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Abstract

We consider the problem of identifying an unknown formal language in the limit
when the source of information about the language is a sequence of examples drawn
independently according to some probability distribution.

1 Introduction

Gold [6] introduced the criterion of identification in the limit for successful learning of a
formal language. He showed that there was a fundamental difference in what could be
learned from positive versus complete samples. A positive sample presents all and only
strings from the unknown language. A complete sample presents all strings, each classified
as to whether it belongs to the unknown language. Gold showed that very simple classes of
languages, including the class of regular sets, cannot be successfully identified from positive
samples. By contrast, any recursively enumerable class of recursive languages, including
the regular, context-free, and context-sensitive languages, can be successfully identified
from complete samples.

In discussing the weakness of positive samples (which he termed “text”), Gold suggested

the following approach.

Perhaps this can be prevented by some reasonable probabilistic assumption con-
cerning the generation of the text. In this case one would only require identifi-
cation in the limit with probability one, rather than for every allowed text.

Horning [7] considered the case of stochastic context-free grammars, and assumed that
sample sequences were generated from the unknown grammar according to the probabilities
assigned to the productions. No negative examples were included in the sample sequences.
He gave a learning algorithm, and proved that it converged in a certain sense to the correct
grammar in the limit with probability one. Van der Mude and Walker [14] proved a sim-
ilar type of convergence with probability one for an algorithm to learn stochastic regular
grammars.

Wexler and Culicover [15], in their study of learnability of transformational grammars,
also assume that a stochastic process generates positive examples. However, they require
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that the learning procedure converge in the limit in Gold’s sense to a correct grammar
with probability one. This is a stronger requirement than the type of convergence used by
Horning. They give a learning procedure that succeeds in this sense on a restricted class of
grammars. Osherson, Stob, and Weinstein [10] define a notion of a uniformly measurable
class of recursively enumerable sets, and show that any such class can be effectively learned
in the limit in Gold’s sense with probability one.

These positive results on learning large classes of languages from stochastically generated
positive examples suggest that the assumption of stochastically generated samples is able
to compensate for the lack of explicit negative information in the samples. These results
also invite comparison with a new criterion of finite learnability proposed by Valiant [13].

In Valiant’s setting, there is an unknown probability distribution on examples, and
the learning algorithm draws random examples and attempts to construct and output a
hypothesis that is “not too different” from the correct language “with high probability”.
Both “not too different” and “with high probability” are quantified with respect to the
unknown probability distribution. Valiant and others have given a number of learning
algorithms that succeed with respect to this criterion. This is a very strong criterion,
since nothing is assumed about the unknown distribution - it need not be computable, or
well-behaved in any sense.

Our study is motivated by the question of what has to be assumed about the probabil-
ity distribution in order to achieve the kinds of positive results on language identification
described above. We define an analog of Valiant’s finite criterion for limit identification,
and show that in this case, the assumption of stochastically generated examples does not
enlarge the class of learnable sets of languages. This settles an open question in [10]. We
also give a general definition of identifying or approximating a probability distribution in
the limit, and shown that a fairly weak computability restriction is sufficient to guarantee
identifiability. This generalizes the comparable results of Horning and Osherson, Stob, and
Weinstein described above,

2 Preliminaries

2.1 Functions, languages, presentations

We take the universe of possible elements to be N, the set of all natural numbers. We

assume that appropriate computable codings are chosen represent strings of symbols or
pairs of natural numbers by natural numbers, as necessary. A language is a subset of N.
The characteristic function of the language L, denoted xr, is defined by xr(z) =1ifzr € L,
and x(z) = 0 if z & L. A special symbol, *, will also be used in presenting examples.

The set of all total functions from N to N is denoted F[N,N]. Let f € F[N,N]. A
complete presentation of f is an infinite sequence

g= (-""07 !lo), (1‘1,1/1), (1'2,3/2), cee

such that for all i € N, y; = f(z:), and for every z € N there exists at least ome i
such that z; = z. Thus, a complete presentation of a function eventually exhibits every
argument/value pair for that function.
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Let L be a language. A complete presentation of L is a complete presentation of xz,
the characteristic function of L. A complete presentation of L eventually classifies every
element of N as to its membership in L. The following is an initial segment of an uncountable
number of complete presentations of the set of even elements of N:

(2,1), (7,0), (16,1), (7,0}, (0,1).
A positive presentation of a language L is an infinite sequence
0 = Zo, T1, T2, ..

of elements of L U {*} with the property that for every element z € L, there exists at least
one i such that z; = z. Thus a positive presentation includes all the elements of L, and
no other elements of N. Note that if L is the empty set, then it has only one positive
presentation, consisting of an infinite sequence of *’s. The following is an initial segment of
an uncountable number of positive presentations of the set of even elements of N:

*, 2’ *, ¥, "‘a 16, * 4,0, 66, 0’ 16, *.

Let
¢0a ¢h ¢2’ e

be an acceptable numbering [9] of all the partial recursive functions from N to N. If we let
W; denote the set of inputs z for which ¢;(z) is defined, then

Wo, Wy, Wa, ...

is an enumeration of all the recursively enumerable subsets of N. A recursively enumerable
language is any recursively enumerable subset of N.

2.2 Inductive inference machines

An inductive inference machine is a Turing machine with an input tape, an output tape,
a work tape, and four additional special states: input-requested, input-available, output-
ready, output-recorded. We imagine running such a machine on an infinite sequence of
natural numbers

O =20y)T19T2y -+.

as follows. The machine is started in its start state. If and when it ever enters its input-
requested state, the input tape is erased, the code for the next value of z; is written on
the input tape, the input head is positioned at the beginning of the input tape, and the
machine is continued in its input-available state. If and when it ever enters its output-ready
state, the number encoded by the initial non-blank portion of the output tape is appended
to the end of the (initially empty) output sequence, and the machine is continued in its
output-recorded state. If o is an infinite sequence of natural numbers, let M[o] denote the
empty, finite, or infinite sequence of natural numbers output by M with o as input.

We also consider probabilistic inductive inference machines, which in addition to the
above have a one-way read-only coin tape filled with an infinite sequence of H’s and T's.



The next-state function may depend on the value read on the coin tape, and the head is
advanced one symbol to the right each time the coin tape is read.

Each coin tape determines a unique computation of the the probabilistic inductive in-
ference machine. In particular, if o is an infinite sequence of natural numbers and 7 is
an infinite sequence of H’s and T’s, let M[o, 7] denote the unique empty, finite, or infinite
sequence of natural numbers output by M when run with input o and coin tape 7. Prob-
abilities are assigned by assuming that the values on the coin tape are the results of an
infinite sequence of tosses of a fair coin, with H representing “heads”, and T representing
«tails”. Pitt [11] gives more detail on probabilistic inductive inference machines.

2.3 Criteria of identification: EX and TXTEX

A finite non-empty sequence of natural numbers converges to its last element. An infinite
sequence of natural numbers converges to the value if all but finitely many of the elements
of the sequence are equal to i.

The basic criterion of identification, EX, is defined as follows. Let o be an infinite
sequence of natural numbers, let M be an inductive inference machine, and let f € F[N, N].
Then M EX-identifies f on input o if and only if M[o] is a non-empty sequence that
converges to some i such that ¢; = f. M EX-identifies f if and only if for every complete
presentation o of f, M EX-identifies f on input o. Let

EX (M) = {f € F[N,N): M EX-identifies f}.

Then EX is the set of all § C F[N, N] such that for some inductive inference machine M,
S C EX(M).

A large number of variants of this basic identification criterion have been studied. For
languages we shall be interested primarily in the TXTEX criterion, in which hypotheses
are interpreted as enumerators rather than decision-rules, and the inputs are positive pre-
sentations.

Let M be an inductive inference machine, L a subset of N, and ¢ an infinite sequence
of natural numbers. M TXTEX-identifies L on input o if and only if M[o] is non-empty
and converges to some i such that W; = L. M TX TEX-identifies L if and only if for every
positive presentation o of L, M TXTEX-identifies L on input o. Let

TXTEX(M) = {L € N : M TXTEX-identifies L}.

Then TXTEX denotes the set of all classes C of languages such that for some inductive
inference machine M, C € TXTEX(M).

2.4 Probabilistic criteria of identification

Pitt [11] has defined probabilistic versions of these identification criteria. If M is a prob-
abilistic inductive inference machine and o is an infinite sequence of inputs, then the set
of coin tapes 7 for which M[a, 7] converges to any particular index i is a measurable set.
Hence, the probability that M EX-identifies a function f on input o is well-defined.

If f is a function and p is a real number then M EX-identifies f with probability p if
and only if for every complete presentation o of f, the probability that M EX-identifies f
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on input o is at least p. Let .
EX pobp)(M) = {f € F[N,N]: M EX-identifies f with probability p}.

Then EX,, ;) denotes the collection of all sets S of functions such that for some probabilis-
tic inductive inference machine M, § C EX,,o4()(M). The definitions for TXTEX, ;)
are analogous.

Pitt [11] shows that the EX,,,.O,,(,) classes form a discrete hierarchy, with “breakpoints”
atp=1/nforn=1,23, . In particular, he proves

Theorem 1 For each p > 1/2, EXp,045) = EX. EX is a proper subset of EX,}ob(l /2)-

(Wiehagen, Freivalds, and Kinber [16] also prove this.) For TXTEX-identification Pitt does
not have a complete characterization, but he proves

Theorem 2 For each p > 2/3, TXTEX . o4(5) = TXTEX. TXTEX is pmperly contained
in TXTEXp, 51 12y

The gap between 1 /2 and 2/3 is an open problem. An improvement of this result would
correspondingly improve Corollary 10.

These results show that if the probability of identification is required to be above some
threshold, randomization is no advantage for EX-identification or TXTEX-identification.
The results below show that if no assumption is made about the probability distribution,
stochastic input gives no greater power than the ability to flip coins.

2.5 Probability distributions

The set of real numbers between 0 and 1 inclusive is denoted [0,1]. Let X be a non-empty
finite or countable set. A distribution on X is a function D mapping X to [0,1] such that
the sum of D(z) for all z € X is 1. (This is a “density function” in strict usage.) The
support of D, denoted S(D), is defined by

S(D)={z € X :D(z) > 0}.

Let X be any non-empty finite or countable set, and let ¢ = z¢, z;, z2, ... be an
infinite sequence of elements of X. Then range(o) denotes the set of elements z € X such
that z; = = for some { € N.

Example 3 We define a specific distribution, D,, on X such that
S(D,) = range(o).

For each z € X, let
I(z)={ie N:z;=z}.

I(z) is the set of indices of appearances of z in 0. Define, for each z € X,

D,(z) = Z 1/241,

i€l(z)

with a sum over an empty set of indices interpreted as 0.
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Then it is clear that D,(z) > 0 if and only if z € range(c). Moreover, since every index
i appears in exactly one set I(z), it is clear that

E D,(z) = Z 1/2+! =1,

z€X ieN
as required. Thus, D, is a distribution on X such that S(D,) = range(o).

2.6 The DRAW(D) oracle

If X is any non-empty countable set and D is any distribution on X, then DRAW(D) is
an oracle that is called with no input and returns an element of X drawn according to D.
Each call to the oracle is an independent event.

Example 4 We describe a probabilistic inductive inference machine M such that for any
infinite sequence o of elements of N U {x}, M[o] simulates an infinite sequence of calls to
the oracle DRAW(D,), where D, is defined in Ezample 3.

M keeps a table, initially empty, of the inputs it has read, in the order in which they
were read. To simulate a call to DRAW(D,), M sets a counter C to 1, and reads coin
tosses from the tape, incrementing the counter C for each T read from the tape. At the first
H read, M stops reading the coin tape. If the table of inputs has fewer than C inputs, M
proceeds to read and store inputs until the table has C inputs. M then outputs the element
at position C in the table (numbering from 1.)

Let
g = Z0y T1y T2y --

be an infinite sequence of elements of N U {#}. When M is run with input o, M inde-
pendently selects element z; with probability 1/2+! to be each output. Thus, for each
z € N U {#}, the probability that z is selected is precisely D,(z), as required. It is clear
that each output is an independent event, and the probability that M fails to produce an
infinite sequence of outputs is 0.

3 The distribution-free case

In this section we give definitions analogous to Valiant’s [13] for the cases of EX-identification
and TXTEX-identification.
3.1 Complete distributions

Let D be a distribution on N. We say that D is complete if and only if D(z) > 0 for all
z € N. Let f € F[N,N] and let D be a complete distribution on N. D and f determine a
distribution D[f] on N x N, the set of ordered pairs of real numbers, as follows.

D(f)({z,y)) = D(z) if f(z) =y,
D(f)({z,9)) = 0if f(z) # v.

The following is immediate.



Lemma 5 If D is a complete distribution on N and f € F[N,N], then the sequence of
values returned by an infinite sequence of calls to DRA W(D[f]) is a complete presentation
of f with probability 1. '

If M is an inductive inference machine, then for any complete distribution D on N and
function f € F[N, N}, the probability that M correctly EX-identifies f in the limit when
run with oracle DRAW(D[f]) for input is well-defined, and will be denoted

Pr(EX (M, DRAW (D[f]))).

EXjraw(p)(M) denotes the class of all functions f € F[N,N] such that for every complete
distribution D on N,
Pr(EX(M,DRAW(D[f]))) 2 p.

Consistenf with the notation used by Pitt [11], we denote by EXgygy(p) the collec-
tion of all classes C C F[N, N] such that for some inductive inference machine M, C C
EX 4raw(p)(M). The main theorem of this section is the following.

Theorem 6 For all p € [0,1], EX 4rau(p) = EX prob(p)-

Proof. Suppose that C € EX, (). Then for some probabilistic inductive inference
machine M, C C EXp,op(5)(M). We define from M a deterministic inductive inference
machine M’ such that C C EX draw(p)(M').

M’ works by simulating M. Whenever M requests an mput M’ requests an input and
gives it to M. Whenever M supplies an output, M’ outputs the same value. The remaining
problem is to simulate the coin tosses used by M, which is done by using the stochastic
input.

Whenever M would make a coin flip, M’ instead requests two inputs, say (z;,¥:), and
(zi+1,¥i+1). U z; is 1 and z,4, is 2, M’ continues simulating M as though the value read
from the coin tape were H. If z; is 2 and z;4; is 1, M’ continues simulating M as though
the value read from the coin tape were T. For any other outcome, M’ repeats the process,
requesting another two inputs, and checking them, until one of the two outcomes above
occurs.

Suppose D is any complete distribution on N, and f is any function in C. What happens
when we run M’ with oracle DRAW(D[f])? Lemma 5 shows that M will be simulated with
a complete presentation for L with probability 1. Since D is complete, D(1) > 0 and
D(2) > 0, so the probability is 0 that M’ will get “stuck” trying to determine a coin flip for
M. Moreover, separate calls to DRAW(D|f]) are independent events, so the probability of
1 followed by 2 is the same as 2 followed by 1.

Thus, with probability 1 we will have a correct simulation of the probabilistic machine
M on a complete presentation of f. Hence, the probability that M’ correctly identifies f in
the limit is at least p. Thus, C € EX grau(p), a0d EX prop(p) € EX drau(p)-

Conversely, suppose C is in EX grgu(p)- Then there is some inductive inference machine
M such that C € EX gru(p)(M). We use M to construct a probabilistic inductive inference
machine M’ such that C C EX . 03)(M').

M’ simulates M, using the procedure in Example 4 to simulate a call to the oracle
DRAW(D,) whenever M requests an input, where o is the sequence of inputs to M'.
Whenever M produces an output, M’ outputs the same value.
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Let f be any function from C, and let

g = (1‘0, y0)7 (zh yl)’ (3213/2)3 oo

be any complete presentation of f. It is not difficult to check that the distribution D, is
equal to the distribution D,/[f], where

!
o' =1z9,21,%2, ... .

Thus, with probability 1, M’ succeeds in simulating M with oracle DRAW (D,(f]). More-
over, D, is a complete distribution on N because o is a complete presentation of f.

Since Pr(EX(M, DRAW (D|f]))) 2 p for any complete distribution D on N, the prob-
ability that M’ identifies f is at least p. Hence C € EX prop(p), a0d EXdraw(p) © EXprob(p),
concluding the proof of Theorem 6. O

An immediate corollary of this and Theorem 1 is:
Corollary 7 For each p > 1/2, EX jrgu(p) = EX. EX is a proper subset of EXyrqu(1/2)-

That is, if an inductive inference machine can identify in the limit a class of sets with
probability greater than 1/2 from complete stochastic input, then there is another inductive
inference machine that can deterministically identify that class in the limit from complete
(non-stochastic) presentations. Hence, the assumption of complete stochastic rather than
complete input is no help, if we require correct convergence with any probability exceeding
1/2. However, if we are willing to accept probabilities less than or equal to 1/2, there is an
enlargement of the collection of identifiable classes. ’

The above construction incidentally shows that probabilistic inductive inference ma-
chines with stochastic input have no greater power than deterministic ones with stochastic
input, since the stochastic input can be used to simulate coin tosses as indicated.

3.2 Positive samples

Now we turn to the case of TXTEX-identification and show an analogous result. A distribu-

tion D on NU{*} is defined to be admissible for a language L if and only if S(D)~-{+} = L.

That is, the language consists of just those elements of N with positive probability.
Again, the following is immmediate. '

" Lemma 8 If L is any language and D is any distribution on N U {+} admissible for L,
then the values returned by an infinite sequence of calls to DRAW(D) will be a positive
presentation of L with probability 1.

If M is an inductive inference machine, then the probability that M TXTEX-identifies
L when run with inputs drawn from DRAW(D) is well-defined and will be denoted

Pr(TXTEX(M, DRAW (D))).

Then M TXTEX-identifies L in the limit with probability p from positive stochastic input if
and only if for every distribution D on N U {#} that is admissible for L,

Pr(TXTEX(M, DRAW(D))) > p.
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TXTEXy,qu(p)(M) is the collection of all languages L such that M TXTEX-identifies L in
the limit with probability p from positive stochastic input. TX TEXyraw(p) is the set of all
classes C such that for some inductive inference machme M, C C TXTEX grou(p)(M).

The main theorem of this section is:

Theorem 9 For allp € [0,1], TXTEX gyau(p) = TXTEX rop(p)-

Proof. The proof is essentially the same as the proof of Theorem 6, except that a slightly
more complicated method is required to simulate coin tosses.

Suppose C is in TXTEX,, ;). Let M be a probabilistic inductive inference machine
such that C C TXTEX,.;(;)(M). We define a deterministic inductive inference machine
M’ such that C C TXTEX grqu(;)(M’).

M’ reads the first input, zo. If 2o = #, then M’ outputs any mdex for the empty set.
Otherwise, M’ outputs any index for the set {zo}. M’ continues to read inputs until (if
ever), some input z, # z¢ is read. If and when this happens, M’ proceeds as follows.

M’ begins simulating M. When M requests an input, M’ reads an input and gives it to -
M. When M outputs a value, M’ outputs the same value. When M requests a coin-flip,
M’ reads pairs of inputs until some pair consists of zo followed by z, or vice versa. M’
then continues the simulation as though H were read from the coin tape in the first case, T
in the second case. :

Let L be any element of C, and D any distribution on NuU{*} adrmssxble for L. Consider
what happens when M’ is run using calls to DRAW(D) as input. If L is the empty set,
then all the calls will return *, and M’ will correctly converge to an index for the empty
set. If L is a singleton set {z}, then it may happen that D is the distribution that assigns
1 to z and 0 to all other elements of N U {*}. In that case, M’ will correctly converge to
an index for the singleton set {z}. ‘

In all other cases, there are at least two different values of z with D(z) > 0, so with
probability 1, the search for z,, # zo will succeed, and the simulation of M will commence.
Since D(zo) > 0, D(z,) > 0, and successive calls to DRAW(D) are statistically independent,
the simulation of the coin-tosses will succeed with probability 1, and the two outcomes will
have independent probability 1/2 at each flip, as required. Also, if M reads an infinite
sequence of inputs, it will be a positive presentation of L with probability 1, by Lemma 8.
Hence, with probability 1 the simulation of M will be correct, so M’ will TXTEX-identify
L with probability p. Thus, C € TXTEX 4rau(p), and TXTEX pyoh(p) € TXTEX grau(p)-

For the converse, suppose C is in TXTEXy,,u(;). Let M be a deterministic inductive
inference machine such that C C TXTEX grgu(y)(M). We define a probabilistic inductive
inference machine M’ such that C C TXTEX . o4(,)(M’).

M’ simulates M, using the procedure in Example 4 to simulate calls to DRAW(D,)
when M requests inputs, where o is the sequence of inputs to M’. When M produces an
output, M’ outputs the same value.

Suppose L is in C and o is any positive presentation of L. On input o, M’ will succeed
in simulating M with oracle DRAW(D,) with probability 1. Since D, is a distribution on
N uU{«} that is admissible for L, M must TXTEX-identify L with probability p. Hence M’
must TXTEX-identify L with probability p, so C € TXTEX prod(p) and TXTEX g q0) C
TXTEX p,04(p), concluding the proof of Theorem 9. D



An immediate corollary of this theorem and Theorem 2 is:

Corollary 10 For each p > 2/3, TXTEX 4rqu(p) = TXTEX. TXTEX is a proper subset
of TXTEXdraw(l/2)

That is, if an inductive inference machine can identify in the limit a class of sets with
probability greater than 2/3 from positive stochastic input, then there is another inductive
inference machine that can deterministically identify that class in the limit from positive
(non-stochastic) presentations. Hence, the assumption of positive stochastic rather than
positive input is no help, if we require correct convergence with any probability exceeding
2/3. If we are willing to accept probabilities less than or equal to 1/2, more classes of sets
become identifiable. The open problem of the gap between 1/2 and 2/3 was mentioned in
connection with Theorem 2.

3.3 Remarks on the distribution-free case

It is clear that the techniques of Theorems 6 and 9 extend to many other reasonable criteria
of identification, though it does not seem worth the trouble of formalizing such a result
in this paper. In particular, the extension to behaviorally correct identification (denoted
BC-identification) is immediate, and Pitt [11] has results analogous to the EX,, () case
characterizing the BC,, () classes.

Likewise, the extension of Theorem 9 to TXTBC-identification is immediate. For
TXTBC-identification, Pitt [11] has the stronger result

Theorem 11 For each p > 1/2, TXTBCyp,o4(5) = TXTBC. TXTBC is a proper subset of
TXTBCW06(1/2)'

In fact, if C is the class consisting of all finite subsets of N together with N itself, then it is
easy to see that C € TXTEX ,..4(1/2)- However, Case and Lynes [3] show that C ¢ TXTBC.

If we restrict the functions considered in Theorem 6 to have only values of 0 and 1, then
this is the case of identifying recursive languages by means of complete presentations, where
the hypotheses are required to be decision-rules. It is clear that the proof is unchanged in
this case, and Corollary 7 also holds in this case.

There are two more possible combinations of input and hypotheses: complete presen-
tations and enumerators, and positive presentations and decision-rules. It is clear that
theorems analogous to Theorems 6 and 9 hold in this case also, since the form of the
hypothesis is not critical in either case. However, Pitt does not consider these cases.

It may be possible to extend Pitt’s results to these two cases, siice the key lemma, that
an inductive inference machine that outputs a finite set of indices at least one of which is
correct can be converted to a machine that does EX-identification, holds in these two cases
as well. (This lemma is false in the case of positive presentations and enumerators, even if
all the hypotheses that are output infinitely often are correct, as shown by Case [2].)

In the case of complete presentations and enumerators, the new machine outputs a
hypothesis that represents the union of the sets enumerated by the finite set of hypotheses,
removing any hypothesis that enumerates an element z such that (z,0) has appeared in
the input sequence. Eventually all the remaining hypotheses will enumerate subsets of the
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correct language, and at least one of them is correct, so the union of them is correct and
will not change. '

In the case of positive presentations and decision-rules, consider first the problem of
identifying an enumerator for the complement of the language. Construct from the finite
set of hypotheses an enumerator that outputs z whenever at least one hypothesis ¢; in
the set gives ¢;(z) = 0. Continue reading inputs, and discard from the finite set any
hypothesis ¢; such that for some z in the positive presentation, ¢;(z) = 0. In the limit, all
the hypotheses ¢; such that ¢;(z) = 0 for some z in the language being presented will be
eliminated. Since at least one of the remaining hypotheses is correct, this process converges
to a correct enumerator for the complement of the language being presented.

This enumerator, together with the positive presentation, give complete mformatlon

“about the language being presented. Thus, the final procedure assumes that the input,
together with the enumerator constructed, furnish complete, correct information about the
language, and executes the procedure for complete information. Every time the hypoth-
esis for the enumerator of the complement is modified, the whole procedure for complete
information is restarted. (Saving past positive information, of course.) Eventually the enu-
merator of the complement stabilizes correctly, and the procedure for complete information
then synthesizes a correct decision-rule for the language in the limit.

As a final remark, if in the EX case the distributions are permitted to be incomplete,
that is, to have D(z) = 0 for one or more elements of z, then examples may be constructed
of sets of functions S and distributions D such that S € EX, but no inductive inference
machine M can EX-identify S with any probability p > 0 under the distribution D. As an
example, consider the set of total self-identifying functions:

S= {¢. : ¢.’(0) = i},
and any distribution D on N such that D(0) =

4 Identifying or approximating distributions

The results in the preceding section show that for EX and TXTEX-identification, the as-
sumption of stochastic input is no more helpful than assuming the ability to toss coins,
if no essential restrictions are placed on the distributions. However, in the cases of the
positive results on identifying languages from stochastic positive presentations described in
the introduction, strong assumptions are made about the possible distributions. For exam-
ple, Horning [7) assumes that the possible distributions are given by stochastic context-free
grammars with rational probabilities on the productions. Thus, they are enumerable and
computable in a useful sense.

The primary result in this part of the paper is an algorithm for identifying or approx-
imating distributions using a general definition of a computable sequence of distributions.
This will be shown to generalize the results described in the introduction.

4.1 Motivation: Identifying coins

Before we begin on the general problem, we illustrate our identification task for biases of
coins. Suppose there is a coin with a fixed unknown probability p of coming up heads, and
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probability ¢ = 1 — p of coming up tails. Then p is called the bias of the coin. -

The usual procedure of statistical estimation is to toss the coin n times, record the
number, Sy, of times it comes up heads, and then to estimate p by S;,/n. Bounds on the
tails of the binomial distribution can then be used to estimate the probability of an error
of a certain magnitude in this estimate.

Suppose instead that the unknown coin is one of two coins, C; and Cz, with known
biases p; and p;, where p; # p2. Suppose also that our task is to make an infinite sequence
of guesses of whether the unknown coin is C; or C3, and all but a finite number of these
guesses are required to be correct.

One simple algorithm is as follows. Initialize H = 0. H is a running total of the number
of heads seen so far. At the nt? trial, flip the unknown coin once and set H = H + 1 if it
comes up heads. Guess C, if |py — H/n| < |p2 — H/n|, and guess C; otherwise.

To see that this algorithm solves the limit identification problem, we note that the law of
the iterated logarithm implies that for any A > 1, with probability 1 there are only finitely
many values of n for which !

lp = Sn/n| > A/(2pgloglog n)/n,

where S, is the number of heads in the first n of an infinite sequence of tosses of a coin
with bias p [5]. Since pq is at most 1/4, and A = V/2 is sufficient, with probability 1 there
are only finitely many n for which

Ip = Sa/n| > \/(loglogn)/n.

Thus if the unknown coin is Ci, then with probability 1

|pr — H/n| < \/(loglogn)/n < |p1 — p2|/2

for all sufficiently large n. That is, with probability 1, C; will be the guess for all sufficiently
large n. (Similarly if the unknown coin is C3.)

To push the problem a little further, suppose now we have an infinite set of possible
choices for the unknown bias, say 1/2 and all numbers of the form 1 [2-1/20or 1/241/2
for ¢ = 1,2,.... That is, the possible biases are

1/2,0, 1, 1/4, 3/4, 3/8, 5/8, 7/16, 9/16, ... .

The goal is still to output an infinite sequence of guesses of the bias, of which all but a finite
number are correct. ’

The approach of choosing the bias closest to the empirical estimate H/n for samples of
increasing size breaks down. For example, if the unknown bias is 1/2, then with probability
1 the estimate of p will be different from 1/2 infinitely often, and the approach of choosing
the closest bias will be incorrect each time.

In this case, we number the possible biases in some order, p;, p2, p3, ... , and proceed
as follows. Initialize H = 0. At the n*® trial, flip the unknown coin once and set H = H +1
if it comes up heads. Let i < n be the least positive integer such that

|pi = H/n| < \/(loglog n)/n.

14og” denotes the logarithm to the base e in this paper.
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If such an 1 is found, output p;; otherwise, output any p,.

To see that this process identifies the unknown bias p in the limit with probability 1, we
argue as follows. Let k be the least positive integer such that py = p. (We are guaranteed
that there is at least one such k.) Then the law of the iterated logarithm implies that with

probability 1,
|pk — H/n| < y/(loglogn)/n

for all but finitely many n. Thus, once n exceeds k, px will be a candidate for output all
but finitely many times, with probability 1
Now consider any p; such that i < k. Since p; # p, let ¢, = |pi — p| > 0. Then

€ = |pi — pi| < |pi = H/n|+ |px — H/n|,

lpi — H/n| 2 & — /(loglogn)/n

for all but finitely many n, with probability 1. Since the right-hand side exceeds

y/(loglogn)/n

for all sufficiently large n, we see that p; can be a candidate for output only finitely many
times, with probability 1. Hence, with probability 1, the procedure will output p; for all
sufficiently large n.

Suppose the bias of the unknown coin is not in the set of possxble biases, e.g., p = 4/9
in the example above. Then this procedure will, with probability 1, produce an arbitrary
sequence of guesses. But in this case there is a single closest hypothesis, namely 7/16, and
it would be reasonable to require the identification procedure to converge to this value. We
show how to accomplish this stronger requirement in the general case.

80

4.2 Approximately computable distributions

In general we are interested in identifying or approximating one of a countable sequence
Dy, Dy, D, ... of distributions. For the application to language identification, we use
distributions on N U {*}. It will simplify notation if we consider distributions on N in this
and subsequent sections, except as noted. In fact, by a straightforward coding, the results
are the same for distributions on N U {*} or any other domain recursively related to N.

We need a computability condition on this sequence of distributions. For this purpose,
we assume that the rational numbers are coded in some appropriate way (e.g., as pairs
of integers), so that we can speak of computations with rational numbers as inputs and
outputs.

A distribution D on N is said to be approzimately computable if and only if there is a
total recursive function f such that for every z € N and every positive rational number e,
f(z,€) is a rational number r such that

|D(z)-r| < e

That is, f(z,€) is a rational approx:matlon of D(z) to within e. Note that the values of
D(z) need not be rational.

13



The sequence of distributions Do, Dy, D, ... is said to be uniformly approzimately
computable if and only if there is a total recursive function C(i,z,¢€) such that for every
i € N, every z € N, and every positive rational number ¢ > 0, the value of C(%,z,¢) is a
rational number p such that

|Di(z) - pl < e
That is, C(i, ,€) is a rational approximation of D;(z) to within distance €.

This generalizes the computability condition used by Osherson, Stob, and Weinstein
[10], which requires the value of D;(z) to be exactly computable from i and z. Under their
definition it is decidable from i and z whether z € S(D;). 4

Example 12 We define a uniformly approzimately computable sequence of distributions
Eo, Ev, E3, ... on N U {x} such that for every i € N, L(E;) is the recursively enumerable
set W;. There is an effective process P such that on input i, P(i) enumerates a positive
presentation o; of W;. In Ezample 8 we defined a specific distribution D, from any infinite
sequence 0. For eachi € N, and each z € N, let

Ei(z) = D,,(z).

By the definition of D, , we have that L(E;) = W, forall i € N. To see that this sequence
of distributions is uniformly approximately computable, we indicate how to compute an
appropriate C(i,z,¢). Given a positive rational number ¢, let n be sufficiently large that
1/2™ < €. Use P(i) to enumerate the first n elements

oy, T1y «++ Tn-1
of the positive presentation o; of W;. Let
L(z)={i:0<i<n-1and z; = z}.

This is the set of indices of z among the first n elements of o;. Then return the rational
number _

Ein(z)= Z 1/2'+1,

1€1n(z)

where the sum over an empty set of indices is interpreted as 0. The probabilities attached
to all occurrences of elements past the nt* sum to 1/2", so E;(z) is an approximation
within distance 1/2" < € of E;(z), as required.
4.3 Distance measures for distributions

To generalize the approach described above for identifying the bias of a coin, we need an
appropriate generalization of the measure |p; — ps| of the “difference” between two coins.
A variety of functions would work; the one we choose is :

d.(Dy, D;) = sup{|D1(z) — D2(z)| : z € N}.
We observe that the value d.(D;, D;) is attained for some z € N. It is obvious that
d.(D1,D3) = d.(D3, Dy)

14



for all distributions D; and D,. Also,
d.(Dy,D;) = 0 if and only if D, = D,.

From the corresponding triangle inequality for |z — y| it is easy to show that
d.(D1, D3) £ d.(D1, D3) + d.(D3, Ds).

Taken together, these three properties show that d.(D;, D;) is a metric on the space of
distributions on N.

We now formulate a computability condition on such metrics. An oracle X represents a
distribution D on N if and only if whenever X is called with £ € N and a positive rational
number ¢, the output of X is a rational number p such that

lp— D(z)| < e

Let d(D;,D;) be a metric on the space of distributions on N. Then d(D;,D;) is
approzimately computable if and only if there is a Turing machine MXY (€) that calls on
" two oracles X and Y, and is such that whenever ¢ is a positive rational number and D,
and D, are distributions on N and X represents D; and Y represents D2, the output of
MXY (¢) is a rational number r such that

Ir—d(D1,D7)| < e
Then we have
Lemma 13 d.(D;, D;) is approrimately computable.

Before we begin the proof of this lemma, we show that given a positive rational number €
and an oracle X representing a distribution D on N, we can compute a finite approximation
MIN of D to within e.

MIN will be a finite function with domain S. Initially S is the empty set. We dovetail
calls of the oracle X with inputs (z,¢) for all z € N and all € = 1/2 for i € N. Whenever
a value p is returned for (z,¢) such that

p—€>0,

do the following. If z ¢ S, add z to S and set MIN(z) =p—¢. If z € S, then set MIN(z)
to the maximum of MIN(z) and p — €. Continue this process until

S MIN(z)21-€
z€S

It is not difficult to show that if X represents the distribution D on N, then this process
will eventually halt, and for all z € §,

MIN(z) < D(z) £ MIN(z) + ¢,

andforallz ¢ S,
D(z)<Le

15



Proof of Lemma 13. Given € and oracles X and Y representing distributions D; and
D,, we first use the procedure above to compute finite functions MIN; and MIN,, defined
on finite domains S; and S;, such that for all z € 5,

MIN,(z) < Dy(z) € MINy(z) + €/2,

and for all z ¢ Sy,
Di(z) < €/2,
and similarly for MIN, and D,.
Extend MIN, to domain N by defining
MINi(z)=0ifz & Sy,

and similarly extend MIN; to MIN, with domain N. Then output

max{|MINj(z) — MIN%(z)|:z € N}.

This is clearly computable, since S; U S; is finite, and both MIN] and MIN} are 0 outside
51U S;. To see that this value is an approximation of d.(D;, D3) to within ¢, note that for
allz €N,

|Dy(z) = MIN(2)| < €/2,

and
|Da(z) = MINY(z)| < €/2.
Thus, forallz € S, '
|D1(z) = Dy(z)] — |MIN}(z) = MIN3(2)| < €.

Hence, the maximum value of |MIN(z) — MIN(z)| will be within € of d.(D;, D). This
concludes the proof of Lemma 13. O

The final property that we require of d.(D;, D;) is a bound on how well the empirical
distribution after n samples approximates the true distribution. Let D be any distribu-
tion on N. The experiment we consider is drawing an infinite sequence of examples from

DRAW(D), say
Toy L1y T2y <+

We'll use D(n) to denote the empirical distribution after drawing n samples, for n 2 1.
That is, let
L(z)={0<i<n-1:z;=1z},

and let .
D(n)(z) = |In(2)|/n,

for all z € N. Then D{n)(z) is the frequency of occurrence of z among the first n samples.
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Lemma 14 Let D be any distribution on N. Leta > 1 and let
I(n) = \/6a(logn)/n.

d.(D, D(n)) < I(n)

for all but finitely many values of n.

- Then, with probability 1,

This lemma is proved in the Appendix, where we also discuss its relationship to the
Kolmogorov-Smirnov test. To summarize the properties of d.(D;, D;) we shall need for our
identification algorithm, it suffices if d(D;, D) is an approximately computable metric on
the space of all distributions on N such that there exists a non-zero, approximately com-
putable bound b(n) — 0 as n — oo such that for any distribution D on N, the probability
is 1 that d(D, D(n)) < b(n) for all but finitely many values of n. (For clarity we omit the
‘details of dealing with the approximation to b(n), and assume it is exactly computable.)

4.4 Our criteria of identification

Let
A = Dy, Dy, Dy, ...

be a sequence of distributions on N. If D is any distribution on N, then let
approacha (D) = inf{d.(D,D;) :i € N}.

If D = D; for some i € N, then approacha(D) = 0, but the converse is not necessarily true.
If for D there exists some D; such that d.(D, D;) = approacha(D), then we'll say that
D is finitely approachable by A. If approacha(D) = 0 and D is finitely approachable by A,
then D is equal to some D;.
Let M be an inductive inference machine. If D is any distribution on N, let

M[DRAW (D))

denote the output of M run with calls to the DRAW(D) oracle as input.

We will say that M EX-identifies the distribution D if and only if the probability is 1
that M[DRAW (D)) is a non-empty sequence of indices that converges to some i such that
D = D;. Note that D must be in the original sequence of distributions in this case.

We will say that M EX-approaches the distribution D if and only if the probability is
1 that M[DRAW (D)) is a non-empty sequence of indices that converges to some ¢ such
that d.(D, D;) = approacha(D). Note in particular that D must be finitely approachable
by A in this case. Note also that if D is in the original sequence of distributions and M
EX-approaches D, then M must EX-identify D.

The third definition does not require that the sequence of indices converge. We will say
that M A-approaches the distribution D if and only if with probability 1, M [DRAW (D))
is an infinite sequence of indices jo, j1, j2, ... such that

Jim d.(D, D;,) = approacha(D).
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4.5 EX-identifying distributions

Theorem 15 Let A = Dy, Dy, D,, ... be a uniformly approzimately computable sequence
of distributions on N. There ezists an inductive inference machine M that EX-identifies
any D; from A.

Proof. We describe and analyze an inductive inference machine M that uses A. Recall
the bound I(n) defined in Lemma 14. 4

M works in stages n = 1, 2, 3, ... . At stage n, M requests one more input, and forms
the empirical distribution D(n). For each i,0 < i < n — 1, M approximates d.(D;, D(n))
to within I(n). Let e;(n) denote this approximation.

M outputs the least i < n such that

ei(n) < 2I(n)

if there is any such i. Then M goes to stage n + 1.

A is uniformly approximately computable by hypothesis, d.(D;, D2) is approximately
computable by Lemma 13, and D(n) is exactly computable, therefore there is a recursive
procedure to approximate d.(D;, D(n)) to within the bound I(n). Thus, M is an effective
procedure.

To see that M behaves correctly, suppose that D is any distribution from A. Let ¢ be
the least index such that D; = D. Then for all j < i, d.(D;j, D) > 0. Let Ny be sufficiently
large that

d.(D;, D) 2 51(n)

for all n > Ng and for all j < i.
Suppose the sequence of inputs drawn from DRAW(D) is such that d.(D, D{n)) < I(n)
for all but finitely many n. (This occurs with probability 1 by Lemma 14.) Let N be

sufficiently large that
d.(D,D(n)) < I(n)

for all n > N;.
Let N; be the maximum of i + 1, Ng, and N;. Then for all n > N,,

lei(n) — d.(D;, D{n))| £ I(n),

and because D; = D,
|du(D;, D{n))| < I(n),

§0
' ei(n) < 2I(n).

- Thus, ¢ will be a candidate to be output by M for all n > N,.
Suppose j < i and n > N,. By the triangle inequality, we have

d.(Dj, D) £ d.(Dj, D(n}) + d.(D(n), D),

” d.(Dj,D{n)) > d.(D;, D) - d.(D{n), D).
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However, since n > N,
d.(Dj, D) > 5I(n),

and since n > N,
d.(D,D(n)) < I(n).

Thus,
d.(D;, D{n)) 2 41(n).

Because ¢;(n) is an approximation of d.(D;, D(n)) to within I(n), we have
ej(n) 2 3I(n),

so for all n > N and all j < i, j will not be a candidate for output at stage n of M.
Thus ¢ will be the output of M for all stages n > N. Since this case occurs with
probability 1 by Lemma 14, M EX-identifies D. O

This result improves on the limit identification results of Osherson, Stob, and Weinstein
[10] in that our requirement of computability for distributions is weaker. In particular,
Example 12 shows that there is a uniformly approximately computable sequence of distri-
butions whose associated languages are all the recursively enumerable sets. However, the
class of all recursively enumerable sets is not “uniformly measurable” in Osherson, Stob,
and Weinstein’s definition.

The following corollary concerns the class of stochastic context-free grammars consid-
ered by Horning [7].

Corollary 16 Let ¥ be any fized finite alphabet. The class of distributions over £* rep-
resented by non-blocking stochastic contezt-free grammars with terminal alphabet £ and
rational probabilities can be EX-identified.

Proof. Construct some computable listing of all such grammars, Go, G1, Gz, ... . (Note
that the property of being non-blocking is recursively decidable.) We need to see that the
probability that grammar G; generates some string y can be approximated to within any e.

Initially let W be the empty set. MIN will be a function whose domain is W. Enumerate
all leftmost derivations from the start symbol in G; in order of increasing length. Whenever
a derivation has as a last element a terminal string w, do the following. Let p be the
probability of the derivation, and if w € W then set MIN(w) = MIN(w)+p. Hw g W,
then add w to W and set MIN(w) = p.

The sum of MIN(w) for w € W is a non-decreasing function whose limit is 1 because G;
is non-blocking. Continue the process above until MIN(w) > 1 — €. Then return the value
MIN(y) if y € W, and the value 0 otherwise. It is clear that this will be an approximation
to the probability of generating y from G; to within e. Applying Theorem 15 concludes the
proof of Corollary 16. O

Note that this improves on Horning’s limiting result [7] in that the criterion of con-
vergence is stronger and we permit ambiguous grammars. Ambiguous grammars do not
cause problems for our procedure because we require that the probabxhty of a string be
only approximately computable.
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4.6 EX-approaching distributions

In this section we show that a slightly more complex procedure can EX-approach any D
that is finitely approachable by A. The key idea is that we must approximate approacha (D)
using the sample and the sequence of distributions, instead of assuming that approacha (D)
is zero.

Theorem 17 Let A = Dy, Dy, D,, ... be a uniformly approzimately computable sequence
of distributions on N. Then there ezists an inductive inference machine M’ such that for
every distribution D on N that is finitely approachable by A, M' EX-approaches D. In
particular, M' EX-identifies every D; in A.

Proof. We describe an inductive inference machine M’ that uses A. M’ works in
stages n = 1,2, 3, ... . At stage n, M’ requests one more input, and forms the empirical
distribution D(n). For each i,0 < i < n—1, M’ approximates d.(D;, D(n)) to within I(n).
Let e;(n) denote this approximation.

Let m(n) denote the minimum value of e;(n) for 0 < i < n — 1. M’ outputs the least
i < n such that

ei(n) < m(n) + 41(n).
Note that such an { is guaranteed to exist in this case. Then M’ goes to stage n + 1.

The argument that M’ is a computable procedure is the same as in the proof of Theo-
rem 15. Let D be any distribution on N that is finitely approachable by A. Consxder what
happens when M’ is run with inputs drawn from DRAW(D).

Let m = approacha(D) and let i be the least index such that d.(D;, D) = m. Then for
all j < ¢,d.(Dj, D) > m. Let Ny be sufficiently large that

d.(Dj,D) 2 m +9I(n)
for all n > Np and for all j < ¢.
Suppose the sequence of inputs drawn from DRAW(D) is such that d.(D, D(n})) < I(n)

for all but finitely many n. (This occurs with probability 1 by Lemma 14.) Let N; be

sufficiently large that
d.(D, D(n})) < I(n)

for all n > N;.
Then foralln > Nyand forall0 < j<n-1,

lej{n) = du(Dj, D(n))| < I(n).

Moreover,

d.(D, D(n)) < I(n),

N lej(n) = du(Dj, D)| £ 2(n).

Thus, e;(n) is an approximation of d.(D;, D) to within 2I(n). Hence the value of m(n) will
be an approximation to the minimum value of d.(D;, D) for 0 < j < n -1 to within 2/(n).
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Let N; be the maximum of § + 1, No, and N;, and let n > N,. Since n > i, m is the
minimum value of d,(D;, D) for 0 < j £ n—1. Then m(n) is an approximation to m within
2I(n). Likewise, e;(n) is an approximation of m = d.(D;, D) to within 2I(n), so e;(n) is
within 47(n) of m(n). Thus, i is a candidate for output at stage n.

Consider any j < 1. Since n > N,

d.(Dj, D) 2 m + 9I(n).
However, e;(n) is an approximation of d.(Dj, D) to within 2I(n), so
ej(n) 2 m+ 7I(n).
Since m(n) is an approximation to m within 2/(n),
ej(n) > m(n) + 51(n).

‘Hence, j is not a candidate for output at stage n.

Thus, for all stages n > Na, i is the output of M’. This case occurs with probability 1
by Lemma 14, so M’ EX-approaches D. Since D is an arbitrary distribution on N that is
finitely approachable by A, this concludes the proof of Theorem 17. It is not difficult to see
that for an arbitrary distribution D on N, M’ A-approaches D. D

5 Remarks

We have investigated the effect of assuming randomly drawn examples on various types of
limiting identification. In the distribution-free case, stochastic input reduces to the case of
probabilistic algorithms. For several types of identification criteria (e.g., EX, BC, TXTEX,
TXTBC), Pitt has shown that assuming probabilistic identification algorithms does not
enlarge the identification type if the algorithm is required to be correct with probability 1.

However, if the distributions are assumed to come from a uniformly approximately
computable sequence of distributions, there is an algorithm to EX-identify them in the
limit. This general result explains the success of Horning [7], Van der Mude and Walker
[14), and Osherson, Stob, and Weinstein [10] in finding algorithms to identify languages
from positive stochastic data.

It is interesting to compare this result for distributions with Gold’s result [6] that all the
recursively enumerable sets are identifiable in the limit from positive presentations if those
positive presentations are required to be generated by primitive recursive functions. The
key to this result is to concentrate on modelling the functions presenting the text, which,
being primitive recursive, are an enumerable class of total functions. Similarly, our result on
identifying distributions concentrates on an enumerable, computationally tractable class of
“generators”, namely, uniformly approximately computable sequences of distributions. The
analogy between these results suggests that there is great power in attempting to model
“how” a behavior is produced, as well as “what” behavior is produced.

Rudich’s result on identifying the structure of certain types of Markov chains in the limit
[12] is of a different character from our results on distributions, since he has to overcome
the problem of (in effect) not being told when the machine re-enters its start state.
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What are the implications of these limiting results for the problems of finite, computa-
tionally tractable identification or learning? Valiant’s paradigm is appropriate in general for
positive and negative examples, but only for a few cases of positive-only examples, namely,
domains in which the correct target concept can effectively be approached by a sequence of
hypotheses each of which is a subset of the target concept. In this case, the “error” consists
exclusively of examples in the target concept but not in the hypothesis.

It is an open problem to find a satisfactory generalization of Valiant’s ideas to the general
case of positive-only examples. Our results suggest that an appropriate generalization may
have to abandon the “distribution-free” aspect of Valiant’s paradigm, and explicitly model
the relevant distributions. The central problem in such an approach is to define a useful
notion of the “difference” between two distributions. Here the limiting case provides little
guidance, since a wide variety of measures have appropriate limiting behavior.

6 Appendix

In this section we provide a proof of Lemma 14, and discuss its relation to the Kolmogorov-
Smirnov test.

6.1 Proof of Lemma 14
First we need a technical lemma. Recall that “log” denotes the logarithm to the base e.
Lemma 18 For alla, n, and p such thata>1,n>2,and0<p<1,

e(-—2a/p)logn < P2-
Proof. For all p such that 0 < p <1,

plog(1/p) < 1/e.

Foralla>1and n 2> 2,
alogn > 1/e,

therefore,
alogn > plog(1/p).
Thus,
(—2a/p)logn < 2logp,

and therefore,
e(-?c/p)logn < p2.
This concludes the proof of Lemma 18. O

Proof of Lemma 14. Let D be any distribution on N. Let a > 1 and let

I(n) = \/6a(logn)/n.

22



We show that with probability 1,
d.(D, D(rn)) < I(n)

for all but finitely many values of n, where D(n) is the empirical distribution defined by
the first n elements in an infinite sequence of examples drawn from DRAW(D).

First, consider any z such that D(z) = 0. This z never occurs in any example sequence,
so for all n, D(n)(z) = 0. Hence, for all n > 1 and all z € N such that D(z) = 0,
|D(z) = D{n)(z)| < I(n).

We use the following result, drawn from [1]. For each z such that D(z) > 0, and any o,

Pr(|D(z) - D{n)(z)| 2 @) < 267 "/3D(),
Substituting a = I(n), we have
P1(|D(z) - D(n)(z)| 2 I(n)) < 2¢(~2e/DENsn,
If D(z) > 0, then since D(z) <1,
| Pr(|D(z) - D{n)(z)| 2 I(n)) < 2077
Let
B,={z€ N:D(z)2n""}.
Then B, contains at most n® elements, so the probability that [D(z)— D(n)(z)| > I(n) for
some z € B, is bounded by 2n~°.
Let
Cn={z€N:D(z)<n°}. |
Applying Lemma 18 with p = D(z), we have for every n > 2 and every z such that
D(z) > 0,
e(-?a/D(z))logﬂ < (D(x))2,

and therefore,
Pr(|D(z) - D(n)(z)| > I(n)) < 2(D(2))*.
Also,
Y (D) <n,
~ z€Cn

because D(z) < n~° for each z €-Cp, and ¥_.en D(z) = 1. Thus, for each n 2 2, summing
over all the elements in C,, the probability that [D(z) — D(n)(z)| > I(n) for some z € C,,
is bounded by 2n~°.

Hence, for each n > 1, the probability that |D(z) — D{(n)(z)| > I(n) for some z € N
is bounded by 4n=°. Since d.(D, D(n)) is the maximum value of |D(z) - D(n)(z)| for all
z € N, this means that the probability that

d.(D,D(n)) > I(n)

is bounded by 4n~°. Because a > 1, the sum of these probabilities for all n > 1is finite. By

the Borel-Cantelli lemma, we conclude that with probability 1 there are only finitely many

values of n for which '
d.(D,D(n)) > I(n),

which concludes the proof of Lemma 14. O
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6.2 Comparison with the Kolmogorov-Smirnov test

In this section we must distinguish correctly between what we have called distributions
above, which are really density functions, and the usual notion of distribution in probability
theory. Let F(z) be a continuous distribution function mapping the real numbers to [0, 1].
F(z) denotes the probability of drawing a number from the set of real numbers {y: y < z}.

Kolmogorov formulated a statistical test for whether a sequence of samples come from
some known distribution F(z). Smirnov formulated a similar test for whether two sequences
of samples come from the same distribution. Our description of one kind of Kolmogorov-
Smirnov test is drawn from Chung [4].

Consider an infinite sequence of random variables zg, z;, z2, ... each independently
drawn according to the distribution F(z). Let

F.(z)={i< nizi < z}|/n.

Thus, F,(z) is the proportion of samples among the first n that do not exceed z. That is,
F,(z) is the empirical distribution defined from the first n samples.
Let
ks = sup{|Fa(z) = F(z)| : —00 < z < 00}.

Theorem 2 from [4] shows that if A(n) — 0o as n — oo then the probability that

kn > n~Y2A(n)

for infinitely many values of n is 0 or 1 according to whether
) 2
Y- (¥(n)/n)e= ¥ (™)
n=1

is finite or infinite.
In particular, for A(n) = /Ioglog n the sum converges, so with probability 1,

kn > y/(loglogn)/n
for only finitely many values of n. »

This suggests defining a metric on two density functions D and D’ on N as follows. Let

F(n)= Y D(m),

0<m<n

and

F(n)= Y D'(n),

0<m<n
where m and n are natural numbers. Then define

dg(D, D) = sup{|F(n) - F'(n)| : n € N}.

It is not difficult to see that dx (D, D’) is an approximately computable metric on the space
of all density functions on N. ‘
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We can extend F(n) to be continuous distribution function on the real numbers by
defining F(z) = 0 for all z < —1, and then making it piecewise linear from the point (-1,0)
to the point (0, F(0)), piecewise linear from there to the point (1, F(1)), and so on. This
corresponds to a probability density function that first selects the interval (n — 1,n] with
probability D(n), and then selects uniformly from that interval.

The extension agrees with F(n) on all n € N. Moreover, for any sequence of samples,
the values of the empirical distribution for F(n) and the empirical distribution for the
extension agree on all n € N. Hence, the Kolmogorov-Smirnov test gives us an analog of
Lemma 14 for the metric dx (with a better bound in place of I(n).) Other metrics, based
on other statistical tests, are also possible. '
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