Abstract

We present a stable and efficient divide-and-conquer algorithm for comput-
ing the singular value decomposition of an N x N lower bidiagonal matrix.
Previous divide-and-conquer algorithms all suffer from a potential loss of or-
thonormality among the computed singular vectors unless extended precision
arithmetic is used. We then show how to use the fast multipole method of Car-
rier, Greengard and Rokhlin to speed up this algorithm from O(N?) time to
O(N log, N) time for computing all the singular values, and from O(N3) time
to O(N?) time for computing all the singular values and singular vectors. We
also present a generalization that computes the singular value decomposition
of a lower banded matrix.
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1. Introduction
Given an (N +1) x N lower bidiagonal matrix!
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its singular value decomposition (SVD) is

— Q T
px (D)

where X and Y are (N +1) x (N +1) and N x N orthonormal matrices, respectively; Q
is an N X N non-negative diagonal matrix; and 0 is a row of zero elements. The columns
of X and Y are the left singular vectors and the right singular vectors of B, respectively;
and the diagonal entries of Q) are the singular values of B. This problem arises when one
computes the SVD of a general matrix by first reducing it to bidiagonal form [9, 11, 12, 26).
In this paper, we propose a bidiagonal divide-and-conquer algorithm (BDC) for solving this
problem.

BDC first divides B as follows:

B = Bl Q€L 0
0 Prer B, ’
where B, and B, are lower bidiagonal matrices, each of which is a submatrix of B. BDC next
recursively computes the SVDs of B, and B,, and then computes orthonormal matrices

(Q ¢) and W such that
B=(Q q)(j:)l)WT ,

where
21
2; d
M=
zZN dn

is an N x N matrix with non-zero elements only on its diagonal and in its first column.
BDC computes the singular values of B by computing the SVD of M

M=UQVvT |

' An N x N lower bidiagonal matrix can be put into the form (1.1) by appending a zero row.




where U and V are orthonormal matrices?. BDC then computes the singular vector matrices
of B as (QU ¢) and WV, respectively (see Section 2).

Since error is associated with computation, a numerical SVD of B or M is usually
defined as a decomposition of the form

B=X ( ? ) YT 4+0(c||Blz) or M=UQVT +0(e||M|2) , (1.2)

where € is the machine precision; Q is diagonal; and X and Y or U and V are numerically

orthonormal. An algorithm that produces such a decomposition is said to be backward
stable [26].

While the singular values of B and M are always well-conditioned with respect to pertur-
bations, the singular vectors can be extremely sensitive to perturbations [12, 24, 26]. That
is, Q) can be guaranteed to be close to 2, but X, Y, U and V can be very different from X,
Y, U and V, respectively. Thus one is usually content with backward stable algorithms for
computing the SVD of B or M.

The divide-and-conquer algorithm developed by Jessup and Sorensen [21] uses basically
the same dividing strategy. The scheme it uses for computing the SVD of M is based on
work in [4, 5, 8]. While it can compute the singular values of M to high absolute accuracy,
in the presence of close singular values it can have difficulties in computing numerically
orthonormal singular vectors, unless extended precision arithmetic is used [21, 22, 25].

In this paper we develop a new scheme for computing the SVD of M. It uses an approach
similar to that of Jessup and Sorensen [21] for computing the singular values. But it uses a
completely different approach for computing the singular vectors, one that is backward stable.
The amount of work is roughly the same, yet it does not require the use or simulation of
extended precision arithmetic (see Section 3). Since it uses this scheme, BDC is backward
stable as well. Moreover, BDC uses a different procedure for handling deflation, which allows
it to be asymptotically twice as fast as that of Jessup and Sorensen [21] (see Section 4).

There are three other divide-and-conquer algorithms for the bidiagonal SVD. Arbenz and
Golub (3] use a similar dividing strategy that reduces the problem of computing the SVD of
B to that of MT. Arbenz [1] and Gragg, Thornton and Warner [13] compute the SVD of B
0 BT
B 0
be unstable as noted above. The techniques presented in this paper can be used to stablize
and speed up these algorithms as well.

by computing the eigendecomposition of the matrix . All three algorithms can

2 Since ( Ag ) is obtained from B by orthonormal transformations, M and B have the same singular

values.




BDC' computes all the singular values in O(N?) time and all the singular values and
singular vectors in O(/V?) time. We show that by using the fast multipole method of Carrier,
Greengard and Rokhlin [6, 14], BDC can be accelerated to compute all the singular values
in O(N log, N) time and all the singular values and singular vectors in O(N?) time. These
asymptotic times are better than the corresponding worst-case time requirements (O(/N?) and
O(N?)) for the Golub-Kahan algorithm [9, 11, 12] and bisection with inverse iteration [19, 20].

"This is an important advantage of BDC for large matrices.

We take the usual model of arithmetic3

filaof)=(aoB)(1+¢) ,

where a and g are floating point numbers; o is one of +, —, X, and =; fi(aoB) is the floating
point result of the operation o; and |¢| < e. We also require that

AWE) = va (1+8)

for any positive floating point number a. For simplicity, we ignore the possibility of overflow
and underflow.

Section 2 presents the dividing strategy; Section 3 presents a scheme for computing the
SVD of M; Section 4 presents the deflation procedure; Section 5 discusses the application
of the fast multipole method to speed up BDC; and Section 6 generalizes BDC to compute
the SVD of a lower banded matrix.

2. “Dividing” the Matrix

Given an (N + 1) x N lower bidiagonal matrix B, BDC recursively divides B into two
subproblems as follows (cf. [21]):

By ager 0
B= , 2.1
( 0 Brea Bz) 21)
where B, and B, are k x (k—1) and (N — k + 1) x (N — k) lower bidiagonal matrices

respectively; and e; is the j-th unit vector of appropriate dimension. Usually k < N is taken
to be | N/2].

Assume that we are given the SVDs
D;
B; = (Q: Q:')( 0 )W.'T ,

where (Q; ¢;) and W; are orthonormal matrices; and D; is a non-negative diagonal matrix.
Let {T and \; be the last row and last component of @, and ¢,, respectively; and let f7 and

3 This model excludes machines like CRAYs and CDC Cybers that do not have a guard digit. BDC can
easily be modified for such machines.




2 be the first row and first component of Q; and g, respectively. Plugging th

we get
D
(o QI)( 01) Wi arex 0 \

B =
0 - Brer (Q2 %)(1())2) Wz;r

( D\WT aQTer 0
_ (Ql @ 0 o) 0 argfex 0
B 0 0 Q: q2 0 BQfey D,WT
0 BrgT e 0

ese into (2.1),

)
)

(akAl 0 0 0 W1 0 T
— q1 Ql 0 O akll .D] 0 1 0 0 (2 2)
0 0 @2 ¢ Bef2 0 D, 00 W,
\ Bkp2 0 0

Note that there is only one non-zero element in the first and last rows of the middle matrix
(axAr and Biyps, respectively). We apply a Givens rotation to zero out Bip;. Let

A
"o=\/(ak/\l)2+(ﬂk<pz)2 , o= and 80="B—k—(p—2 (2.3)
To To
Then we have
T
To 0 0 0 W1 0
_ [ o @1 0 —soqn oy, Dy 0
B = 1 0 O
soq2 0 Q2 cog2 Brfa 0 D, 00 W
0 0 0 2
M
= (@ q)( 0 )WT (24)
where
oW, 0
Q=(:°q‘ %‘Cg) , =(“3°‘“) and W=|10 o0 ,
042 2 Coq2 00 W,
and
To 0 0
M= a;,ll Dl 0
Brfa 0 D,

In equation (2.4), B is reduced to ( 1:]4 ) by orthonormal transformations (@ ¢) and




W. M can be non-zero only on its diagonal and in its first column. Let UQV7T be the SVD of
M computed using the scheme described in Section 3. Plugging it into (2.4), we obtain

B=(@ q)(U%VT)W%(QU q)(?)(WV)%X(?)YT ,

where X = (QU ¢)and Y = WV,

The singular values of B are the diagonal elements of 2. The singular vectors of B are
the columns of X and Y. To compute the SVDs of B, and B, this process (equations (2.1)
and (2.4)) can be recursively applied until the subproblems are sufficiently small. These
small subproblems are then solved using the Golub-Kahan algorithm [9, 11]. There can be
at most O(log, N) levels of recursion.

Equations (2.1) and (2.4) also suggest a recursion for computing only the singular values.
Let fT and ¢, be the first row of Q, and the first component of g, respectively; let {I and
A2 be the last row of Q; and last component of gz, respectively; let fT and ¢ be the first row
of @ and g, respectively; and let I7 and A be the last row of Q and g, respectively. Suppose
that D;, fi, A, l; and ¢; are given for i = 1,2. Then we can compute Q, f, A, I, and 7
by computing ro, 5o and ¢y using equation (2.3); computing the SVD of M = UQVT; and
computing

/\=_30/\1 y P = Cp2 , sz(f{rO)U a'nle=(Olg,)U :

The divide-and-conquer algorithms in [7, 16] for the symmetric tridiagonal eigenproblem
have a similar recursion for the eigenvalues.

3. Computing the SVD of M

In this section we present a scheme for finding the SVD of the matrix

21
d
M=% , (3.1)

Zn d,

where D = diag(dy,dy,...,d,) with* 0 =d; < d; < ... < dy; and z = (21, 22,...,2,)7. We
further assume that

djy1 —d; 2 7||M]l2 and |z| > 7|M]|; (3.2)

where 7 is a small multiple of € to be specified in Section 3.3. Any matrix of the form (3.1)
can be reduced to one that satisfies these conditions by the deflation procedure described in
Section 4.1 and a simple permutation.

4 d, is introduced to simplify the presentation.




The following lemma characterizes the singular values and singular vectors of M

LEMMA 1 (JESSUP AND SORENSEN [21]). Let UQVT be the SVD of M with

= (u1,...,up) , Q=diag(wr,...,ws) and V= (vy,...,v,) ,

< wy. Then

where 0 < w; <...
MMT = D? 4+ 2T = yQyT

is the eigendecomposition of MMT. The singular values {wi}?, satisfy the interlacing prop-

erty
<d, <wp <d,+]|l2]]z ,

O=di<w <dy<...

and the secular equation
=0

n 2
f@) =143 5=
k=1 "k

The singular vectors satisfy

T n 2
2 Zn 2z
i = —k 3.3
SR CEr =) /\Jg(dz—w,?f =
d222 d nin T (dkzk)2
(—1,d,§,_w?,...,d3_ ) /\J Z; (3.4)

On the other hand, given D and all the singular values, we can construct a matrix with

Uy

the same structure as (3.1).

LEMMA 2. Given a diagonal matriz D
{&i}, satisfying the interlacing property
(3.5)

= diag(dy,dy,...,d,) and a set of numbers

O=di<o1<dy<...<dp, <@y
there ezists a matriz
z
A = 2y d,
Zn d,
21, 2 ,2,)T is determined by

whose singular values are {&;}2,. The vector 3 = (3, 2,,

" J S i-d) T (G- &) 6

(L?Jﬁ—d?)l—[(di dzz)k,(k.n_‘p) ’

k=1

where the sign of Z; can be chosen arbitrarily.




Proof: Assume that Z exists. By Lemma 1 we have

det (D? + 257 — 1) = [ (&} - v?)
k=1

On the other hand,
det (D? + 57 - w™1) = det (I+ (D~ wI)™ 27) det (D* - w*I)

_ <1+kz_;di_fw2) I[@-

k=1

Combining these two equations,

- (143 22 @ -

k=1 k=1
Setting w = d;, we get
I1, (@f — d?)
iy (d; — d)
Because of the interlacing property (3.5), the expression on the right hand side is positive.

Taking square roots we get (3.6). Working backward, if £ is given by (3.6), then the singular
values of M are {&;} L - |

5=

3.1. Computing the Singular Vectors of M

For each ezact singular value w;, equations (3.3) and (3.4) give the corresponding ezact
singular vectors. Observe that if w; was given, then we could compute each difference d? —w?
to high relative accuracy as (dj — —w;)(dk +w;). We could also compute each product and each
ratio to high relative accuracy, and thus compute u; and v; to component-wise high relative
accuracy.

In practice we can only hope to compute an approximation &; to w;. But problems can
arise if we approximate u; and v; by

z z T - 22
' (df*-t?)?’ ’dﬁ-“?) P (@ —&2)?

and p p T " (deme)?
5= (—1,-B%2  _dumn ) ) K2k
G = B " - oy

(i.e., replace w; by & in equations (3.3) and (3.4) as in [21]). For even if & is close to
w;, the approximate ratios z;/ (d? — &?) and dizi[/(d? — &?) can still be very different from
the exact ratios z;/(d} — w?) and dizx/(d? — w?), resulting in singular vectors very different
from u; and v;. And when all the approximate singular values {&i}2, are computed and all




the corresponding singular vectors are approximated in this manner, the resulting singular
vector matrices may not be orthonormal.

Lemma 2 allows us to overcome this problem. After we have computed all the approx-
imate singular values {&;}7, of M, we find a new matrix M whose ezact singular values
are {&;}1L,, and then compute the singular vectors of M using Lemma 1. Note that each
difference

Gp—df = (ox —di)(@n +di) and df —d? = (di — di)(dx + di)

in (3.6) can be computed to high relative accuracy. Each ratio and each product can also
be computed to high relative accuracy. Thus |%;| can be computed to high relative accuracy.
We choose the sign of ; to be the sign of z;. Substituting the ezact singular values {&;}7%,
and the computed  into equations (3.3) and (3.4), each singular vector of M can again
be computed to component-wise high relative accuracy. Consequently, after all the singular
vectors are computed, the singular vector matrices of M will be numerically orthonormal.

To ensure the existence of M, we need {&i}%, to satisfy the interlacing property (3.5).
But since the exact singular values of M satisfy the same interlacing property (see Lemma 1),
this is only an accuracy requirement on the computed singular values, and is not an additional
restriction on M. We can use the SVD of M as an approximation to the SVD of M. Since

21— 24
M=M+ . . ’
Zn — Zp 0

we have

i = wil S 1M = Mz < ||z — 2],

Such a substitution is backward stable (see (1.2)) as long as # is close to z (cf. [17]).

3.2. Computing the Singular Values of M

In order to guarantee that  is close to z, we must ensure that the approximations
{@i}, to the singular values are sufficiently accurate. The key is the stopping criterion for
the root-finder, which requires a slight reformulation of the secular equation (cf. [4, 17]).

Consider the singular value w; € (diydi41), where 1 < 1 < n—1; thecase i = n is
considered later. w; is a root of the secular equation

f(w)‘-1+Zd2 — =0

Jj=1




We first assume that® w; € (d;, -‘1'1"-:—‘*-‘-). Let §; = d; — d; and let

11’(#) Z p)(d +d; +p) and () = Z #)(d +d; + p)

J"l J_l+1

Setting w = d; + u, we have

flp+di) =1+9()+ ¢(u) = g(u)
We seek the root py; = w; — d; € (0,8i41/2) of g(p) =

An important property of g(u) is that we can compute each difference 8; — p to high
relative accuracy for any p € (0,6;41/2). Indeed, since §; = 0, we have A6 — p) = =A(p);
since fl(6i+1) = fi(diy1 — di) and 0 < p < (diy1 — d;)/2, we can compute fi(6ig1 — p) as
f(A(dit1 — di) — fi(p)); and in a similar fashion, we can compute é; — p to high relative
accuracy for any j # 7,: + 1.

Because we can also compute d; + d; + u (a sum of positive terms) to high relative
accuracy, we can compute each ratio z7/((8; — p)(d; + di + 1)) in g(u) to high relative
accuracy for any p € (0,6;41/2). And, since both %(u) and ¢(x) are sums of terms of the
same sign, we can bound the error in computing g(u) by

(L + [$(u)l + 1(L)])
where 7 is a small multiple of ¢ that is independent of n and u.
We now assume that w; € [d—"":—‘ﬂ,d;.,.l). Let 6; = d; — di4; and let

i : 2

tb(#)EZw 7 +d,+1+/z) and @(u) = Z (é}—p)(dj:’dﬁl + 1)

j=1 Jj=i+1

Setting w = d;}; + u, we seek the root Ki = wi —diyy € [6;/2,0) of the equation

9(w) = f(p +dipr) = 1+ 9(p) + ¢(p) =

For any u € [6;/2,0), we can compute each difference 8; — p to high relative accuracy. Since
|| < 16:|/2 < diy1/2, we can compute each sum d; + diyy + p to high relative accuracy as
d;j + (diy1 + ). Thus we can again compute each ratio 22/((6; — p)(d; + diy1 + ) to high
relative accuracy and bound the error in computing g(u) as before.

Finally we consider the case i = n. Let 6; =dj — d, and let

2

¢(p)-2(6_”)(j+d T = Hw) =0

3 This can easily be checked by computing f (ﬁ-é'—*—) If f(iig—'ﬂ) > 0, then w; € (d;, "L.f‘ﬂ), otherwise

wg € [fidﬁ.. dl+l)
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Setting w = d, + u, we seek the root u, = w, — d, € (0, ]|z||2) of the equation

g(n) = f(p+dn) =1+ 9(p) + 6(p) =

Again, for any u € (0,]|2]|2), we can compute each ratio z2/((8; — p)(d; + dn + p)) to high
relative accuracy, and we can bound the error in computing g(u) as before.

In practice the root-finder cannot make any progress at a point g where it is impossible
to determine the sign of g(u) numerically. Thus we propose the stopping criterion

lg(u)l < an (1 + [(p)| + lo(p)]) (3.7)

where, as before, nn(1+|¥(u)|+|¢()|) is an upper bound on the round-off error in computing
g(p). Note that for each i, there is at least one floating point number that satisfies this
stopping criterion numerically, namely fl(y).

We have not specified the scheme for finding the root of g(x). We can use the bisection
method or the rational interpolation strategies in [4, 13, 23]. What is most important is the
stopping criterion and the fact that, with the reformulatlon of the secular equation given
above, we can find a u that satisfies it.

3.3. Numerical Stability

In this subsection we show that 2 is indeed close to z, as long as the root-finder guarantees
that each computed y; satisfies the stopping criterion.

Since f(w;) = 0, we have

E]
~N
3
S

and the stopping criterion (3.7) implies that the computed singular value &; satisfies

If(w.|<nn(zld2 o +2le ‘2|)

=1

Since

f(@) = £(@) = flw) = (& ~ 2)Z(d2 w,)(dz o

ij=1
it follows that

n n

j=1 j=1 %17 j=1 "3

Note that for any j,
1 1 2 |&2 — W2

— + < 4
| — & 1d} — WPl T |(d? - 0F)(d? - W)} l(d2 — wf)(d} - w})|
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Plugging this into (3.8) and using the Cauchy-Schwartz inequality, we get

02 — w2
|&f — W2 E
|(d? - w?)|

i=1

n

2nn z;
T & @@=

=1

2

T uz\J i@=m@=—o

=1 \J *

/ \I 2 Tar= aﬂ)(dz il

2nn|z|2 - 2
(l_—n_n)H\/l(d’z - &F)(d} — wP)|

2r]n||z||2 ( 2 2 1.2 2)
S 77— {|df —w; + olwp = w;
T =)l %~ il +31é -]

or

IN

Letting £; = 2nn||z||2/((1 — 7n)|z;|), this implies that
[0 — 2| < ——|d} - W} (3.9)
. 2€J

for every 1 < j < n, provided that ¢; < 2.

Let & — w? = @;j(d? — w})/z; for all i and j. Suppose that we pick 7 = 2nn? in (3.2).
Then |z;| > 29n?||2||,. Assume further that gn < 1/100. Then §; < 2/3, and (3.9) implies
that |a;;| < @ = 4nn||z||; for all i and j. Thus

i TS - [P (%)
and, since % and z; have the same sign,
[BE)- e’
< lad (exp (5=)- 1) < (e=1) an/2

< dnn?llzll, (3.10)

|2i — 2] = |z

where we have used the fact that an/(2|z|) < 1 and that (exp(z)—1)/z < e-1for0<z < 1.
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One factor of n in 7 and (3.10) comes from the stopping criterion (3.7). This is quite
conservative and could be reduced to log, n by using a binary tree structure for summing
up the terms in t(u) and ¢(u). The other factor of n comes from the upper bound for
[1;(1 + aji/z). This also seems quite conservative. Thus we might expect the factor of n?
in 7 and (3.10) to be more like O(n) in practice.

4. Deflation
4.1. Deflation for M

Let

22 d2

Zn d,

where D = diag(dy,d,,...,d,) with d; = 0 and d; > 0; and z = (21,225 .-,20)7. We
now show that we can backward stably reduce M to a similar matrix which further satisfies

(cf. (3.2))
|di —d;| > 7||M||]; for i#j , and |z|>7|M|. ,

where 7 is specified in Section 3.3. We illustrate the reductions for n = 3. Similar reductions
appear in [21].

First assume that |2;| < 7||M]||2, then we set z; to 7||M||;:

21 7(| M|z
M= 22 dg = 29 dg + O(T“M”z) . (41)
z23 d3 23 d3

The matrix M is perturbed by O(r||M||2). The perturbed matrix has the same structure as
M and satisfies |21 > 7||M||,.

Next assume that |z;| < 7||M||; for i > 2. We illustrate the reduction for i = 3. We set
z; to zero:

21 F4
M=| z d, =1 22 dy +O0(7||M]l2) . (4.2)
23 d3 0 d3

The matrix M is perturbed by O(7||M]||;). d; is an approximate singular value of M and is
deflated. The (n —1) x (n — 1) leading principle submatrix of the perturbed matrix has the
same structure as M but is of smaller dimensions.

Now assume that |d; — d;| = |d;| < 7||M||,. We illustrate the reduction for i = 3. Let
r=/2} 422, s=2z/r and ¢ = z;/r. We set d; to zero and apply a Givens rotation to zero
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out z;:
c S F41
1 29 d2
—s c z3 ds
( c S F41
= 1 29 dz + O(‘T”M"z)
\ -8 c 23 0
r
= \ z; d; +0(7||M]|2) . (4.3)
0 0

The matrix M is perturbed by O(7||M||;). 0 is an approximate singular value of M and is
deflated. The (n — 1) x (n — 1) leading principle submatrix of the matrix in (4.3) has the
same structure as M but is of smaller dimensions.

Finally assume that |d; — d;| < 7||M||; for i, § > 2. We illustrate the reduction for i = 3

and j = 2. Let r = /22 + 2z}, s = z;/r and ¢ = z;/r. We set d; to d; and apply a Givens
rotation to zero out z;:

1 V41 1
c s 2y ds c —s
-8 C 23 ds s C
(1 2 1
= c s 2y d c —s | +O(7||M]||2)
\ -8 C 23 d3 S C
[
=| r ds +0(r||M]z) . (44)
\ 0 ds

The matrix M is perturbed by O(||M||;). d; is an approximate singular value of M and is
deflated. The (n — 1) x (n — 1) leading principle submatrix of the matrix in (4.4) has the
same structure as M but is of smaller dimensions.

4.2. Local Deflation for BDC

In the dividing strategy (see (2.4)), we write

B=(Q q)(]:)l)WT=(QU 9)(2)(WV)T , (4.5)
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where
Q0 oW, 0 n 0 0
Q=(:oql OIQ) , W=]1 0 0 and M=| aly D, 0 ;
\ S092 2 0 0 W, Befr 0 D,

I is the last row of Qy; fT is first row of Qp; and UQVT is the SVD of M.

Note that both @ and W are block matrices with some zero blocks. Since the main cost
of BDC is in computing the matrix-matrix products QU and WV, we would like to take
advantage of this structure. In this subsection we design a deflation procedure for BDC that
gets a speedup of roughly a factor of 2 by doing so. This approach is not used in [21].

If [ro| < 7||M]|2, then we can apply reduction (4.1). If the vector (aklT, BifT) has some
components with small absolute value, then we can apply reduction (4.2). In both cases
the block structure of Q and W is preserved. If D; has a small diagonal element, then we
can apply reduction (4.3). And if D; has two close diagonal elements, then we can apply
reduction (4.4). Again in both cases the block structure is preserved. We can do the same
when D, has a small diagonal element or has two close diagonal elements.

However, when D, has a diagonal element that is close to a diagonal element in D, and
we apply reduction (4.4), the block structure of @ and W is changed. To illustrate, assume
that after applying a permutation the first diagonal element of D is close to the last diagonal
element of D,. Let '

Q1= (& Q), Q=0 @) , Wi = (b Wh) and W, = (W, ) ;

arly = (?) and fBif, = ( 22) ;
21 ZN

and let D; = diag(dg,f?I) and D; = diag(Dg,dN). Define

let

Then ||My — M||; < 7||M||,. We apply a Givens rotation G to zero out ZN:

GMGT = GM,GT + O(7||M|,)
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= % D, 3 + O(T"Muz)
Z D,
0 dn

_ (M o0
= ( 0 dN)+0(TlIMIIz) :

where G is defined by r = /22 + 2%, ¢ = z3/r and s = zy/r. Plugging this into (4.5), we

have
M
B =(Q q)( ; )WT
GMGT T
= (QG” q)( 0 )(WGT)
M 0
= (Kizq)| o av | (% 9)+0ClnMl) | (4.6)
0 o0
where
X1= Coq1 Cl{l @ 9 and %= "'i‘h
Soq2 sG2 0 @ cda
and O C'lI)l Wl 0 —Sﬁ)l
Yi=]11 0 0 0 and ¢ = 0
0 sth, 0 W, ey

dy is an approximate singular value of B and can be deflated. The corresponding approxi-
mate left and right singular vectors are # and §, respectively. The matrix

To
~ r dN
M1 = - ~
21 D,
Z D,

has the same structure as M but is of smaller dimensions.

We deflate M, in a similar fashion until D, does not have any diagonal element that is
close to a diagonal element of D,. Thus, after this procedure, B can be written as
M, 0 r
B=(% %) | 0 & | (% %) +OCIBI) . (47)
0 0
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(), is a diagonal matrix whose diagonal elements are the deflated singular values; and the
columns of X; and ¥; are the corresponding approximate left and right singular vectors. M,
is of the form

To
iy = | o Do
1 ~ D )
21 1
Z3 D,

where the dimension of Dy is the number of these deflations; D; contains the diagonal
elements of D; not affected by deflation; and Zo, %, and %; are defined accordingly. X; and
Y, are of the form

. ~ 0 Wou W 0
X, = (6041 go,x 6(2)1 g ) and Yi=|1 0 0 0 ,  (4.8)
S0g2 o, 2 0 Woo 0 Wi

where the column dimension of Qo,l, Q~0’2, Wo’l and Wo,g is the number of these deflations;
the columns of @, and @, are those of Q, and Q, not affected by deflation; and the columns
of W, and W, are those of W; and W, not affected by deflation.

Let 0,9, VIT be the SVD of M;. Then
0LV o

B=(t%a| o a|(%%) +owlslk
0 0

0o T
= (%0 % g)| 0 @ | (BW %) +0(IBl)
0 0

Thus (Xl 01 5(2 q) and (}71171 f’g) are approximate left and right singular vector matrices

of B, respectively. The matrices X;0/; and ¥;V; can be computed while taking advantage of
the block structure of X; and ¥; in (4.8).

4.3. Global Deflation for BDC

To illustrate global deflation, we look at 2 levels of the dividing strategy (cf. (2.4)):

B = ( ' ;J '::J B ) = Bier Bia aiije; ’ (4.9)
1+3C1 2 ﬂi+jel B2

where By, B;, By, and B, are principle submatrices of B of dimensions (1+j) x (i +3j—1),
(N—i—j+1)x(N=i—j),2x(i—1) and j x (j — 1), respectively.
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Let X, D(;'z Wﬁ; be the SVD of B, 5, and let (j‘;l:2 ¥1,2) and (lf:2 A1,2) be the first
and last rows of X ,, respectively. Then
By age;
-Dl,2 T
B = Bier Xi o Wiz @itse;
Birjer B
By aie
= X ﬂifx,z Dl,2 ai+j11.2 v7 (4.10)

Biprz 0 aiyjha ’
Biyier Bs

where6 X = diag(I,',Xl’g,IN_,'..j+1) and Y = diag(I;_l, 1, lez, l,IN-,'_J‘).

Let d, be the s-th diagonal element of D, ;. Then d, is also the (¢ + s)-th diagonal
element of the middle matrix in (4.10). Let £, and I, be the s-th components of f;; and
l1 2, respectively. If we ignore all zero components, then the (i + s)-th column and row of
the middle matrix in (4.10) are d, and (Bifsy ds, cigjly), respectively. Thus if both |3;f,| and
|ati4 ;15| are small, then we can perturb them to zero. B has d, as an approximate singular
value with the (i +s)-th columns of P and R as the corresponding approximate left and right
singular vectors, respectively. This singular value and its singular vectors can be deflated
from all subsequent subproblems. We call this global deflation.

Consider the deflation procedure for computing the SVD in Section 4.2. If | 3;f,| is small,
then it can be perturbed to zero. This is a local deflation if only |B; f,l is small, and a global
deflation if |a;y;1,| is also small.

5. Acceleration by the Fast Multipole Method

Suppose that we want to evaluate the complex function
(@)= _ciplz - ) (5.1)
i=1

at m points in the complex plane, where {c; };=1 are constants and ¢(z) is one of log(z), 1/z
and 1/z%. The direct computation takes O(nm) time. But the fast multipole method (FMM)
proposed by Carrier, Greengard and Rokhlin 6, 14] takes only O(n+m) time to approximate.
®(z) at these points to a precision specified by the user”. In this section we briefly describe
how FMM can be used to accelerate BDC. A more detailed description appears in [18] in
the context of updating the singular value decomposition.

6 I; is an i x i identity matrix.
" The constant hidden in the O notation depends on the logarithm of the precision.
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Let

where D = diag(d,,d;,...,d,) with0=d; <d; <...<d,; and z = (21, 22,...,2,)T with
z; # 0. Let UQV7T denote the SVD of M with

U=(w,...,ua) , Q=diag(wr,...,ws) and V =(vy,...,v,)

Consider the cost of computing Uz for a vector z = (z,... ,Zn)T. By equation (3.3)
in Lemma 1, the i-th component ufz of Uz can be written as ®;(w;)/+/®2(w;), where

n n 2
Ql(w) = d;k—z:)z and (I>2(w) = Z ‘Cd‘zj—kw—z—)-i

k=1 k=1

Thus we can compute UTz by evaluating ®;(w) and ®;(w) at n points. Since these two
functions are of the form (5.1), we can do this in O(n) time using FMM. To achieve better
efficiency, we modify FMM to take advantage of the fact that all the computations are
real (see [15, 18]).

Let B be a lower bidiagonal matrix of dimensions (N + 1) x N. When BDC is used
to compute all the singular values and singular vectors, the main cost for each subproblem
is the computation of X;U and Y;V (see (4.7)), where X; and ¥; are column orthonormal
matrices®. Each row of X;U is of the form z7U = (UTz)T, and there are O(n) rows. Thus
the cost of computing X, U is O(n?) using FMM. A similar result holds for computing ¥ V.
There are log, N levels of recursion and 2*~! subproblems at the k-th level, each of size
O(N/2%-1). Thus the cost at the k-th level is O(N?/2*), and the total time is O(N?).

We may also have to apply orthonormal matrices P and R to the left and right singular
vector matrices of B, respectively, e.g., when B is obtained by reducing a dense matrix to
bidiagonal form [12, 24, 26]. For each subproblem, we can apply the left and right singular
vector matrices of the corresponding M directly to P and R. The cost for each subproblem
is O(Nn) using FMM, and there are O(N/n) subproblems at each level. Thus the cost at
each level is O(N?), and the total time is O(N?log, N).

When BDC is used to compute only the singular values, the main cost for each sub-
problem is computing two vectors of the form zU, finding all the roots of the reformulated
secular equation, and computing the vector 2. We now show how to find all the roots of M
and all the components of # in O(n) time.

8 We view X and Y; as dense matrices to simplify the presentation, even though FMM is more efficient
when it exploits their block structure (see (4.8)).
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A root-finder computes successive iterates for each singular value w;. We assume that
the number of iterations for each root is bounded. The main cost for each iteration is in
evaluating the function

=1+9(s)+ (k) =1+
To compute all the singular values simultaneously, we must evaluate g(x) at O(n) points.
The function g() is similar to the form (5.1), and thus we can evaluate g(x) at these points
in O(n) time using FMM?®. In other words, all the singular values of M can be computed in

O(n) time.
To compute 2, we note that equation (3.6) can be rewritten as
i-1 OF — &P
15 = /@2 - exp( > g (55)+ Zlog( o dz)) I<ign
Thus we can compute all of the components of # in O(n) time using FMM.

We have shown that when computing all the singular values of B, we can solve each
subproblem in O(n) time. Since there are O(N/n) subproblems at each level, the cost at
each level is O(N), and thus the total time is O(N log, N).

6. Computing the SVD of a Banded Matrix

We now generalize BDC' to compute the SVD of a banded matrix. This problem arises
when one uses the block Lanczos algorithm to compute the SVD of a sparse matrix [10,
12]. Arbenz [2] has similarly generalized divide-and-conquer algorithms for the symmetric
tridiagonal eigenproblem to solve the symmetric banded eigenproblem.

Suppose for simplicity that B is an (N + K) x N lower (K + 1)-diagonal matrix with
K < N. We recursively divide B into two subproblems:

By Bip 0
B = ’ ’ 6.1
( 0 B;. Bz,a) (6.1)

where By and By;3 are (k+ K) x k and (N — k) x (N — K — k) lower (K + 1)-diagonal
matrices, respectively; By is a (k + K) x K matrix with non-zero elements only on the
lowest K diagonals; and B, is an (N — k) x K matrix with non-zero elements only on the
highest K diagonals. Usually k < N is taken to be |(N — K)/2].

Let
D
Biy=(@1 S) ( 01 ) WlT = Q1D W,

® See [15, 18] for a version of FMM that computes ¥(u) and ¢(u) and their derivatives at O(n) points in
O(n) time. This is needed for the root-finders in [4, 5, 13, 23] and to check the stopping criterion.
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be the SVD of B, ;, and let

D
B3 =(Q2 S2) ( 02 ) Wy = Q:D,WT

be the SVD of B, 3. Plugging these into (6.1), we have

D
(@1 51)(01) WT By, 0
B = b

0 B (Q, S,)( 02> wx

Zo1 0 O T
' 1%
_ (S @& Zy D, 0 P (6.2)

Q2 S2 Zy; 0 D, W ’

Zoz 0 0O 2

where
Zox=S{Bi2 , Z=QTB132, Zo2=5TB,; and 2, = Q3B .

The matrix ( go'l ) is 2K x K. There exists an orthonormal matrix ( Gi1 G ) such

0,2 G21 Gz
Zo, _ [ Gu1 G2 Zo
Zo2 G2 Gap 0 ’

where Zo is a K x K lower triangular matrix. Plugging this into (6.2), we have

Zo 0 0 W T
B=(5Gu &  5Cu\fZ Do ff T 63)
S2G12 Q2 S52G2; Zy; 0 D, W,
0 0 0 2

that

The middle matrix in (6.3) is lower triangular and can only have non-zero elements on
its diagonal and in its first K columns. Partition

Zo Z 0
a1=\z.) "
Z,

where Z is (K — 1) x (K — 1) lower triangular; and z = (ro, 27, 27)T with z; being the last
column of Z; and ry being the last diagonal element of Z,. Let '

To 0 0

M=\|2 D, 0 ,
220D2




21

and let UQVT be the SVD of M computed using the scheme described in Section 3. Then
the middle matrix in (6.3) can be rewritten as

~ . T
Zo 0 _ IK_1 Zo 0 IK—I
Z vavT | ~ U UTZ 0 174 ’

where the middle matrix is lower triangular and can only have non-zero elements on its
diagonal and in its first K — 1 columns. Thus the SVD of the middle matrix in (6.3) can be
computed by applying this procedure K times.

To compute the SVDs of B;,; and B, 3, we can recursively apply equations (6.1) and (6.3)
to Bi and B, until the subproblems are sufficiently small. These small subproblems are
then solved using the Golub-Kahan algorithm [9, 11]. There can be at most O(log, N) levels
of recursion. This algorithm takes O(K N3) time to compute both the singular values and
the singular vectors. Similar to the bidiagonal case, there is an O(K2N?) time divide-and-
conquer algorithm for computing only the singular values. These times can be reduced to
O(KN?) and O(K®N log, N), respectively, by using FMM. These reduced times are better
than the corresponding worst-case time requirements (O(N?) and O(K N?)) for the banded
QR algorithm [24].
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