predicate. Similarly, SF; contains II;. QED

It seems likely, however, that S F, is more powerful than either of the classes at the first level
of the polynomial-hierarchy. For example, the set of Boolean formulas that have an even number
of satisfying assignments is in SF2. Moreover, it can be shown that 2 states of safe-storage are

enough to accept all languages in the Boolean hierarchy [CH].

3 Relativized Safe-Store Machines and CWBP

We save the proof for a final version of the paper, but point out the important theorem that shows
the parallel between the safe-storage hierarchy and branching programs on the one hand, and the

polynomial hierarchy and constant-depth circuits on the other.

Theorem 3.1 If a predicate T of an oracle A can be computed by a safe-storage machine with ¢

states of safe-storage, then the predicate T can be computed by a width-i, length nP°'V!°8™ branching

program.

An almost-exponential lower bound on the length of width-3 branching programs computing

majority would imply relativized separation results.

4 Serializability and PSPACE

One of the earliest and best known theorems in complexity theory is the space hierarchy theorem

due to Hartmanis, Lewis and Stearns [HLS|:




follows:

Let the nodes be ID’s. List all the possible ID’s of M for a fixed time step t ( 0 < t < 2°(")
) in a column; assume conveniently that the content of each ID written in binary is used as the
index within the column. Syntactically incorrect codes denote dead states. Place all the columns
horizontally in increasing order of ¢ (say from left to right.) Denote by ID;; the *! ID in the t*h
column. Place an edge from ID;¢ to IDj(¢4+1) iff M would go in one step from the first configuration
to the second.

Fix an input z of length n. Let ID° be the initial configuration of the machine on z. Let IDY
be the unique accepting (Yes) configuration. Clearly M accepts z iff there is a path from ID° to
IDY,

From this formulation it is possible to construct a polynomial p(|z|)-deep, O(27(I=1))-size circuit
that outputs 1 if and only if M accepts z. Define PATH(ID,ID', k) to be true if and only if there
is a path in the above graph from ID to ID’ of length exactly 2*. Using the standard recursive
observation about the PATH predicate, we see how to express PATH(ID?,IDY p(|z|)) with a p(|z|)-
deep, 0(2’(|’|))-size Boolean circuit whose leaves are simple predicates about siﬂgle steps of Turing
machine M.

Now we will apply Barrington’s idea [B] to derive a representation of the statement “M accepts

z” as a product of permutation variables

OR(1)TR(2) " * * T R(24(I2D))

A permutation variable o has the property that depending upon the value of the 0-1 predicate
R, it evaluates to either the identity permutation or some 5-cycle of S5, the symmetric group on 5
letters.

The product should evaluate to the identity permutation if M accepts z, and the cycle (12345)
if M rejects z.

Barrington’s clever idea was to use the commutator in S to represent logical OR:

Let
¢ = (12345), a = (15324), 8 = (12534).

Then, multiplied from left to right, afa~1871 =¢.
Let the permutation variables o, and r; represent the truth of two statements s and t, such

that o, is the identity permutation e if s is true, and the 5-cycle o otherwise, and similarly, let 7




Theorem 4.1 (HLS) If Sz(n) 1s a fully space-constructible function,

. Si(n) _
Jm Si(n) — 0,
and Si(n) and S3(n) are each at least log(n), then there is a language in DSPACE[S;(n)] not in

DSPACE[S;(n)).

This theorem implies there is a dense hierarchy in deterministic space bounded computations.
An apparent weakening of the power of safe-storage machines is described in the following
definition.

Definition 4.2 A language L is logspace-serializable if there is a safe-storage machine accepting
L in which each phase’s computation is Logspace. A class L of languages is logspace-serializable if

every L € L is logspace-serializable.

The relationship between logspace-serializabilty and constant-width branching programs shows
up when safe-storage computations are made relative to an oracle A. We omit the details, but point
out that if a property R of an oracle A is recognizable by a safe-storage machine whose phases are
Logspace computations, then R can be computed by logspace-uniform, constant-width branching
programs. Here logspace uniform means that given the number of transition ¢ it is possible to
calculate the transition in space O(log1).

What problems are logspace-serializable? The set of Quantified Boolean Formulas (Q BF) that
provably requires more than log(n) space will need that extra amount of space at some point in its
computation. In light of the space hierarchy theorem, one might not expect such problems to be
logspace serializable.

However, we prove the contrary:
Theorem 4.3 PSPACE is logspace serializable.

proof Let L = L(M), where M is a polynomial-space-bounded deterministic TM. Assume,
without loss of generality, that M is clocked by a polynomial p, such that the computation of M on
input z takes precisely 2°(Iz1) steps. Also assume, without loss of generalitry, that when M accepts
an input, it accepts it by entering a unique configuration when the clock times out.

Consider the computation of M on inputs of length n. An instantaneous‘description (ID) for

M consists of a polynomial ¢(n) bits of information about state and tape [HU]. Define a graph as

5




be the identity or 8. Then

o,na, 1!

represents the truth of s v t. It is the identity e if sV t is true, and the cycle ¢ otherwise.

To represent logical NOT, set o, to be e if s is true an‘d ¢! = (15432) if s is false. Then the
product o, - ¢ represents —s. Logical AND is handled via OR and NOT.

Thus, the exponentially-large, polynomially-deep circuit for “M accepts z” can be converted in
a straightforward way to an exponentially-long product of permutation variables. Now the task is
to show that the particular permutation variable that appears at position ¢ in this product can be
computed in O(logt) space. The details follow.

In general, we say a permutation variable o, y-represents s, if the following conditions are
satisfied: ¢ = e if s is true and»a = ~ if s is false, where v is some fixed 5-cycle in Ss.

For any fixed 5-cycle ¥ = (1 17 1942 193 14%), define

1 2 3 4 5

§=6(y)= -
) 1 1y 142 19° 144
and
a(y) = §(v)7tes(v),
B() = 8(v)7'B8().
Clearly

a(1)B()e() B = 1.

1t is straightforward to generalize the previous discussion on OR and NOT in terms of y-representation
for any fixed 4.

We use a local variable pad to accumulate the "boundary effect” encountered in the context
switching from AND to OR. The following function Alpha-Beta takes as inputs a 5-cycle 4 and
two bits b1 b;, and returns a 5-cycle v and pad.

procedure Alpha-Beta ( v, b1z, pad)
begin
case 1: byb; =00 — v=ay)
case 2: bib; =01 — v=8(v)
case 3: bjby =10 - 4= t:z(')v)°l




case 4: bib; =11 — y=f(7)"!
if 152 # 11 then pad = e

end

Alpha-Beta is obviously a finitary function and thus can be stored in a table.

The following procedure uses the function Alpha-Beta and get2bits(l) which returns the next 2
leading bits of its argument I. Also it uses a precedure getnewid to update ID; and ID3; we will
~ explain that shortly. Procedure Mission ( v, I, ID, I D', pad ) takes its input /, a binary integer of
2p(n)(g(n) + 1) bits, and returns a 5-cycle v, two instantaneous descriptions ID!, ID?, and pad.

procedure Mission ( v, !, ID,, ID;, pad )

begin
~ = (12345), ID, = ID°, ID; = IDY
pad =e

For t = 1 to p(n) do
For 1 =1 to g(n) do
b1by = get2bits(l)
Alpha-Beta ( v, b1b2, pad )
pad = ~ - pad
v=9"1
b1bs = get2bits(l)
Alpha-Beta ( v, b1b2, pad )
pad = v - pad
y=971
getnewid(IDy, ID,)

end

The procedure getnewid is used to update the two current instantaneous descriptions for which
the existence of a path from ID; to ID; is to be examined next. Initially they equal to I DO and
IDY respectively. Let ID;, and IDj;, be the current values for /Dy and ID;. Upon comple-
tion of the inner loop, a new ID on the 51—';;51 th column will be selected, IDpoy = I Dke_l%—_tz—
midway between column t; and t;. The particular k depends on the previous 2(g(n) + 1) bits

b}b1b3b3 - - -b‘{(") bg(")b‘{(")"'lbg(”)"'1 used from [. It requires a moment’s reflection, but it is not hard

8




to see that k is precisely b3b3-- -bg("). And bg(")“ decides whether ID; or ID; is to be replaced
by ID, i

(IDy,IDpew) if 3™ =0

(IDnew, ID3) otherwise

(IDy,1D;) =

We finally describe the Logspace local computation. To start, the safe-store has the number 1.
In general, the local machine uses the global clock as binary number I. Suppose Mission returns
~o, pado, ID; and ID;. By repeatedly taking 2 bits from 1, the Logspace machine can figure out
the right yo and pado. Since the various ID’s are all practically written on the global clock [, the
Logspace machine needs only to keep 2 pointers with O(log(n)) bits. ( The initial ID° and IDY can
be remembered in O(log(n)) bits. ) Given pointers to ID; and ID3, it is a Logspace computation
to check if 1D follows from ID; in a single move of the PSPACE machine M.

Now the local machine will behave” like e - padp if the transition exists from 1D, to ID,, and
o - padg otherwise. This ”behavior” is effected by applying the appropriate permutation to the
number stored in the safe-storage ( a three bit number between 1 to 5 ).

It is easy to see that the entire series of local computations will behave like the identity e
sending 1 to 1, if there is a path from ID° to I DY; and behave like the 5-cycle (12345) sending 1
to 2 otherwise.

The proof is completed.

5 Conclusions

We have introduced the notions of safe-storage, or bottleneck machines as a way of further under-
standing the structure of what may lie between P and PSPACE. We have pointed out that there is
a natural relationship between the safe-storage hierarchy and constant-width branching programs,
which parallels the natural relationship between the polynomial-hierarchy and constant-depth cir-
cuits. This connection with constant-width branching programs led to the notion of serializability
of computation and to the theorem that PSPACE is Logspace serializable. It seems remarkable
that any PSPACE computation can be “strung out” in such a fashion. It is certainly stronger than
the observation that PSPACE equals parallel Logspace. The connection also establishes the impor-

tance, at the level of P versus PSPACE, of lower bounds for constant-width branching programs.




Acknowledgement
The authors thank Professor Mike Fischer for many valuable discussions. They thank Neil Immer-
man for first suggesting that the local computations might be done in Logspace instead of P. The
authors also wish to acknowledge James Saxe for discussions several years ago that helped lead to
the formulations presented here.

Thanks are due to the National Science Foundation whose grants MCS-8308805 and PYI grant
DCR-8352081 helped fund this work.

6 References

[B] Barrington, D., Bounded-width branching programs, Ph.D. Thesis, Department of Mathematics,
M.I.T, May 1986.

[C] Cai, J., “With probability one, a random oracle separates PSPACE from the polynomial-time
hierarchy,” Proc. 18th ACM Sym. on Theory of Computation, 1986, pp 21-29.

[CH] Cai, J., Hemachandra, L., “The Boolean hierarchy: hardware over NP,” Proc. Structure in
Complexity Theory, Springer-Verlag Lecture Notes in Computer Science #2283, 1986, pp 105-124.
[FSS] Furst, M., Saxe, J., Sipser, M., “Parity, circuits and the polynomial-time hierarchy,” Mathe-
matical Systems Theory, 17, 1984, pp 13-27.

[HLS] Hartmanis, J., Lewis, P., Stearns, R., “Hierarchies of memory limited computations,” IEEE
Conference on Switching Circuit Theory and Logical Design, 1965, pp 179-190.

[HU] Hopcroft, J., Ullman, J., Introduction to automata theory, languages, and computation, Ad-
dison Wesley, 1979.

[S] Sipser, M., “Borel sets and circuit complexity,” Proc. 15th ACM STOC, 1983, pp 61-69.

[SM] Stockmeyer, L. and Meyer, A, “Word problems requiring exponential time, preliminary re-
port.” Fifth Annual ACM Symposium on Theory of Computing, 1973.

[Y] Yao, A., “Separating the polynomial-time hierarchy by oracles,” Proc. 26th IEEE Foundations

of Computer Science, 1985, pp 1-10.

10






