
UNDERGRADUATE
HANDBOOK

2013–2014 Edition

Department of Computer Science
Yale University

Contents

1 Introduction 1

2 Faculty 1

3 Overview of the Department 2
3.1 Artificial Intelligence . 2
3.2 Computer Graphics . 3
3.3 Computer Systems . 3
3.4 Programming Languages 4
3.5 Scientific Computing . 5
3.6 Theory of Computation . 6

4 Computing Facilities 7

5 Degree Programs in Computer Science 7
5.1 B.S. and B.A. in Computer Science 8
5.2 Special Projects . 11
5.3 Combined B.S. / M.S. in Computer Science 16
5.4 B.S. in Computer Science and Mathematics 17
5.5 B.A. in Computer Science and Psychology 19
5.6 B.S. Electrical Engineering & Computer Science 21

6 Miscellany 24
6.1 Class Advisors and the DUS 24
6.2 Life After Yale . 25
6.3 Undergraduate Research 26
6.4 Undergraduate Prize . 26
6.5 DSAC . 27
6.6 Advice from Graduating Seniors 28
6.7 Additional Sources of Information 29

7 Course Listings 30
7.1 Introductory Courses . 30
7.2 Intermediate Courses . 32
7.3 Advanced Courses . 33
7.4 Graduate Courses . 40
7.5 Related Courses in Other Departments 40

8 Course Planner 41

9 Yale College Calendar / Deadlines 42

1 Introduction

The Department of Computer Science at Yale University was started in 1969
as a small graduate department and began offering an undergraduate major
in 1972. There are now 20 regular faculty members, 1 emeritusprofessor,
1 lecturer, 6 affiliated faculty, and 3 research scientists;more than 100 under-
graduate majors (38 seniors last year); and more than 50 graduate students.
The department offers more than 30 different undergraduatecourses each
year, all taught by faculty. Further information is available from the depart-
mental web pagehttp://www.s.yale.edu.

2 Faculty

Department Chair
Holly Rushmeier

Director of Undergraduate Studies
Stanley Eisenstat

Director of Graduate Studies
Vladimir Rokhlin

Professors
Dana Angluin David Gelernter Martin Schultz (emeritus)
James Aspnes Paul Hudak Zhong Shao
Julie Dorsey Drew McDermott Avi Silberschatz
Stanley Eisenstat Vladimir Rokhlin Daniel Spielman
Joan Feigenbaum Holly Rushmeier Yang Richard Yang
Michael Fischer Brian Scassellati Steven Zucker

Associate Professors
Daniel Abadi

Assistant Professor
Bryan Ford Ruzica Piskac

Lecturer
Brad Rosen

Affiliated Faculty
Dirk Bergemann Mark Gerstein Frederick Shic
Ronald Coifman Gil Kalai Sekhar Tatikonda

Research Scientists
Rob Bjornson Nicholas Carriero Andrew Sherman

2 3 OVERVIEW OF THE DEPARTMENT

3 Overview of the Department

Computer science is one of the most dynamic and fertile intellectual en-
terprises of our age. At Yale our focus is on the structure, design, and
fundamental properties of computers and computer programsand on meth-
ods for using computers to solve significant problems. We usemathematics
extensively in the design and analysis of problem-solving techniques and the
exploration of fundamental properties of computation, anddraw heavily on
techniques from engineering and from the natural sciences as well.

There are six main areas of study: artificial intelligence, computer graph-
ics, computer systems, programming languages, scientific computing, and
theory of computation. In addition there are collaborations with other dis-
ciplines, including economics, engineering, law, linguistics, mathematics,
medicine, psychology, and the arts.

3.1 Artificial Intelligence

Artificial Intelligence is the study of computational models of the mind. At
Yale there is a wide variety of topics studied, including vision, robotics,
planning, learning, and computational neuroscience.

The term “artificial intelligence” is somewhat misleading because the
focus of research in the field is often on more mundane activities, such as
simple visual perception, than the word “intelligence” would suggest. The
field has learned over the years that the effortlessness of a skill such as vision
is deceptive, that in fact the brain does a great deal of hard labor behind the
scenes to allow us to see without conscious effort. It will take us years to
duplicate the skills that nature evolved over eons.

In general we think it is a mistake for AI research to focus on central
mental function and ignore input and output. In the long run machines will
not be treated as intelligent unless they can perceive and manipulate the ob-
jects around them. Real perception and action impose stubborn constraints
on thinking. Sophisticated robot planning is wasted if the robot crashes
into the wall while trying to generate a predicate-calculusdescription of the
world in front of it. Hence our focus is on real-time perceptual control of
behavior, in both natural and artificial systems.

AI uses many of the same techniques as other areas of computerscience
application, from numerical optimization to symbolic indexing. The key
to solving any problem is always the algorithm and its analysis. The goal
is always to characterize precisely a set of problems and demonstrate an
algorithm that solves them with reasonable efficiency. But,at least at its
current state of development, AI is of necessity more exploratory than other
areas. We are often forced to define a problem at the same time that we

3.2 Computer Graphics 3

try to solve it. It often happens that we don’t know how to analyze the
performance of an algorithm with existing tools, but we believe that its
average-case performance is much better than its worst-case performance,
and this belief must be backed up with experiments.

Faculty members working in this area are Drew McDermott, Brian Scas-
sellati, and Steven Zucker.

3.2 Computer Graphics

Research in computer graphics at Yale includes sketching and alternative
design techniques, material and texture models, the role ofmodels of human
perception in computer graphics, and recovering shape and reflectance from
images. Applications that drive this work are architectural design, cultural
heritage documentation and analysis, and the study of biological forms.

Computer graphics is used extensively in a wide range of domains—
from feature film and games to medical visualization and financial analysis.
However impressive the growth of computer graphics applications has been
over the past forty years, the goal of easily authoring computer graphics
models input remains elusive. At Yale, the research in modeling includes
sketching systems for early conceptual design and the capture and editing of
digital models of existing physical objects at a range of scales—from entire
buildings to individual objects.

Computer graphics models need to include material appearance proper-
ties as well as geometry. Unfortunately, the models widely used in computer
graphics assume that the materials are both pristine and immutable, even
though real materials are neither. The goal of research on material and
texture models at Yale is to devise new material representations and expres-
sive interfaces for editing such representations, to develop novel methods
to simulate materials and the processes that affect their appearance, and to
physically measure the input required for material models.

Faculty members working in this area are Julie Dorsey and Holly Rush-
meier.

3.3 Computer Systems

Computer systems research at Yale is divided into three sub-areas (with a
large degree of overlap and collaboration across these sub-areas): database
systems, operating systems, and networking systems.

Database systems provide an environment for storage and retrieval of
both structured and semi-structured data. Such systems were originally de-
signed for use in business-type applications. Today, however, they are being
utilized in many other application domains, including scientific computing,

4 3 OVERVIEW OF THE DEPARTMENT

networking, and bioinformatics. Research topics at Yale include transaction
management, data warehousing, Web-scale databases, real-time systems,
multimedia systems, approximate queries, and data mining.

The role of operating systems has evolved over time, from sharing one
device’s resources among many users in the mainframe era, toproviding
convenient user interface, storage, and networking abstractions in the per-
sonal computer era. As we transition to the ubiquitous computing era,
operating systems must now manage a user’s information and computa-
tion across many computers and devices. Yale is developing new operating
system architectures, application environments, and security frameworks to
meet today’s challenges across the computing spectrum, from mobile per-
sonal devices to large-scale Internet services built on grids of many-core
processors.

Computer networks allow computers to communicate with one another,
and of course form the backbone of the Internet. But althoughthey have
become a critical infrastructure of our information-basedsociety, they still
have not achieved the reliability of traditional telephonenetworks. Re-
search at Yale concentrates on designing highly robust and efficient Internet
backbone networks, by combining computer science with optimization, eco-
nomics, and game theory. Peer-to-peer (P2P) is emerging as anew paradigm
for network application development, as witnessed by the wide usage of
P2P file-sharing and video-streaming applications. However, these applica-
tions not only generate a large volume of traffic, but also mayunnecessarily
spread traffic across the whole Internet, leading to inefficiency. Research at
Yale focuses on designing effective architecture and algorithms to improve
both application performance and Internet operation efficiency.

Faculty members in the Computer Systems and Networking areaare
Daniel Abadi, Bryan Ford, Avi Silberschatz, and Yang Richard Yang.

3.4 Programming Languages

Programming languages are the main vehicle for man-machinecommunica-
tion. They provide a way to express an algorithm as a program and impact
the way we think of a computer system. Several languages developed at or
associated with the department (in particular Haskell, ML,and Linda) have
achieved worldwide currency, reflecting the department’s leadership in the
areas of functional programming and parallel computing. Parallel languages
such as Linda are tools for building programs that do many things simultane-
ously; functional languages such as Haskell and ML provide amathematical
approach to programming based on a view of a program as a set ofsimple
equations. Applications of programming language researchinclude graph-
ics and animation, networking, computer music, robotics, graphical user

3.5 Scientific Computing 5

interfaces, and systems programming.
Three particular areas of study areformal methods, program synthe-

sis, andsoftware ensembles. Formal methods emphasize the use of formal
mathematics to ensure the correctness, reliability, and maintainability of
complex software systems. At Yale the study of formal methods focuses on
functional programming and related ideas such as computational logic, de-
notational semantics, type theory, category theory, program transformation,
domain specific languages, and high-level abstraction techniques.

The goal of software synthesis is to automatically generatecode that
satisfies a given specification. Code obtained this way is correct by con-
struction. The specification can be explicitly given, or it can be derived from
context. Synthesis research at Yale is mainly focused on howto use formal
methods, e.g., decision procedures, for automatic code construction.

Software ensembles are programs that are built out of many separate,
coordinated activities, with an emphasis on recognizing and understanding
the properties that all such systems share. The search for a precise definition
of “coordination language,” and the development of internet applications are
new focuses of the software ensemble project.

Faculty working in this area are David Gelernter, Paul Hudak, Ruzica
Piskac, and Zhong Shao. Nick Carriero is a research scientist.

3.5 Scientific Computing

During the past forty years computers have dramatically changed engineer-
ing, medicine, and science by making it possible to test designs and run trials
without first building a prototype for each product or conducting an elabo-
rate experiment for each trial. The impact of this new ability, this power
to simulate the real thing, has placed scientific computation as the keystone
between theory and applications.

Scientific computing uses concepts and methodologies from numerical
linear and nonlinear algebra and boundary value problems for differential
equations. In addressing these areas, research at Yale emphasizes algo-
rithm development, theoretical analysis, systems modeling, and program-
ming considerations. Algorithm development is concerned with finding
new, fast, and/or parallel methods. Theoretical analysis investigates rates of
convergence, stability, optimality, and operation counts. Systems modeling
examines the performance implications of the interactionsbetween com-
putationally intensive algorithms, operating systems, and multiprocessors.
Programming considerations include coding efficiency, numerical accuracy,
generality of application, data structures, and machine independence.

Faculty working in this area are Stanley Eisenstat, Vladimir Rokhlin, and
Martin Schultz. Rob Bjornson and Andrew Sherman are research scientists.

6 3 OVERVIEW OF THE DEPARTMENT

3.6 Theory of Computation

Theory of computation involves the use of powerful mathematical tools to
obtain deep insights into fundamental problems of computation. Not being
constrained by the current state of technology, research inthe area explores
“what is imaginable” as well as “what is.”

At Yale theory research is concentrated in the areas of algorithms, dis-
tributed computing, economics and computation, graphs andnetworks, ma-
chine learning, and security. Algorithms involves the invention and analysis
of algorithms for sequential and parallel models of computation; fundamen-
tal research in the areas of machine learning and graphs and networks is
largely motivated by the search for efficient algorithms. Distributed comput-
ing extends the domain of computation to encompass systems of concurrent
communicating asynchronous processors such as peer-to-peer networks and
cluster computers. Uncertainty and failures inherent in such systems pro-
vide a special focus for research in this area. Economics andcomputation
studies models that combine concepts from economics, such as incentives,
social welfare, and game theory, with concerns from computing, such as
efficient use of computational resources. Research in security concerns the
reliability, privacy, and availability properties of information systems; it is
closely related to areas such as algorithms, complexity theory, cryptography,
and randomness.

Two concepts that are fundamental to all areas of computer science are
computing devices and algorithms. A computing device may bea com-
puter, a network of computers, a circuit, a robot, or a software simulator
or interpreter. An algorithm is a precise description of howsome task is to
be executed by a computing device. The curriculum in theory of computa-
tion is designed to provide a solid theoretical basis for theunderstanding of
computing devices and algorithms.

The most important tool for this kind of theoretical understanding is
“appropriate abstraction.” The idea is to make a theoretical model of (for
example) a computer that ignores enough of the details of anyspecific com-
puter to be general, but is still specific enough that its properties give useful
insight into the capabilities of actual computers. The ability to use various
levels of abstraction, from the immediately practical to the quite theoretical,
is a lasting benefit of an education in computer science.

There is considerable contact with discrete mathematics, graph theory,
number theory, mathematical logic, probability and statistics, operations
research, economics, computational finance, and other related areas of study.

Faculty working in this area are Dana Angluin, James Aspnes,Joan
Feigenbaum, Michael Fischer, and Daniel Spielman.

7

4 Computing Facilities

The faculty, researchers, and students within the department use a variety of
computing resources, ranging from conventional PC’s and scientific work-
stations to high-powered compute-servers and workstationclusters used as
parallel computers. These systems are interconnected by anEthernet lo-
cal area network, which is in turn connected to the Internet via fiber optic
technology to the campus backbone.

The educational computing facility is open to students in computer sci-
ence courses for classwork and to undergraduate majors for unsponsored
research and other academic purposes. Affectionately known as the “Zoo”
(web site: http://zoo.s.yale.edu) and the site of regular late-night
pizza parties, it is located on the third floor of Arthur K. Watson Hall, which
houses the department. Its 35 Linux workstations and 3 Windows 7 graphics
workstations have quad-core, Intel Xeon E5-1620 processors, 32 Gigabytes
of RAM, and 27-inch flat panel monitors. This facility can be accessed
locally and remotely 24 hours a day, 365 days a year.

5 Degree Programs in Computer Science

The computer science curriculum offers students training in the theory and
practice of computing. A major in computer science preparesone for a
job in the field or for graduate study leading to teaching or research. A
computer science undergraduate education followed by graduate study in
law, business, or medicine is another strong combination.

The department offers both a Bachelor of Science and a Bachelor of Arts
major in Computer Science (see §5.1) and a combined B.S. / M.S. program
(see §5.3). It also participates in joint majors with the Departments of
Mathematics (see §5.4), Psychology (see §5.5), and Electrical Engineering
(see §5.6).

Each of these programs provides a solid technical educationyet allows
students either to take the broad range of courses in other disciplines that is
an essential part of a liberal education or to complete the requirements of a
second major.1 Thus the number of courses required is somewhat less than
at other schools.

The programs are built around a common core of five computer science
courses. The first, CPSC 201Introduction to Computer Science, is a survey
that illustrates the breadth and depth of the field to students who have already
completed a one-term introductory course in programming. The others cover

1Roughly 25% of our students complete a second major such as Economics, Music, Political
Science, or Theater Studies.

8 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

discrete mathematics; data structures; systems programming and computer
architecture; and algorithm analysis and design. Togetherthey include the
material that every student of computer science should know.

This core is supplemented by a set of electives (and for the joint majors,
a set of core courses in the other discipline). The electivesgive students
great flexibility in tailoring the program to specialize in particular areas of
computer science or to broaden their knowledge in a variety of areas.

The capstone of each program is the senior project, which lets students
experience the challenges and rewards of original scientific research under
the guidance of a faculty member. These projects deal with problems that
cross the boundaries between courses and can involve complex and imagi-
native use of computers.

5.1 B.S. and B.A. in Computer Science

A student can earn either a Bachelor of Science or a Bachelor of Arts degree
in Computer Science. The B.S. program is designed for students who plan
to continue in computing after graduation, including technical management
and consulting. The B.A. provides a solid computer science background as
preparation for work in other fields.2

The B.S. and B.A. degree programs both require the same five core
courses

⋄ CPSC 201a or bIntroduction to Computer Science
⋄ CPSC 202aMathematical Tools for Computer Science3

⋄ CPSC 223bData Structures and Programming Techniques
⋄ CPSC 323aIntroduction to Systems Programming and Computer

Organization
⋄ CPSC 365bDesign and Analysis of Algorithms

and a senior project (see §5.2) taken as

⋄ CPSC 490a or bSpecial Projects.

In addition the B.S. program requires six intermediate or advanced computer
science courses as electives, for a total of twelve courses;the B.A., four, for
a total of ten. Neither CPSC 480a or bDirected Readingnor CPSC 490a
or b may be counted as electives.

The prerequisite structure of the core courses is shown in Figure 1.
Typical schedules beginning in the freshman and sophomore years are given
in Tables 1 and 2.

2Students with interests less squarely focused on computer science and extending to the
arts (Architecture, Art, History of Art, Music, or Theater Studies) may prefer the major in
Computing and the Arts.

3Students with the appropriate background are encouraged tosubstitute MATH 244aDis-
crete Mathematicsfor CPSC 202a.

5.1 B.S. and B.A. in Computer Science 9

Figure 1: The prerequisite structure of the core courses.

CPSC 201a or b

CPSC 202a

CPSC 223b CPSC 323a

CPSC 365b

- -

-

Z
Z

Z
Z~

Table 1: Sample B.S. programs for a student starting in the freshman year.
Omit two electives from either to get a B.A. program.

Fall Spring Fall Spring

CPSC 201 CPSC 223 Freshman CPSC 201

CPSC 202 CPSC 365 Sophomore CPSC 202 CPSC 223
CPSC 323 Elective Elective

Elective Elective Junior CPSC 323 CPSC 365
Elective Elective Elective Elective

CPSC 490 Elective Senior Elective CPSC 490
Elective Elective

Table 2: Sample B.S. programs for a student starting in the sophomore year.
Omit two electives from either to get a B.A. program.

Fall Spring Fall Spring

CPSC 201 CPSC 223 Sophomore CPSC 201
CPSC 202 Elective

CPSC 323 CPSC 365 Junior CPSC 202 CPSC 223
Elective Elective Elective CPSC 365

Elective

Elective CPSC 490 Senior CPSC 323 CPSC 490
Elective Elective Elective Elective

Elective Elective

10 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

Students are strongly advised to complete CPSC 201a or b and 223b by
the end of their sophomore year. Otherwise the choice of electives may be
somewhat limited, especially in the B.S. program.

All sophomore, junior, and senior majors should have their programs
approved by their class advisor (see §6.1) or the director ofundergraduate
studies.

All courses counting toward the major must be taken for a letter grade.

Electives

The five core courses cover the material that every student ofcomputer
science should know; the electives (see §7.2 and §7.3) give students an
opportunity to specialize in particular areas of computer science:
• Artificial Intelligence: CPSC 470a, 471b, 472a, 473b, 475a
• Computer Graphics: CPSC 478b, 479b
• Computer Systems: CPSC 422b, 423a, 426a, 433a, 434a, 437b, 438b
• Programming Languages: CPSC 421b, 427a, 428b, 430a, 431b, 432b
• Scientific Computing: CPSC 424b, 440b, 445a
• Theory of Computation: CPSC 455a, 457a, 462a, 465b, 467a, 468a, 469b.
However, we encourage students to take electives in severaldifferent areas.

Students considering graduate study in computer science (either imme-
diately following graduation or after working for some years) are advised to
take a programming-intensive course such as

⋄ CPSC 421aCompilers and Interpreters
⋄ CPSC 422bOperating Systems

and a course in theoretical computer science such as

⋄ CPSC 462aGraphs and Networks
⋄ CPSC 468aComputational Complexity
⋄ CPSC 469bRandomized Algorithms,

as well as courses in their intended area of study.
Students interested in applications of computers to scientific and engi-

neering problems are advised to take

⋄ CPSC 440bNumerical Computation

in addition to computational courses in Applied Mathematics and Engineer-
ing and Applied Science.

To encourage study in interdisciplinary areas where computer science
plays a major role,advancedcourses4 in other departments that involve con-

4An advanced course is generally one with at least one intermediate course as a prerequi-
site, and an intermediate course is generally one with at least one (introductory) course as a
prerequisite. One exception is MATH 120a or bCalculus of Functions of Several Variables,
which is considered to be an introductory course.

5.2 Special Projects 11

cepts from computer science and are particularly relevant to an individual
program may, with permission of the class advisor or the director of un-
dergraduate studies, be counted as electives. Generally atmost two such
courses may be used to satisfy the requirements for the B.S. program (one
for the B.A. program).

Even if they cannot be counted as electives, some courses in mathemat-
ics (e.g., calculus, linear algebra, probability and statistics, optimization,
and discrete mathematics) may be beneficial. For example, some graduate
programs require calculus and linear algebra.

SUMMARY OF REQUIREMENTS

Prerequisites: None
Number of courses: B.S. degree—twelve term courses taken for a letter

grade (including the senior project);B.A. degree—ten term courses taken
for a letter grade (including the senior project)

Specific courses required: B.S. and B.A. degrees—CPSC 201a or b,
202a, 223b, 323a, and 365b

Distribution of courses: B.S. degree—six additional intermediate or ad-
vanced CPSC courses.B.A. degree—four additional intermediate or ad-
vanced CPSC courses

Substitution permitted: Advanced courses in other departments, with
permission of the class advisor or the director of undergraduate studies

Senior requirement: Independent project (CPSC 490a or b)

5.2 Special Projects

CPSC 490a or bSpecial Projectsfulfills the senior project requirement of
the B.S. and B.A. programs. Students select a faculty advisor to guide them
in research in a subfield of computer science and submit a written report
on the results. Many of these projects break new ground, and papers with
Yale undergraduate authors have been published in leading computer science
journals.

5.2.1 Frequently Asked Questions Regarding CPSC 490

Who is the Senior Class Advisor (SCA)?
The Senior Class Advisor (SCA), who administers the CPSC 490projects,
is the faculty member who advises and signs the course schedules of all
graduating seniors (i.e., the members of the Class of 2014).This year’s SCA
is Professor Dana Angluin (email:dana.angluin�yale.edu).

12 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

What are the deadlines?
Senior majors enrolled in CPSC 490 must submit the CPSC 490 form (which
includes a 3-page description of the project and the list of deliverables) by
noon on the fourth Thursday of the term. Other students must have this form
approved by the DUS at least two days before course schedulesare due.
Note: Joint majors must submit the CPSC 490 Joint Major form instead.

All students must complete the end-of-term requirements (see below) by
noon on the last day of reading period.

Are there any specific requirements?
The precise form of the project is set in consultation with the advisor. How-
ever, all students are required to satisfy the following requirements by noon
on the day that reading period ends:
• Use the script//s490/bin/abstrat to submit your name, the title

of your project, your advisor’s name, and a 250-to-300-wordabstract.
This information will be added to the on-line database of recent CPSC 490
projects (seehttp://zoo.s.yale.edu/lasses/s490/).

• Use the script//s490/bin/submit to submit a set of web pages de-
scribing your project, including a copy of the description submitted with
the CPSC 490 form. These pages will become part of the on-linedatabase
of recent projects (seehttp://zoo.s.yale.edu/lasses/s490/).

• Give the SCA a paper copy of your final written report. This document
will be added to the (circulating) library of recent CPSC 490reports.

Note:You must satisfy these requirements even if you plan to continue your
project the next term. The only difference is that your electronic abstract,
written report, and web pages should constitute an interim progress report
(i.e., the level of detail must be the same as in the final versions, but the
work described need not be complete).

How do I choose a project?
There are two general approaches
• student sells project to professor:you get an idea, write a 3-page prospec-

tus that describes the scope of the project and includes a list of deliver-
ables, and find a faculty member willing to supervise the work(which
may require changes in the prospectus)

• professor sells project to student:a faculty member has a list of possible
projects, and you select one (which may involve changes in the nature of
the project)

and a host of possibilities in between.

What kind of project is appropriate?
The project should be more than just an extended homework assignment or
final course project and should require that you learn more about some area

5.2 Special Projects 13

of computer science. To give you some idea of the range of possibilities, the
titles, abstracts, and web pages for recent projects are available on-line (seehttp://zoo.s.yale.edu/lasses/s490/).

Regular courses meet 21

2
hours per week and require 2 to 3 additional

hours per week for each hour of class. Using this as a guideline for what
it takes to earn a course credit at Yale, the project should besomething that
you can complete in one semester (i.e., 14 weeks) working approximately 7
to 10 hours per week (i.e., in a total of 100–140 hours).

Note: You cannot be paid for your work on the project. Moreover,
to allow others to build on your results, all code and data must be made
available to the Yale community.

Who may advise a CPSC 490 project?
The official advisor (and thus the person who evaluates the work and assigns
the grade) must be a faculty member with an appointment in theDepartment
of Computer Science. However, thede factoadvisor need not be, as long as
the student meets with the official advisor at least once a month.

Joint majors with Electrical Engineering, Mathematics, and Psychology
must have a co-advisor with an appointment in that department.

How can I learn more about projects from past semesters?
The course web pageshttp://zoo.s.yale.edu/lasses/s490/ con-
tain the titles, abstracts, and web pages for recent projects. Copies of the
written reports are kept in a circulating library managed bythe departmental
registrar (AKW 204).

When should I take CPSC 490?
Most students take the course during their final term as the capstone of the
program. However, students applying to graduate school should take it in
the fall (or, with permission of the DUS, in the spring of their junior year)
so that they can get a letter of recommendation from their advisor.

Ideally, planning for the project should begin the preceding term (at least
to the extent of finding an advisor).

How often may I take CPSC 490?
While you may not count the course as an elective in any of the computer
science majors, you may take it more than once for Yale credit.

May I do a two-term project?
Yes. However, you must satisfy the end-of-term requirements at the end
of eachterm, and your grade for each semester will be assigned at theend
of that semester and will reflect what you accomplished. Thus in effect
a two-term project is equivalent to two one-term projects, except that the
work may be incomplete at the end of the first semester and the electronic

14 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

abstract, written report, and web pages for the second semester describe the
entire project.

Are group projects allowed?
Yes. However, each member of the group must work on a different part
of the project, andyour description, electronic abstract, final written report,
and web pages must focus onyour owncontributions.

What are the “deliverables?”
Whatever you and your advisor decide you must complete by theend of
the project. Possibilities include (but are not limited to)code, theorems,
simulation studies, data analysis, written reports, and oral presentations.

5.2.2 Projects, Fall 2012

Emma Alexander,When Shading Flows with Color, Advisor: Steven Zucker

Caroline Bank,Gender Effects in Human-Robot Collaboration, Advisor:
Brian Scassellati

Yuval Bussi,CCD Image Acquisition, Calibration, and Processing for
Hyperspectral Applications, Advisor: Holly Rushmeier

Jacob Evelyn,A Website for Continuous, Customizable, Dynamically-
Generated Music Mashups, Advisor: Paul Hudak

Peter Lewis,Diminuendo: Visualizing Self-Similar Music in Haskell,
Advisor: Paul Hudak

Xinyang (Ethan) Li,Designing a High-Precision Data Collection and
Generation System for a Biosensor Device, Advisors: Mark Reed and
Holly Rushmeier

David Meierfrankenfeld,Attempts at Lower-Stretch Spanning Trees,
Advisor: Daniel Spielman

Rachel Rudinger,Recognizing Textual Entailment: A Deep Semantic
Approach via Dependency Parsing, Advisors: Dana Angluin and Robert
Frank

Samuel Spaulding,A NLP Package for Semantic Social Referencing,
Advisor: Brian Scassellati

Kartik Venkatraman,Query Optimization For Distributed Graph Pattern
Matching, Advisor: Daniel Abadi

Christina Wallin,A Scientific Toolkit for Astronomy Databases, Advisor:
Daniel Abadi

Lewen Yu,Fold-based Modelling: Investigation into the Origami-inspired

5.2 Special Projects 15

3D Modelling Paradigm, Advisor: Julie Dorsey

5.2.3 Projects, Spring 2013

Siddhartha Banerjee,Synchronization and Collective Behaviour, Advisors:
Kumpati Narendra and Stephen Zucker

Michael Brandt,A Model for Peer-to-Peer Mobile Interactions and Network
Bandwidth Reservation, Advisor: Richard Yang

Nathanael Deraney,Moonscape: Procedural Planetary Terrain Rendering,
Advisor: Holly Rushmeier

Hari Ganesan,The Use of Artificial Intelligence in Teaching: Bridge and
Other Trick-taking Card Games, Advisor: Dana Angluin

Bay Gross,An Extensible Package for the Creation of Generalized
“StreamGraph” Visualizations In Ruby, Advisor: Brad Rosen

Stephen Grugett,Bayes and Beyond: An Improved Feature-Set for Naive
Bayes Classification and a Novel Vector Space ClassificationTechnique
for Sentiment Analysis, Advisor: Drew McDermott

Michael Holkesvik,The Traveling Spaceman Problem: Moving-Body TSPs
and Their Consequences, Advisor: James Aspnes

Brandon Jackson,The Codes of Curvature: Reconstructing Macaque V4
Receptive Fields with Gabor Wavelet Noise, Advisor: Steven Zucker

Caroline Jaffe,Recognizing and Rewarding Intentionality in Personal
Fitness Tracker Usage, Advisor: Brian Scassellati

Mike Jin,Fitting Graphs to Vector Data, Advisor: Daniel Spielman

Kevin Lai, Implementing Spectral Methods for Multi-way Sparse Cuts,
Advisor: Daniel Spielman

Austin Lan,A Configuration Based Puzzle Platform Game and Game Level
Design Tools, Advisor: Holly Rushmeier

Daniel Levine,A Framework for Incentivized Streaming Traffic Optimiza-
tion, Advisor: Richard Yang

Michael Levine,Configuring PostgreSQL for Append-Only File Systems,
Advisor: Daniel Abadi

Danqing Liu, AnonTalk—an Anonymous Communication Application
Powered by Dissent, Advisor: Bryan Ford

Jacob Metrick,Building Application-Layer Datagram Protocols on Minion:
Disabling TCP Congestion Control and Building uTP on uCOBS on
uTCP, Advisor: Bryan Ford

16 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

Daniel Qu,The Website Genome Project, Advisor: Richard Yang

Rachel Rudinger,Recognizing Textual Entailment II: An Extension of a
Deep Semantic Approach via Dependency Parsing, Advisors: Dana
Angluin and Robert Frank

Samer Sabri,Building a Usable Interface and a Computer Opponent for a
New Game, Advisor: James Aspnes

Rebecca Schlussel,Extended Rounds in the Buddies Anonymous Communi-
cation System, Advisor: Bryan Ford

Benjamin Silver,Reforming the eBook Peer Lending Regime, Advisor: Joan
Feigenbaum

Samuel Spaulding,Robotic Inference of Object Sentiment from Natural
Language, Advisor: Brian Scassellati

Sirui Sun,Developing a Javascript Library for Inter-Language Shared
Memory with Deterministic Parallelism, Advisor: Bryan Ford

Aayush Upadhyay,Optimistic Snapshot Consistency for Lock-Free Concur-
rency in Data Structures, Advisor: Bryan Ford

Christopher Vasseur,Benefits of Privacy and Anonymity in Information
Technology, Advisor: Joan Feigenbaum

Christina Wallin,Random Nonce Generation in Dissent, Advisor: Bryan
Ford

Lewen Yu,On Network Policy Composition and the Maple SDN Controller,
Advisor: Richard Yang

Wayne Zhu,Keys to Victory: Predicting NFL Outcomes via Machine
Learning, Advisor: Drew McDermott

5.3 Combined B.S. / M.S. in Computer Science

Exceptionally able and well-prepared students may complete a course of
study leading to the simultaneous award of the Bachelor of Science and
Master of Science degrees after eight terms of enrollment. The requirements
are as follows:
• Candidates must satisfy the Yale College requirements for the B.S. degree

in Computer Science.
• In fulfilling these requirements, students must complete eight graduate

courses from the approved list, up to two of which may, with the permis-
sion of the director of undergraduate studies and the director of graduate
studies, also be applied toward completion of the B.S. degree. Since the
student will be taking CPSC 490a or bSpecial Projects,at most one of

5.4 B.S. in Computer Science and Mathematics 17

these courses may be CPSC 690a, 691b, or 692a or bIndependent Project.
Graduate work must not be entirely concentrated in the final two terms

of study, and students must take at least six term courses outside computer
science during their last four terms at Yale and at least two undergraduate
courses during their last two terms.

Students must apply for admission to this program through the director
of undergraduate studies no later than the first day of classes of their third-to-
last term in Yale College. Applicants must have achieved A, A–, or Honors
grades in at least two-thirds of their course credits as wellas in at least
three-fourths of all course credits that directly relate tocomputer science.

Interested students are advised to consult with their classadvisor, the
director of undergraduate studies, and the director of graduate studies by the
start of their junior year.

5.4 B.S. in Computer Science and Mathematics

The joint major in Computer Science and Mathematics is intended for stu-
dents who are interested in computational mathematics, theuse of computers
in mathematics, mathematical aspects of algorithm design and analysis, and
theoretical foundations of computing.5

The major requires fourteen term courses as well as a senior project: six
required courses (which include the core of the computer science major)

⋄ CPSC 201a or bIntroduction to Computer Science
⋄ CPSC 223bData Structures and Programming Techniques
⋄ CPSC 323aIntroduction to Systems Programming and Computer

Organization
⋄ CPSC 365bDesign and Analysis of Algorithms
⋄ MATH 120a or bCalculus of Functions of Several Variables
⋄ MATH 244aDiscrete Mathematics;

a course in linear algebra, one of

⋄ MATH 222a or bLinear Algebra with Applications
⋄ MATH 225a or bLinear Algebra and Matrix Theory;

an advanced course in mathematical computer science, one of

⋄ CPSC 440bNumerical Computation
⋄ CPSC 455aEconomics and Computation
⋄ CPSC 462aGraphs and Networks
⋄ CPSC 465aTheory of Distributed Systems
⋄ CPSC 468aComputational Complexity
⋄ CPSC 469bRandomized Algorithms

5Students with interests less squarely focused on computer science and extending to appli-
cations may prefer the computer science track in the AppliedMathematics major.

18 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

Table 3: Sample Computer Science and Mathematics programs.

Fall Spring Fall Spring

CPSC 201 CPSC 223 Freshman CPSC 112 CPSC 201
MATH 120 MATH 225 MATH 115 MATH 120

CPSC 323 CPSC 365 SophomoreMATH 222 CPSC 223
MATH 244 Math elective MATH 244 Math elective

CS elective CS elective Junior CPSC 323 CPSC 365
Math elective Math elective Math elective Math elective

Math elective Math elective Senior CS elective CS elective
Thesis Math elective Math elective

Thesis

one additional advanced course in Computer Science; and fiveadditional
advanced courses in Mathematics numbered above MATH 200.

Students may substitute MATH 230a and 231bVector Calculus and
Linear Algebra I and IIfor MATH 120a or b and MATH 222a or b or 225a
or b. Neither CPSC 480a or bDirected Readingnor CPSC 490a or bSpecial
Projectsnor MATH 470a or bIndividual Studiesmay be used as an elective.

The senior requirement is a project or a paper on a topic acceptable
to both departments. Students must submit a written report (including an
electronic abstract and web page(s)) to the Computer Science department,
and present an oral report on the mathematical aspects of theproject to
the Mathematics faculty. If taken for course credit as CPSC 490a or b or
MATH 470a or b, the senior project course is in addition to thefourteen
required courses.

Table 3 shows typical programs for students who place into MATH 120a
or b and have the equivalent of one term of programming experience (left),
or who place into MATH 115a or b and have little or no programming
experience (right).

The entire program of a student majoring in Computer Scienceand
Mathematics must be approved by the directors of undergraduate studies6

in bothdepartments.
All courses counting toward the major must be taken for a letter grade.

6In Computer Science the class advisor acts as the DUS (see §6.1).

5.5 B.A. in Computer Science and Psychology 19

SUMMARY OF REQUIREMENTS

Prerequisites: None
Number of courses: Fourteen term courses taken for a letter grade (not

including the senior project)
Specific courses required: CPSC 201a or b, 223b, 323a, 365b, one of

440b, 455a, 462a, 465a, 468a, or 469b; MATH 120a or b, either 222a or b
or 225a or b, 244a

Distribution of courses: One additional advanced course in computer
science; five additional advanced courses in mathematics

Substitution permitted: MATH 230a and MATH 231b for MATH 120a
or b and 222a or b or 225a or b

Senior requirement: Senior project or senior essay on topic acceptable
to Computer Science and Mathematics departments; written report on
project to Computer Science department; oral report on mathematical
aspects of project to Mathematics faculty

5.5 B.A. in Computer Science and Psychology

The joint major in Computer Science and Psychology is intended for stu-
dents interested in integrating work in these two fields.7 Each area provides
tools and theories that can be applied to problems in the other. Examples
of this interaction include cognitive science, artificial intelligence, neural
models of computation, and biological perception.

The only formal prerequisite for the major is

⋄ PSYC 110a or bIntroduction to Psychology,

from which students who have scored 5 on the Advanced Placement test in
Psychology are exempt. Beyond the prerequisite the major requires fourteen
term courses as well as a senior project.

Eight of the fourteen courses must be in computer science, including the
core of the computer science major:

⋄ CPSC 201a or bIntroduction to Computer Science
⋄ CPSC 202aMathematical Tools for Computer Science
⋄ CPSC 223bData Structures and Programming Techniques
⋄ CPSC 323aIntroduction to Systems Programming and Computer

Organization
⋄ CPSC 365bDesign and Analysis of Algorithms;

and three advanced courses in artificial intelligence. Students may substitute
MATH 244a Discrete Mathematicsfor CPSC 202a. Neither CPSC 480a

7Students with interests less squarely focused on computer science and psychology and
extending to philosophy, linguistics, or neuroscience mayprefer the major in Cognitive Science.

20 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

or b Directed Readingnor CPSC 490a or bSpecial Projectsmay be used as
electives.

The remaining six courses must be in psychology, including

⋄ PSYC 200bStatistics

at least one course on data collection (PSYC 210–299); at least two courses
from the social science point of view:

List A:
⋄ PSYC 125a, 126b, 127a, 128b, 131a, 140a, 150b, 231a, 250a, 260b,

330a, 355a, 356b

and at least one course in cognitive psychology or cognitivescience listed
under Psychology, e.g.,

List C:
⋄ PSYC 120aBrain and Thought: An Introduction to the Human Brain
⋄ PSYC 130aIntroduction to Cognitive Science
⋄ PSYC 131aHuman Emotion
⋄ PSYC 137aLanguage and Mind
⋄ PSYC 140aDevelopmental Psychology
⋄ PSYC 160bThe Human Brain
⋄ PSYC 181bPhilosophy and the Science of Human Nature
⋄ PSYC 232LbResearch Methods in Social Decision Making
⋄ PSYC 260bResearch Methods in Behavioral Genetics
⋄ PSYC 304aThe Mental Lives of Babies and Animals
⋄ PSYC 322aEvolution of Language
⋄ PSYC 327bLanguage and Computation
⋄ PSYC 331bNeurolinguistics

Neither PSYC 490a or 491bDirected Readingnor PSYC 492a or 493b
Directed Researchmay be used as electives.

A second course in cognitive psychology or cognitive science may sub-
stitute for one of the courses in artificial intelligence. Anadditional course
in psychology may substitute for PSYC 200b if the student hassufficient
background in statistics to pass an examination arranged with the instructor.

The senior project must be taken as CPSC 490a or b or PSYC 492a
or 493b, depending upon the advisor’s department, and must be acceptable
to both departments. Students must submit a written report (including an
electronic abstract and web page(s)) to the Computer Science department.

The entire program of a student majoring in Computer Scienceand Psy-
chology must be approved by the directors of undergraduate studies8 in both
departments.

No courses in Computer Science and at most one course in Psychology

8In Computer Science the class advisor acts as the DUS (see §6.1).

5.6 B.S. Electrical Engineering & Computer Science 21

may be taken on a Credit/D/Fail basis and count for the major.

SUMMARY OF REQUIREMENTS

Prerequisite: PSYC 110a or b
Number of courses: Fourteen term courses beyond prerequisite taken for

a letter grade (not including the senior project; one PSYC course may be
taken Cr/D/F)

Specific courses required: CPSC 201a or b, 202a, 223b, 323a, 365b,
PSYC 200b

Distribution of courses: Eight courses in computer science, with three
advanced courses in AI; six courses in psychology, with at least one from
PSYC 210–299, at least two from List A, and at least one from List C

Substitution permitted: For CPSC 202a, MATH 244a; for one course in
AI, one additional course in cognitive psychology or cognitive science;
for PSYC 200b, one additional course in psychology and an examination
arranged with the instructor

Senior requirement: CPSC 490a or b or PSYC 492a or 493b with project
approved by DUS in each department

5.6 B.S. Electrical Engineering & Computer Science

The joint major in Electrical Engineering and Computer Science is intended
for students who want to integrate work in these two fields. Itcovers discrete
and continuous mathematics; algorithm analysis and design; digital and
analog circuits; signals and systems; systems programming; and computer
engineering. It provides coherence in its core program, butallows flexibility
to pursue technical electives.

The prerequisites for the major are:

⋄ CPSC 112a or bIntroduction to Programming
⋄ MATH 112a or bCalculus of Functions of One Variable I
⋄ MATH 115a or bCalculus of Functions of One Variable II
⋄ MATH 120a or bCalculus of Functions of Several Variables
⋄ PHYS 180a and 181bUniversity Physics.

Students who must take CPSC 112a or b should do so during the fall of
their freshman year to avoid the time conflict between CPSC 112b and
PHYS 181b.

Students may substitute Engineering & Applied Science 151aMultivari-
able Calculus for Engineersor MATH 230a Vector Calculus and Linear
Algebra I for MATH 120a or b; and PHYS 200a and 201bFundamentals of
Physicsfor PHYS 180a and 181b.

22 5 DEGREE PROGRAMS IN COMPUTER SCIENCE

Students who must take MATH 112a or b may substitute PHYS 170a
and 171bUniversity Physics for the Life Sciencesfor PHYS 180a and 181b.
However, since the B.S. programs in Electrical Engineeringand in Engineer-
ing Sciences (Electrical) do not allow this substitution, students who wish
to retain the option of switching to these programs should postpone physics
until their sophomore year.

Fifteen term courses are required beyond the prerequisites: ten required
courses (which include the core of the computer science major):

⋄ CPSC 201a or bIntroduction to Computer Science
⋄ CPSC 202aMathematical Tools for Computer Science
⋄ CPSC 223bData Structures and Programming Techniques
⋄ CPSC 323aIntroduction to Systems Programming and Computer

Organization
⋄ CPSC 365bDesign and Analysis of Algorithms
⋄ EENG 200aIntroduction to Electronics
⋄ EENG 201bIntroduction to Computer Engineering
⋄ EENG 202aCommunications, Computation and Control
⋄ EENG 203bCircuits and Systems Design
⋄ Either MATH 222a or bLinear Algebraor STAT 241aProbability

Theory;

four advanced electives, two in Computer Science, two in Electrical Engi-
neering; and a senior project.

Students are encouraged to substitute MATH 244aDiscrete Mathematics
for CPSC 202a. Students may substitute MATH 225a or bLinear Algebra
and Matrix Theoryor MATH 231b Vector Calculus and Linear Algebra II
for MATH 222a or b.

Electives must be either 300- or 400-level courses in the Departments of
Computer Science and Electrical Engineering or approved bythe directors
of undergraduate studies inboth departments. Cross-listed classes may be
counted as being in either department. CPSC 480a or bDirected Reading
and CPSC 490a or bSpecial Projectsmay not be used as electives.

The senior project must be taken as CPSC 490a or b or EENG 471a
or 472bAdvanced Special Projects, depending upon the advisor’s depart-
ment, and must be acceptable toboth departments. Students must submit
a written report (including an electronic abstract and web page(s)) to the
Department of Computer Science.

A typical program for a student who has taken the equivalent of one year
of calculus in high school and has the equivalent of one term of program-
ming experience is shown in Table 4. A typical program for a student who
has had only one term of calculus is shown in Table 5.

The entire program of a student majoring in Electrical Engineering and

5.6 B.S. Electrical Engineering & Computer Science 23

Table 4: Sample program for a student with some of the prerequisites.

Fall Spring

Freshman EENG 200 EENG 201
PHYS 180 PHYS 181
ENAS 151

Sophomore CPSC 201 CPSC 223
EENG 202 EENG 203

MATH 222

Junior CPSC 202 CPSC 365
CPSC 323 EE elective

Senior CS elective CS elective
Senior project EE elective

Students with no or little programming experience should take
CPSC 112 in thefall of the freshman year, either postponing
EENG 200 until the sophomore year or taking MATH 120 in
the spring instead of ENAS 151 in the fall.

Table 5: Sample program for a student with only one term of calculus.

Fall Spring

Freshman MATH 115 MATH 120
PHYS 180 PHYS 181
CPSC 112 EENG 201

Sophomore CPSC 201 CPSC 223
EENG 200 EENG 203
EENG 202

Junior CPSC 202 CPSC 365
CPSC 323 EE elective
STAT 241

Senior CS elective CS elective
EE elective Senior project

24 6 MISCELLANY

Computer Science must be approved by the directors of undergraduate stud-
ies9 in bothdepartments.

All courses counting toward the major must be taken for a letter grade.

SUMMARY OF REQUIREMENTS

Prerequisites: CPSC 112a or b; MATH 112a or b, 115a or b, and 120a
or b; PHYS 180a, 181b or 200a, 201b

Number of courses: Fifteen term courses beyond the prerequisites taken
for a letter grade (including the senior project)

Specific courses required: CPSC 201a or b, 202a, 223b, 323a, and
365b; EENG 200a, 201b, 202a, and 203b; MATH 222a or b or 225a orb
or STAT 241a

Distribution of courses: Four additional 300- or 400-level electives, two
in computer science, two in electrical engineering

Substitution permitted: MATH 244a for CPSC 202a; advanced courses
in other departments, with permission of both departments

Senior requirement: Independent project (CPSC 490a or b or EENG
471a or 472b) acceptable to both departments

6 Miscellany

6.1 Class Advisors and the DUS

We have designated a computer science faculty member to serve as the
advisor for all members of your Class. Your class advisor will meet with
you at the start of each term to discuss your selection of courses and sign
your schedule. Your advisor will also be available throughout the year to
answer questions about the major, sign petitions to double-major, and so
forth. Moreover, to provide some continuity, you will usually have the same
advisor in both your junior and senior years.

The current class advisors are:

Class Advisor Office E-mail
2014 Dana Angluin AKW 414 dana.angluin�yale.edu
2015 Stanley Eisenstat AKW 208stanley.eisenstat�yale.edu
2016 Stanley Eisenstat AKW 208stanley.eisenstat�yale.edu
If your class advisor should be unavailable for an extended period of time,
then the Director of Undergraduate Studies, Stanley Eisenstat (AKW 208,
email: stanley.eisenstat�yale.edu) can answer your questions and
sign your course schedule.

9In Computer Science the class advisor acts as the DUS (see §6.1).

6.2 Life After Yale 25

6.2 Life After Yale

Where Do Students Go?
Yale computer science majors are in high demand, both by employers and
by graduate and professional schools. For example, last year’s seniors went
to the following places:

Google 3 Graduate/Professional 5
Microsoft 2 Startups 4

Other software 9 Other 5
Financial Services 7 Unknown 3

Letters of Recommendation
Prospective employers and graduate/professional schoolsoften ask students
to submit letters of recommendation from faculty. Instructors in
• project courses (where you work closely with your advisor),
• small courses (where you are more visible),
• advanced courses (where the demands are greater),
• courses taken by graduate students (with whom you can be compared),
• courses related to the area in which you propose to work or study, and
• courses in which you did well
are generally good choices. However, do not be reluctant to ask any instruc-
tor for a recommendation.

The best time to request letters is immediately after completing a course,
when memories of you and your performance are freshest. Yourcollege
dean’s office has standardized forms for letter writers to use and return.
These letters are kept on file so that you can have copies sent when needed.

Job Search
Many companies interview at Yale for full-time and summer positions in the
computing field. Check with Undergraduate Career Services for details, and
watch thes-majors mailing list for additional opportunities (see §6.7).

Previous students have recommended the following books to prepare for
software engineering interviews:
• John Mongan, Noah Suojanen, and Eric Giguere,Programming Inter-

views Exposed: Secrets to Landing Your Next Job, 2nd edition
• Gayle McDowell, Cracking the Coding Interview: 150 Programming

Questions and Solutions
• Adnan Aziz and Amit Prakash,Algorithms for Interviews.
There are also a multitude of interview web sites and the MIT short course:
Hacking a Google Interview: Mastering Programming Interview Questions
(http://ourses.sail.mit.edu/iap/interview/materials.php).

26 6 MISCELLANY

Graduate and Professional School
Many computer science majors go to graduate or professional(i.e., law,
business, or medical) school, either immediately after graduation or after
working for a few years. In either case it is prudent to have letters of
recommendation on file and to have taken any entrance examinations (e.g.,
theGRE, LSAT, GMAT, or MCAT) before leaving Yale.

Ph.D. programs in computer science generally offer research or teaching
assistantships that include tuition and a stipend. You can also apply for
fellowships from the National Science Foundation and otherorganizations.
In contrast M.S. programs and professional schools typically do not offer
any financial support.

Students interested in graduate school are advised to discuss their plans
with their class advisor, the director of undergraduate studies, and the di-
rector of graduate studies, preferably no later than the spring of their junior
year.

6.3 Undergraduate Research

For a general overview of undergraduate research opportunities at Yale,
see the YSER (Yale Science and Engineering Research Program) web site,http://www.yale.edu/yser.

There is no organized program within Computer Science. However,
students wanting to do research (other than that done to satisfy the senior
requirement) can

• Take one or more terms of CPSC 290a or bDirected Researchunder the
direction of any of our faculty (which earns Yale credit but does not count
toward the requirements of the major).

• Work in a research group during the summer or during the academic year.
Such paid positions are not common and are arranged directlybetween a
student and a faculty member.

How soon students can begin research depends on their background and
area of interest.

6.4 Undergraduate Prize

The department awards a prize to the graduating Senior majoring in com-
puter science who, in the judgment of the Computer Science faculty, ranks
highest in scholarship.

The ranking is based on grade point average in courses that count toward
the major and were taken at Yale. To be eligible, a student must have taken

6.5 DSAC 27

at least 12 such courses. TheGPA is computed using the formula on which
General Honors are based, but using the list of courses that determines
eligibility for Distinction in the Major. Thus 100-level courses; 200-level
courses other than CPSC 201a or b, 202a, and 223b; CPSC 480a orb; all
but the first term of CPSC 490a or b, and courses taken only for the M.S.
part of the B.S. / M.S. program are excluded.

The recent winners were

2013 Wayne Zhu
2012 Cameron Musco
2011 Jonathan Eng and Andrew Gu(cowinners)
2010 Michael Mester
2009 Justin Thaler
2008 Andrew Smith

6.5 DSAC

The Departmental Student Advisory Committee (DSAC) represents under-
graduate computer science majors and provides a liaison between the faculty
and undergraduates in matters pertaining to the computer science curriculum
and the majors’ use of departmental resources.DSAC also helps with the
planning and operation of the Zoo, the undergraduate computing facility for
the department (see §4).

As defined by Yale College,DSAC’s charter is to review aspects of the
department’s undergraduate curriculum as it affects both majors and non-
majors, and to serve as a channel through which solicited or unsolicited
opinions of other students can be expressed. It advises the department on
such matters as ideas for new courses and programs; the effectiveness of the
curriculum; the scope and sequence of course offerings; therequirements for
the major; the role of the senior project; proposals for the improvement of
instruction and advising; and the usefulness and interest of specific courses
to non-majors.

Feel free to contactDSAC (dsa�s.yale.edu) if you have suggestions
about the curriculum, want help using the Zoo, or have general questions
about the Department.DSAC also plans several pizza parties throughout the
year for majors and other students interested in computer science.

The members ofDSAC for 2013–2014 and their e-mail addresses are

Feridun Celebi feridun.elebi�yale.edu
Michael Hopkins mihael.hopkins�yale.edu

Apurv Suman apurv.suman�yale.edu
Jessica Tordoff jessia.tordoff�yale.edu

Cyril Zhang yril.zhang�yale.edu

28 6 MISCELLANY

They are also reachable atdsa�s.yale.edu. The DSAC web page ishttp://zoo.s.yale.edu/dsa.

6.6 Advice from Graduating Seniors

The Classes of 2013, 2012, and 2011 were asked to pass along some of
the insights they gained during their years as a major. Here is an edited
selecton:

• Start assignments early and work on them often. They will take less time
and they won’t take over your life (usually).

• Coding is fun when you have the time, and terrible when you’reat dead-
line.

• Go to office hours. Ask questions. It saves you so much time.

• Work in the Zoo! You will be more productive and can ask and answer
questions, order food, play Rock Band, and pull an all-nighter without
feeling tired at all.

• Don’t be afraid to approach professors or TA’s for help on problem sets,
difficult topics in class, etc.

• Ask questions in class, even if they seem to be “dumb” questions.

• Strive for learning, not for finishing assignments as fast aspossible or just
getting good grades.

• Take a wide variety of electives—you never know where you might find
your true passion.

• Make sure that your senior project is well defined at the beginning of the
semester.

• Try a research project.

• Challenge yourself in the courses that you take.

• Mentoring is a valued skill, wherever you end up. Help other students in
the Zoo or apply to be a peer tutor.

• Work on projects with people outside of class.

• Build and launch stuff on the side; learn new languages and explore new
technologies.

• If you want a summer internship, start looking in September.

• Apply for internships in the same semester that you take CPSC223.

6.7 Additional Sources of Information 29

• Know algorithms and data structures well if you want to get a good job.

• Get involved in research early if you think it’s something that you might
be interested in.

• Look outside the department to supplement your CS curriculum.

• Enjoy the wealth of opportunities Yale presents to you and donot limit
yourself during your time here as an undergraduate.

• Take a balanced course load, each semester. Dedicate enoughtime to each
of your CS courses, but also explore everything that Yale hasto offer.

• Focus on doing what you love.

• Don’t schedule every minute of every day. Leave some time each week
for spontaneity.

• You will do better and more efficient work after sleeping for afew hours.
Don’t try to stay up all night to get something done. Take careof yourself!

Seehttp://dus.s.yale.edu/blurbs.html for the full responses.

6.7 Additional Sources of Information

Thes-majors mailing list contains postings of interest to undergraduates
majoring in computer science or taking courses in the subject, including
announcements of new courses and faculty, colloquia and other departmental
events, recruiting visits and employment/internship opportunities, as well as
messages from the director of undergraduate studies. The mailing list can
be accessed on the web viahttp://mailman.s.yale.edu/mailman/listinfo/s-majors
It contains all the archived posts as well as instructions onhow to subscribe
to or un-subscribe from the mailing list.

30 7 COURSE LISTINGS

7 Course Listings

7.1 Introductory Courses

CPSC 079bDigital Photorealism.
(Not taught in 2013–2014)

Examination of basic methods used to define shapes, materials, and light-
ing when creating computer-generated images. Topics include mathematical
models for shape, texture models, and lighting techniques.Principles are ap-
plied through use of modeling/rendering software. The termproject will be
the production of a short animated video with rich visual effects.Proficiency
in high-school–level mathematics is assumed. No previous experience with
computers necessary.(Preregistration required; open only to freshmen.)

CPSC 101bGreat Ideas of Computer Science.Dana Angluin
TTh 1:00–2:15

An introduction for nonmajors to some of the most important ideas in com-
puter science: What the computer is; how it works; what it cando and what
it cannot do, now and in the future. Topics include algorithms, elemen-
tary programming, hardware, language interpretation, software engineering,
complexity, models of computation, and artificial intelligence.No previous
programming experience required.

CPSC 112a or bIntroduction to Programming.
CPSC 112a. Drew McDermott MWF 10:30–11:20
CPSC 112b. Richard Yang MWF 11:35–12:25

An introductory course designed to teach students majoringin any subject
how to program computers. The language taught is either JAVA or C#. The
focus is on the development of programming skills, problem-solving meth-
ods, and selected applications. Topics include data types,control structures,
basic algorithms, object-oriented programming, graphical user interfaces,
and some advanced programming concepts.No previous experience with
computers necessary.

CPSC 150a / HUMS 407aComputer Science and the Modern Intellectual
Agenda.David Gelernter

MW 11:35–12:50
An introduction to the basic ideas of computer science (computability, algo-
rithm, virtual machine, symbol processing system) and of several ongoing
relationships between computer science and other fields, including philos-
ophy of mind, classical cognitivism, connectionism, and artificial life. No
previous experience with computers necessary.(Satisfies the WR and HU

7.1 Introductory Courses 31

requirements. Enrollment limited to 25.)

CPSC 151b / HUMS 408bThe Graphical User Interface: DOS to Windows
to What?. David Gelernter

MW 11:35–12:50
The role of Graphical User Interfaces (such as the Desktop, with its over-
lapping windows, icons, menus and pointer device–as embodied in Mac OS,
Microsoft Windows etc), on standard platforms such as desktop PCs, lap-
tops, small-screen devices etc. Why did GUIs develop in the way they did?
Why have they evolved so little since the Desktop of the 1970s? How will
changing hardware and user requirements reshape them in thefuture?Pre-
requisite: Have used a desktop or laptop computer.(Satisfies the WR re-
quirement. Enrollment limited to 25.)

CPSC 183aIntroduction to Law, Technology, and Culture.Brad Rosen
MW 4:00–5:15

An exploration of the myriad of ways in which law and technology inter-
sect, with a special focus on the role of cyberspace. The course lays out a
basic framework for the many issues that arise in our modern legal and tech-
nological contexts. It covers topics such as digital copyright, free speech,
privacy and anonymity, information security, innovation,online communi-
ties, the impact of technology on society, and emerging trends.No technical
knowledge or previous coursework required.(Satisfies the SO requirement.)

CPSC 185bControl, Privacy, and Technology.Brad Rosen
F 3:30–5:20

A case-law and policy intensive class that explores how various legal doc-
trines have evolved with and around technological development. Topics in-
clude criminal law, privacy, search and seizure, digital rights, and the impli-
cations of technologically-permitted (and enforced) methods of control on
the law. After CPSC180aor b or 183a. (Satisfies the WR and SO require-
ments. Enrollment limited to 24.)

CPSC 201a or bIntroduction to Computer Science.
CPSC 201a. Dana Angluin MWF 10:30–11:20
CPSC 201b. Holly Rushmeier MWF 11:35–12:25

An introduction to the concepts, techniques, and applications of computer
science for potential majors. Topics include computer systems (the design of
computers and their languages); theoretical foundations of computing (com-
putability, complexity, algorithm design); and artificialintelligence (the or-
ganization of knowledge and its representation for efficient search). Ex-
amples stress the importance of different problem-solvingmethods.After

32 7 COURSE LISTINGS

CPSC112aor b or equivalent.

CPSC 202aMathematical Tools for Computer Science.James Aspnes
TTh 1:00–2:15

Introduction to formal methods for reasoning and to mathematical tech-
niques basic to computer science. Topics include propositional logic, dis-
crete mathematics, and linear algebra. Emphasis on applications to com-
puter science: recurrences, sorting, graph traversal, Gaussian elimination.

CPSC 223bData Structures and Programming Techniques.
Stanley Eisenstat

MW 1:00–2:15
Topics include programming in C; data structures (arrays, stacks, queues,
lists, trees, heaps, graphs); sorting and searching; storage allocation and
management; data abstraction; programming style; testingand debugging;
writing efficient programs.After CPSC201aor b or equivalent.

CPSC 290a or bDirected Research.By arrangement with faculty
Individual research. Requires a faculty supervisor and thepermission of the
director of undergraduate studies.May be taken more than once for credit.

MATH 244a / AMTH 244a Discrete Mathematics.Staff
MW 2:30–3:45

Basic concepts and results in discrete mathematics: graphs, trees, connectiv-
ity, Ramsey theorem, enumeration, binomial coefficients, Stirling numbers.
Properties of finite set systems.After MATH115aor b or equivalent.

7.2 Intermediate Courses

CPSC 323aIntroduction to Systems Programming and Computer
Organization. Stanley Eisenstat

MW 1:00–2:15
Machine architecture and computer organization, systems programming in
a high-level language, issues in operating systems, software engineering,
prototyping in scripting languages.After CPSC223b.

CPSC 365bDesign and Analysis of Algorithms.Daniel Spielman
TTh 2:30–3:45

Paradigms for problem solving: divide and conquer, recursion, greedy al-
gorithms, dynamic programming, randomized and probabilistic algorithms.
Techniques for analyzing the efficiency of algorithms and designing efficient

7.3 Advanced Courses 33

algorithms and data structures. Algorithms for graph theoretic problems,
network flows, and numerical linear algebra. Provides algorithmic back-
ground essential to further study of computer science.After CPSC202aand
223b.

7.3 Advanced Courses

CPSC 421bCompilers and Interpreters.Zhong Shao
TTh 1:00–2:15

Compiler organization and implementation: lexical analysis, formal syn-
tax specification, parsing techniques, execution environment, storage man-
agement, code generation and optimization, procedure linkage, and address
binding. The effect of language-design decisions on compiler construction.
After CPSC323a.

CPSC 422bOperating Systems.Bryan Ford
MW 1:00–2:15

The design and implementation of operating systems. Topicsinclude syn-
chronization, deadlock, process management, storage management, file sys-
tems, security, protection, and networking.After CPSC323a.

CPSC 423aPrinciples of Operating Systems.Avi Silberschatz
TTh 2:30–3:45

A grand tour of the underlying principles of modern operating systems.
Main topics to be covered: Process management, memory management,
storage management, protection and security, distributedsystems, and vir-
tual machines. The main emphasis is on the presentation of fundamental
concepts rather than implementation.After CPSC323a.

CPSC 424bParallel Programming Techniques.
(Not taught in 2013–2014)

Practical introduction to parallel programming, emphasizing techniques and
algorithms suitable for scientific and engineering computations. Aspects of
processor and machine architecture. Parallel programmingtechniques in-
cluding multithreading, message passing, and data parallel computing us-
ing graphics processing units (GPUs). Performance measurement, tuning,
and debugging of parallel programs. Parallel file systems and I/O. After
CPSC223band MATH222aor b or 225aor b, or equivalent.

34 7 COURSE LISTINGS

CPSC 426aBuilding Decentralized Systems.Brian Ford
MW 2:30–3:45

An exploration of the challenges and techniques for building decentralized
computing systems, in which many networked computers need to cooper-
ate reliably despite failures and without assuming centralized management.
Topics include: decentralized storage systems, mobile andremote execu-
tion, hosting untrusted code, [byzantine] fault tolerance, naming, capabili-
ties, information flow control, distributed shared memory,distributed hash
tables, content distribution, practical uses of cryptography. This course is
programming-intensive.After CPSC323a.

CPSC 427aObject-oriented Programming.
(Not taught in 2013–2014)

Object-oriented programming as a means to efficient, reliable, modular,
reusable code. Use of classes, derivation, templates, name-hiding, excep-
tions, polymorphic functions, and other features of C++.After CPSC223b.

CPSC 428aLanguage-Based Security.
(Not taught in 2013–2014)

Basic design and implementation of language-based approaches for increas-
ing the security and reliability of systems software. Topics include proof-
carrying code; certifying compilation; typed assembly languages; runtime
checking and monitoring; high-confidence embedded systemsand drivers;
and language support for verification of safety and livenessproperties.After
CPSC202aand323a, or equivalent.

CPSC 430aFormal Semantics.Zhong Shao
MW 11:35–12:50

Introduction to formal approaches to programming languagedesign and im-
plementation. Topics include the lambda-calculus, type theory, denotational
semantics, type-directed compilation, higher-order modules, and application
of formal methods to systems software and Internet programming. After
CPSC202aand323a. (Not taught every year.)

CPSC 431bComputer Music—Algorithmic and Heuristic Composition.
(Not taught in 2013–2014)

Study of the theoretical and practical fundamentals of computer-generated
music, with a focus on high-level representations of music,algorithmic and
heuristic composition, and programming languages for computer music gen-
eration. Theoretical concepts are supplemented with pragmatic issues ex-
pressed in a high-level programming language.After CPSC202aand223b.
Assumes ability to read music.(Taught in alternate years.)

7.3 Advanced Courses 35

CPSC 432bComputer Music—Sound Representation and Synthesis.
Paul Hudak

MW 2:30–3:45
Beginning with low-level representations of sound, various methods for syn-
thesizing musical sounds are studied, including additive synthesis, subtrac-
tive synthesis, frequency modulation, granular synthesis, and physical mod-
eling. The goal is to both simulate as accurately as possibleexisting musical
instruments, and to create new sounds and musical soundscapes. Scales and
tuning systems are also studied, as is basic acoustic signalprocessing (fil-
tering, reverb, sound effects, etc). A key idea underlying the course is the
use of a high-level functional language to express the theoretical concepts
in a practical manner. Regular programming assignments lead toward a fi-
nal project that is a software realization of a student-designed concept.After
CPSC202aand 223b. Assumes ability to read music.(Taught in alternate
years.)

CPSC 433aComputer Networks.Yang Richard Yang
TTh 1:00–2:15

An introduction to the design, implementation, analysis, and evaluation of
computer networks and their protocols. Topics include layered network ar-
chitectures, applications, transport, congestion, routing, data link protocols,
local area networks, performance analysis, multimedia networking, network
security, and network management. Emphasis on protocols used in the In-
ternet.After CPSC323a. (Taught in alternate years.)

CPSC 434aMobile Computing and Wireless Networking.
(Not taught in 2013–2014)

An introduction to the principles of mobile computing and its enabling tech-
nologies. Topics include principles of mobile computing; wireless systems;
information management; location-independent/dependent computing mod-
els; disconnected and weakly connected operation models; human-computer
interactions; mobile applications and services; security; power management;
and sensor networks.After CPSC202a and 323a. (Taught in alternate
years.)

CPSC 437bIntroduction to Database Systems.Avi Silberschatz
TTh 2:30–3:45

An introduction to database systems. Data modeling. The relational
model and the SQL query language. Relational database design, integrity
constraints, functional dependencies, and normal forms. Object-oriented
databases. Database data structures: files, B-trees, hash indexes. After
CPSC202aand223b.

36 7 COURSE LISTINGS

CPSC 438bDatabase System Implementation and Architectures.
(Not taught in 2013–2014)

A study of systems programming techniques, with a focus on database sys-
tems. Half the course is spent studying the design of a traditional DBMS,
supplemented by a hands-on exercise where students build various com-
ponents (e.g., a catalog-manager, a buffer-manager, and a query execution
engine) of a DBMS prototype. The other half is spent on non-traditional
architectures (parallel databases, data warehouses, stream databases, Web
databases).After CPSC202aand323b.

CPSC 440bNumerical Computation.Vladimir Rokhlin
TTh 1:00–2:15

Algorithms for numerical problems in the physical, biological, and social
sciences: solution of linear and nonlinear systems of equations, interpola-
tion and approximation of functions, numerical differentiation and integra-
tion, optimization.After CPSC112aor b or an equivalent introductory pro-
gramming course; MATH120aor b; and MATH222aor b or 225aor b or
CPSC202a.

CPSC 445aIntroduction to Data Mining.Vladimir Rokhlin
MW 1:00–2:15

A study of algorithms and systems that allow computers to findpatterns
and regularities in databases, to perform prediction and forecasting, and to
improve their performance generally through interaction with data. After
CPSC202aand223band MATH222aor b, or equivalents.

CPSC 455a / ECON 425aEconomics and Computation.
(Not taught in 2013–2014)

A mathematically rigorous investigation of the interplay of economic the-
ory and computer science with an emphasis on the relationship of incentive-
compatibility and algorithmic efficiency. Particular attention will be paid to
the formulation and solution of mechanism-design problemsthat are rele-
vant to data networking and Internet-based commerce.Familiarity with ba-
sic microeconomic theory is helpful but not required. AfterCPSC365bor
with permission of the instructor.

CPSC 457aSensitive Information in a Wired World.Joan Feigenbaum
TTh 1:00–2:15

An examination of issues of ownership, control, privacy, and accuracy of the
huge amount of sensitive information about people and organizations that
is collected, stored, and used by today’s ubiquitous information systems.
Readings consist of research papers that explore both the power and the

7.3 Advanced Courses 37

limitations of existing privacy-enhancing technologies such as encryption
and “trusted platforms.” Recommended to be taken after or concurrently
with CPSC365band467b. (Not taught every year.)

CPSC 462a / AMTH 462aGraphs and Networks.Daniel Spielman
TTh 2:30–3:45

A mathematical examination of graphs and their applications in the sci-
ences. Families of graphs include social networks, small-world graphs, In-
ternet graphs, planar graphs, well-shaped meshes, power-law graphs, and
classic random graphs. Phenomena include connectivity, clustering, com-
munication, ranking, and iterative processes.Prerequisites: Linear algebra
and discrete mathematics; a course in probability is recommended. (Not
taught every year.)

CPSC 465bTheory of Distributed Systems.James Aspnes
MWF 11:35–12:25

Models of asynchronous distributed computing systems. Fundamental con-
cepts of concurrency and synchronization, communication,reliability, topo-
logical and geometric constraints, time and space complexity, and dis-
tributed algorithms.After CPSC323aand365b. (Taught in alternate years.
Formerly CPSC 425b.)

CPSC 467aCryptography and Computer Security.Michael Fischer
MW 2:30–3:45

A survey of such private and public key cryptographic techniques asDES,
RSA, and zero-knowledge proofs, and their application to problems of main-
taining privacy and security in computer networks. Focus ontechnology,
with consideration of such societal issues as balancing individual privacy
concerns against the needs of law enforcement, vulnerability of societal in-
stitutions to electronic attack, export regulations and international compet-
itiveness, and development of secure information systems.Some program-
ming may be required. After CPSC202aand223b.

CPSC 468aComputational Complexity.
(Not taught in 2013–2014)

Introduction to the theory of computational complexity. Basic complexity
classes, including Polynomial Time, Nondeterministic Polynomial Time,
Probabilistic Polynomial Time, Polynomial Space, Logarithmic Space, and
Nondeterminstic Logarithmic Space. The roles of reductions, completeness,
randomness, and interaction in the formal study of computation. After
CPSC365bor with permission of the instructor.

38 7 COURSE LISTINGS

CPSC 469bRandomized Algorithms.
(Not taught in 2013–2014)

Beginning with an introduction to tools from probability theory including
some inequalities like Chernoff bounds, the course will cover randomized
algorithms from several areas: graph algorithms, algorithms in algebra, ap-
proximate counting, probabilistically checkable proofs,and matrix algo-
rithms. After CPSC365b; a solid background in probability is desirable.
(Taught in alternate years.)

CPSC 470aArtificial Intelligence.
(Not taught in 2013–2014)

An introduction to artificial intelligence research, focusing on reasoning
and perception. Topics include knowledge representation,predicate cal-
culus, temporal reasoning, vision, robotics, planning, and learning. After
CPSC201aor b and202a.

CPSC 471bTopics in Artificial Intelligence.Drew McDermott
MW 2:30–3:45

An in-depth study of one area of artificial intelligence. Possible topics in-
clude automated planning, scheduling with explicitly represented objective
functions, AI and philosophy of mind, computational approaches to stereo
vision, multiagent systems, and automated diagnosis usingfunctional mod-
els. After CPSC470aor with permission of instructor.(Not taught every
year.)

CPSC 472aIntelligent Robotics.Brian Scassellati
MWF 10:30–11:20

An introduction to the construction of intelligent, autonomous systems.
Sensory-motor coordination and task-based perception. Implementation
techniques for behavior selection and arbitration, including behavior-based
design, evolutionary design, dynamical systems, and hybrid deliberative-
reactive systems. Situated learning and adaptive behavior. After or concur-
rently with CPSC201aor b and202a. (May not be taken after CPSC 473b)

CPSC 473bLaboratory in Intelligent Robotics.Brian Scassellati
MWF 10:30–11:20

A laboratory experience in intelligent robotics. Studentswill work in small
teams to construct novel research projects using one of a variety of robot ar-
chitectures. Project topics will be developed during the first weeks of the
course and may include topics in human-robot interaction, adaptive intelli-
gent behavior, active perception, humanoid robotics, and socially assistive
robotics. After CPSC472a. CPSC 223bis recommended.

7.3 Advanced Courses 39

CPSC 475a / BENG 475aComputational Vision and Biological Perception.
Steven Zucker

MW 2:30–3:45
An overview of computational vision with a biological emphasis. Suitable
as an introduction to biological perception for computer science and en-
gineering students, as well as an introduction to computational vision for
mathematics, psychology, and physiology students.After CPSC112aor b
and MATH120aor b, or with permission of the instructor.(Satisfies the SC
requirement.)

CPSC 478bComputer Graphics.
(Not taught in 2013–2014)

An introduction to the basic concepts of two- and three-dimensional com-
puter graphics. Topics include affine and projective transformations, clip-
ping and windowing, visual perception, scene modeling and animation, al-
gorithms for visible surface determination, reflection models, illumination
algorithms, and color theory. Assumes solid C or C++ programming skills
and a basic knowledge of calculus and linear algebra.After CPSC202aand
223b.

CPSC 479bAdvanced Topics in Computer Graphics.Julie Dorsey
MW 1:00–2:15

An in-depth study of advanced algorithms and systems for rendering, mod-
eling, and animation in computer graphics. Topics vary and may include
reflectance modeling, global illumination, subdivision surfaces, NURBS,
physically-based fluids systems, and character animation.After CPSC202a
and223b. (Not taught every year.)

CPSC 480a or bDirected Reading.By arrangement with faculty
Individual study for qualified students who wish to investigate an area of
computer science not covered in regular courses. A student must be spon-
sored by a faculty member who sets the requirements and meetsregularly
with the student. Requires a written plan of study approved by the faculty
advisor and the director of undergraduate studies.May be taken more than
once for credit.

CPSC 490a or bSpecial Projects.By arrangement with faculty
Individual research. Requires a faculty supervisor and thepermission of
the class advisor or the director of undergraduate studies.The student must
submit a written report about the results of the project.May be taken more
than once for credit.

40 7 COURSE LISTINGS

7.4 Graduate Courses

Graduate courses and seminars may be open to undergraduates. Check with
the instructor and with your class advisor or the DUS.

7.5 Related Courses in Other Departments

EENG 201b Introduction to Computer Engineering.

EENG 348aDigital Systems.

EENG 425aIntroduction to VLSI System Design.

LING 227b Language and Computation.

MATH 222a or b / AMTH 222a or bLinear Algebra with Applications.

MATH 225a or b Linear Algebra and Matrix Theory.

MATH 270a Set Theory.

MATH 345b Modern Combinatorics.

OPRS 235a / AMTH 235aOptimization.

PHIL 267a Mathematical Logic.

PHIL 427a Computability and Logic.

STAT 230b Introductory Data Analysis.

STAT 241a / MATH 241aProbability Theory.

STAT 242b / MATH 242bTheory of Statistics.

STAT 251b / MATH 251b / ENAS 496bStochastic Processes.

STAT 364b / AMTH 364b / EENG 454bInformation Theory.

STAT 365b Data Mining and Machine Learning.

41

8 Course Planner

Course Requirements

B.S./B.A. in Computer Science:
CPSC 201a or b, 202a, 223b, 323a, 365b
6 CPSC electives (B.S.) / 4 CPSC electives (B.A.); senior thesis

B.S. in Computer Science and Mathematics
CPSC 201a or b, 223b, 323a, 365b; 2 CPSC electives;
MATH 120, 222/225, 244; 5 MATH electives; senior thesis

B.A. in Computer Science and Psychology
Prerequisites:PSYC 110a or b
CPSC 201a or b, 202a, 223b, 323a, 365b; 3 AI electives
PSYC 200b, 210–299; 4 PSYC electives; senior thesis

B.S. in Electrical Engineering and Computer Science
Prerequisites:CPSC 112a or b; MATH 120a or b; PHYS 180a, 181b
CPSC 201a or b, 202a, 223b, 323a, 365b; 2 CPSC electives
EENG 200a, 201b, 202a, 203b; 2 EENG electives
MATH 222a or b / 225a or b / 241a; senior thesis

Fall Spring

Freshman

Sophomore

Junior

Senior

42 9 YALE COLLEGE CALENDAR / DEADLINES

9 Yale College Calendar / Deadlines

2013 Fall Term

28 Aug. Wed. Fall-term classes begin
30 Aug. Fri. Friday classes do not meet; Monday classes do meet
2 Sep. Mon. Labor Day; classes do not meet
9 Sep. Mon. Course schedules due for freshmen

10 Sep. Tue. Course schedules due for sophomores/juniors
11 Sep. Wed. Course schedules due for seniors
19 Sep. Thu. CPSC 490 forms due, Noon
18 Oct. Fri. Midterm; last day to withdraw from a course without

having the course appear on the transcript
22 Oct. Tue. October recess begins, 11:00PM

28 Oct. Mon. Classes resume
8 Nov. Fri. Last day to convert fromCR/D/F to a letter grade

22 Nov. Fri. Fall recess begins, 5:30PM

2 Dec. Mon. Classes resume
6 Dec. Fri. Classes end, 5:30PM; reading period begins

Last day to withdraw from a fall-term course
11 Dec. Wed. CPSC 490 projects due, Noon
12 Dec. Thu. Final examinations begin, 9:00AM

17 Dec. Tue. Examinations end, 5:30PM; winter recess begins

2014 Spring Term

13 Jan. Mon. Spring-term classes begin
17 Jan. Fri. Friday classes do not meet; Monday classes do meet
20 Jan. Mon. Martin Luther King Jr. Day; classes do not meet
22 Jan. Wed. Course schedules due for freshmen
23 Jan. Thu. Course schedules due for sophomores/juniors
24 Jan. Fri. Course schedules due for seniors
6 Feb. Thu. CPSC 490 forms due, Noon
7 Mar. Fri. Midterm; last day to withdraw from a course without

having the course appear on the transcript
Spring-term recess begins, 5:30PM

24 Mar. Mon. Classes resume
4 Apr. Fri. Last day to convert fromCR/D/F to a letter grade

25 Apr. Fri. Classes end, 5:30PM; reading period begins
Last day to withdraw from a spring-term course

30 Apr. Wed. CPSC 490 projects due, Noon
1 May Thu. Final examinations begin, 9:00AM

6 May Tue. Examinations end, 5:30PM

19 May Mon. University Commencement

Inquiries concerning the contents of this handbook may be referred to:

DIRECTOR OFUNDERGRADUATE STUDIES

DEPARTMENT OFCOMPUTER SCIENCE

YALE UNIVERSITY

P.O. BOX 208285
NEW HAVEN , CT 06520–8285

Email: ugradinfo�s.yale.edu
Phone: 203–432–1283

Web:http://ugrad.s.yale.edu

Last revised July 2013.

