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Abstract. Self-stabilization in a model of anonymous, asynchronous in-
teracting agents deployed in a network of unknown size is considered.
Dijkstra-style round-robin token circulation can be done deterministi-
cally with constant space per node in this model. Constant-space pro-
tocols are given for leader election in rings, local-addressing in degree-
bounded graphs, and establishing consistent global direction in an undi-
rected ring. A protocol to construct a spanning tree in regular graphs us-
ing O(log D) memory is also given, where D is the diameter of the graph.
A general method for eliminating nondeterministic transitions from the
self-stabilizing implementation of a large family of behaviors is used to
simplify the constructions, and general conditions under which protocol
composition preserves behavior are used in proving their correctness.

1 Introduction

In some practical scenarios, a large (and sometimes unknown) number of devices
are deployed over a region without fine control of their locations, communication
and movement patterns. The devices are all indistinguishable and have only a
few bits of memory each. Such scenarios are modeled by the population protocols
introduced in [1], where families of predicates computable in this model are
explored. Graph properties computable in the same model are discussed in [2].
Communication in population protocols occurs through pairwise interaction of
anonymous finite-state agents. The number of agents is finite but unbounded. A
communication graph describes which pairs of nodes may interact.

In the theoretical literature on distributed computing, a weak fairness con-
dition is usually assumed. Informally, in an infinite fair execution each process
or node is given a turn infinitely often. We call this definition local fairness. The
environment /scheduler is viewed as a powerful adversary who can strategically
determine the sequence in which processes are activated, as long as local fairness
is preserved. Many impossibility results rely on this assumption. For instance,
the impossibility of deterministic self-stabilizing token circulation in uniform
rings [3] follows from the assumption that the scheduler can activate the nodes
in a round-robin fashion, preserving symmetry and achieving local fairness.

However, in practical distributed systems, such a powerful scheduler seldom
exists. The global ordering of computational steps depends on a variety of ele-
ments. Temperature and power-supply affect the efficiency of electronic devices.
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Local clock frequency influences the progress of each node. For ad hoc networks,
the movement of nodes determines possible sequences of interactions. Random
delay is usually used in practical leader election and collision detection protocols,
which can be viewed as a way to randomize the scheduling of the system.

In the model of population protocols, an alternative fairness condition is as-
sumed, global fairness, which better reflects the scheduling properties of many
distributed systems. Global fairness puts more constraints on the scheduler, so
problems proved impossible under global fairness are also impossible under local
fairness. Global fairness also provides a simple conceptual framework for pro-
tocol design. For instance, once a task is known to be possible in our model,
randomization techniques can be applied to make the protocol work under some
weaker fairness conditions.

The responsibility of many systems is to meet certain specifications for well-
behavedness such as avoidance of deadlock, fairness among processes, fault toler-
ance, and other global system properties that cannot be simply modeled as I/O
behavior. We extend the model of population protocols to accommodate such
tasks. We focus on self-stabilizing systems that can start in any global configura-
tion and achieve behavior meeting the task specification by itself. Such systems
can tolerate worst-case transient faults.

1.1 Other Related Work

Self-stabilizing systems were first introduced by Dijkstra [3]. In his seminal paper,
Dijkstra gives three protocols to achieve process mutual-exclusion in rings in
a self-stabilizing way. Leader election and token management are fundamental
problems in self-stabilization and have been extensively studied in various other
models. Each of these result differs from our work in at least one of these aspects:
there is an external timeout mechanism to detect deadlocks [4]; each node can
access the states of all neighbors at the same time to determine its next state [5];
the protocol is randomized [6-8], knows the size of the network [6], or has per-
node space or message size in O(logn) [6,9]; or nodes have unique IDs [10].

Herman [8] proposed a probabilistic synchronous self-stabilizing token-
circulation algorithm for identical nodes in an odd ring. Johnen [7] presents
a randomized self-stabilizing token circulation protocol on unidirectional anony-
mous rings. Fairness is enforced by randomization and the fair circulation of
privileges. The scheduler can only choose nodes that hold a privilege token to
make the next step. In our model, nodes are deterministic, and the nondeter-
minism in the environment (scheduler) is utilized to break symmetry.

Itkis and Levin [11] present a self-stabilizing leader-election protocol for asyn-
chronous networks of identical nameless nodes with arbitrary topology. In their
model, each node can set points to neighbors whose state satisfies given proper-
ties. Our impossibility result for leader election in connected interaction graphs
with arbitrary topology in Section 5.5 shows that their model and ours differ.
However, it is an open problem whether our model can simulate theirs in some
special classes of interaction graphs.



Distance-2 coloring, also known as neighborhood unique naming, was de-
fined in [12] as the graph labeling problem with conditions at distance 2. The
communication networks community have studied variants of this problem, for
applications such as assigning radio frequency ranges or time slots to wireless-
signal transmitters to avoid interference. The existing results are different from
ours in the following aspects: nodes have unique IDs [13] or have the ability
to associate incoming messages with their sources [14, 15]; and the protocol has
probabilistic rules [13-15]. We impose a strong anonymity condition: A node
does not have innate ability to distinguish different neighbors. To our knowledge
no existing protocol is applicable in this model.

2 Basic Model

We represent a network by a directed graph G = (V, E) with n vertices num-
bered 0 through n — 1 and no multi-edges or self-loops. Each vertex represents a
finite-state sensing device, and an edge (u,v) indicates the possibility of a com-
munication between u and v in which u is the initiator and v is the responder.!
An “undirected” communication graph refers to a network in which for every
edge (u,v), interactions of the forms (u,v) and (v,u) are both possible.

A protocol P(Q,C,X,Y, O, 0) consists of a finite set of states Q, a set of initial
configurations C, a finite set X of input symbols, an output function O : Q — Y,
where Y is a finite set of output symbols, and a transition function § map-
ping each element of (Q x X) x (Q x X) to a nonempty subset of @ x Q. If
@', q) € d((p,x),(q,y)), we call ((p,z),(q,y)) — (p',q’) a transition. The transi-
tion function, and the protocol, is deterministic if 6((p, ), (¢, y)) always contains
just one pair of states. The inputs provide a way for a protocol to interact with
an external entity, be it the environment, a user, or another protocol.

A configuration is a mapping C : V — @ specifying the state of each device
in the network, and an input assignment is a mapping o« : V. — X. A trace
Te(Z) on a graph G(V, E) is an infinite sequence of assignments from V' to
the symbol set Z: T = Mg, A1,... where A; is an assignment from V to Z.
Z is called the alphabet of Tg. If Z = X, we say T is an input trace of the
protocol. Let C and C’ be configurations, o be an input assignment, and u, v
be distinct nodes. We say that (C,a) goes to C’ via pair e = (u,v), denoted
(C,a) 5 €', if the pair (C'(u),C"(v)) is in §((C(u), a(u)), (C(v),a(v))) and for
all w € V—{u, v} we have C’'(w) = C(w). We say that (C,a) can go to C’ in one
step, denoted (C,a) — C', if (C,a) = C" for some edge e € E. Given an input
trace IT = ag, o, ... we write C - C” if there is a sequence of configurations
C = 00, 01, ey Cr = O/, such that (sz Oz?;) — Ci41 for all 1, 0<1i< ]41, in which
case we say that C' is reachable from C given input trace IT.

An ezecution is an infinite sequence of configurations and input assignments

(Co, ), (C1,01), ...such that Cy € C and for each i, (C;,;) — Ciy1. An

! The distinct roles of the two devices in an interaction is a fundamental assumption
in our model.



execution is fair if for every «, C and C’ such that (C,a) — C’, if (C,«)
occurs infinitely often in the execution, then C’ also occurs infinitely often in
the execution. We extend the output function O to take a configuration C' and
produce an output assignment O(C') defined by O(C)(v) = O(C(v)). Let E =
(Co, ap), (Cr,a1)y ..., (Cs,5), ... be an execution of P. We define the output
trace of an execution as OT(E) = O(Cy),0(C1),...,0(Cy),.. ..

A self-stabilizing system can start at an arbitrary configuration and even-
tually exhibit “good” behavior. We define a behavior B on a network G(V, E)
to be a set of traces on G that have the same alphabet. We write B(Z) to
be explicit about the common alphabet Z. A behavior B is constant if every
trace in B is constant. If given the constraint that every input trace is contained
in some behavior B;,(X), the output trace of every fair execution of a proto-
col P(Q,C,X,Y,0,0) starting from any configuration in C is in some behavior
Bout(Y), we say P is an implementation of output behavior Boy given input
behavior B;j,. If P does not have any restriction on inputs, we simply say P is
an implementation of Byyu. Given a behavior B(Z), we define the correspond-
ing stable behavior B*(Z): T € B® if and only if Z is T’s alphabet, and there
exists T € B such that 7" is a suffix of T. Thus, an execution in a stable be-
havior may have a completely arbitrary finite prefix followed by an execution
with the desired properties. If P(Q,C,X,Y,0,d) is an implementation of B?,
and C is the set of all possible configurations, we say that P is a self-stabilizing
implementation of B.

3 Nondeterministic Protocols

In [2], we showed that nondeterminism in the transition function does not in-
crease the class of stably computable predicates. In this section, we extend the
result to self-stabilizing algorithms.

We define the repetition closure of a sequence t to be set of sequences obtain-
able from ¢ by repeating each element one or more times. In other words, give
any sequence t = ajas...a; ..., the repetition closure R(t) is ajay ...a; ... in
regular expression notation. We extend the definition of R to a behavior B by

taking the union of R(t) for all t € B. We say a behavior B is elastic if B = R(B)

Theorem 1. If a nondeterministic protocol P is a self-stabilizing implemen-
tation of a behavior B, there exists a deterministic protocol P’ that is a self-
stabilizing implementation of R(B).

Proof. The proof is similar to that of the theorem in [2] corresponding to com-
putations. We construct a compiler using a nondeterminizer to convert every
nondeterministic protocol to a deterministic one. For the compiler to preserve
self-stabilization, the nondeterminizer itself must be self-stabilizing.

Let P, be a nondeterministic protocol with states Q, input alphabet X,
and transition function §. We describe a simulation of P; that works in graphs
with at least 3 vertices. Let m be the maximum cardinality of any of the sets
0((q,2),(¢',x")) for q,¢' € Q and x,2’ € X. For each ¢,¢' € Q and z,2’ € X,



select an arbitrary surjective function f(4 4 (q.2-) mapping {0,1,...,m — 1} to
5((q,2), (¢',2")).

We describe a protocol P, to simulate each step of P; by multiple determin-
istic steps. and the state components used in P; only change in the last of the
corresponding steps in P,. The state consist of three components: (1) a non-
determinizer mark o or its absence —, (2) a state ¢ € @, (3) a choice counter,
consisting of an integer between 0 and m — 1 inclusive. The transitions are:

L ((egc, m), (og'c,2')) — (—qc, oq'c’)

2. ((ege, ), (=q'd, 2")) — (—qc, o' (¢ + 1))

3. ((=¢'d,x), (eqe, 2")) — (og' (¢ + 1), —qc)

4. ((=qc, @), (=4'd,a")) — (=re,or'd)
where the increments are made modulo m and the pair of states (r,r’) is the
element of 0((q, x), (¢, z")) selected by the function f(4 4, (4,27 (c). Thus, in tran-
sitions of type 4, the value of the choice counter of the initiator is used to make
a deterministic choice of an element of §((q, ), (¢’,z")). The role of the nonde-
terminizers is to hop around the graph incrementing choice counters as they go.
accomplish this purpose. Transitions of type 4 ensure that deadlock is impossi-
ble: even if we start from a configuration with no nondeterminizers, the rule will
generate new nondeterminizers. Transitions of type 1 ensure that the nondeter-
minizers have room to move around by merging two adjacent nondeterminizers.

O

If B is an elastic behavior, B = R(B). The following corollary is immediate:

Corollary 1. If a nondeterministic protocol P is a self-stabilizing implementa-
tion of an elastic behavior B, there exists a deterministic protocol P’ that is a
self-stabilizing implementation of B.

4 Protocol Composition

It is desirable to be able to combine protocols to obtain new protocols. Paral-
lel execution of protocols is easily achieved by taking the Cartesian product of
their state sets and updating the states for each protocol independently when a
transition occurs. In this section we introduce one technique of protocol compo-
sition in our model. We want to compose protocols Py, Ps, ..., P,, so that the
self-stabilizing behavior of Py, Py, ..., P; is used as an assumption in P;; .

For n = 2, assuming P; and P, access different components of the node’s
state, we run P; and P, in parallel, except that whenever P> is executed, it
uses the current output of P; as its current input. When an edge is fired, it
is nondeterministically determined which protocol gets the chance to execute.
Recall that a behavior is constant if it contains only constant traces.

Theorem 2. Suppose Bi is a constant behavior. If Py is a self-stabilizing im-
plementation of an elastic behavior By given input behavior By, and P is a
self-stabilizing implementation of By, the composition of Py and Py (written as
Py o Py) is a self-stabilizing implementation of Bs.



Proof. Let S = Cy,C1, ... be any fair execution of P; o P». Define the projection
I1,(C) of a configuration C to be the sub-configuration produced by taking each
node’s state components that are accessed by P;. Il5 is defined similarly for Ps.

Define S’ = C{, C1, ... the maximal subsequence of S in which for each 4, the
transition immediately after C; is defined in P;. S” = C{,CY, ... is defined simi-

larly for Ps. Because P; is self-stabilizing, and IT; (C{), IT; (C}), . . . is a fair execu-
tion of P, there exists some 7 such that the output trace of IT,(Cj), II(C} ), ...
satisfies By. Let C} be any configuration that appears after C; in S, and let
C%7,CY\y, ... be the sequence starting from C7 in S”. Because the output trace
of Py in C},C%,,,... is constant and satisfies By, I12(CY), I12(C},,),... is a
fair execution of P, whose output trace satisfies By. Because B, is elastic, the
output trace of P; o Py in the subsequence of S starting from C’j’-’ satisfies Bs.

Therefore P o P, is a self-stabilizing implementation of Bs. O

5 Self-Stabilizing Protocols

5.1 Token-Circulation in a Directed Ring

As an simple example, we discuss the token circulation problem in an interaction
graph whose topology is a directed ring. The protocol uses the same idea as in
Dijkstra’s first algorithm in [3], but we only use 2 colors (0 and 1). Readers from
the self-stabilization community will find the protocol familiar.

The token-circulation behavior TC on graph G(V, E) is the set of all traces
t = Bo, b1, ... with alphabet {T, ¢} such that:

1. For all m > 0, v € V such that §,,(v) =T and Yu € V — {v}, B (u) = ¢.

2. Forall 0 <m < k < n, if Ju,v" € V (v # v') such that §,,(v) = Bx(v') =
Brn(v) =T, then Yu € V — {v}, 3l such that m <1 <n and Fi(u) =T.

3. For all v € V, By(v) =T for infinitely many k.

A node owns a token in a configuration if its output is 7'. For any trace in T'C,
exactly one node has a token in each configuration, and after a node releases a
token, it does not obtain a token again until every other node has obtained a
token once.

We describe a self-stabilizing implementation of T'C' given the leader-election
behavior LE. The description of a self-stabilizing implementation of LFE is post-
poned to Section 5.5. LE on graph G = (V, E) is the set of all constant traces
B, 0, ... such that for some v € V| f(v) = L and for all u # v, B(u) = N. Infor-
mally, there is a static node with the leader mark L, and all other nodes have
the nonleader mark IV in every configuration. Given the LE input behavior, the
leader receives input L and all other nodes receive input N.

Node states are pairs in {—,+} x {0,1}. “+” indicates the presence of a
token and “—” indicates the absence of token. The second component of a node
is called the label of that node. The interaction rules are:

L. ((xb,N), (b, L)) — (=b, +b);
2. ((xb, %), (xb, N)) — (—b, +b).



We use the convention that x on the left side of a rule matches any value for
the component, that b on the left side matches either 0 or 1, and b means the
complement of b. The output rules are ++ — T and —« — ¢. (Output T if and
only if the first component is “+”7.)

Because of space limitation and the simplicity of the protocol, we state the
following theorem without giving the proof.

Theorem 3. There exists a constant-space self-stabilizing implementation of
output behavior TC given input behavior LE in a directed ring.

This protocol does not need a non-constant number of colors as in [3] or
randomized transition rules as in [7], because of the stronger fairness condition.

5.2 Distance-2 Coloring in Bounded-Degree Graphs

To extend the token circulation algorithm to undirected rings, we need a protocol
that imposes direction on the ring. A necessary condition is that each node be
able to recognize its two different neighbors. Here we describe a more general
algorithm that enables each node in a degree bounded graph to distinguish
between its neighbors.

Suppose an undirected graph has a degree bound d and we want to color the
graph such that any two nodes whose distance is 2 have different colors. After
a graph is properly colored, the neighbors of any node bear different colors and
thus are distinguishable. It is not difficult to see that d(d — 1) + 1 colors suffice
for a distance-2 coloring of a graph with degree bound d.

The distance-2 coloring behavior D2C on graph G = (V, E) with color set C
is defined as the set of constant traces A, J, ... where the alphabet of X is C' and
whenever u,v,w € V are such that (u,v) € E and (v,w) € E and u # w, we
have A(u) # A(w).

A node i has the following state components:

color; An integer encoding the color of node 7; its value is between 0
and d(d — 1).
F; A boolean array whose size is d(d — 1) 4+ 1, indexed by colors.

Each node i outputs the current value of its color; component.

In this and the following sections, we describe our algorithms by specifying
the interaction between two adjacent nodes i and j when the edge (4, 7) is acti-
vated. The intuition behind the protocol is that if a node 7 has only one neighbor
j with a given color and vice versa, then interactions between ¢ and j will flip
the bits F;[color;] and Fj[color;] synchronously. If there is a second neighbor
j' with the same color as j, then an interaction with j’ will set the bit at ¢ to
the opposite value of the bit at j; this will be detected in a later interaction be-
tween i and j, causing a recoloring of either 7 or j and a resynchronization of the
bits ¢ and j use to follow each other. After enough nondeterministic recolorings,
the protocol will eventually reach a state in which all distance-2 neighbors have
distinct colors and all alternating bits are properly synchronized.



Protocol 1 Distance-2 coloring with degree bound d

1: if Fi[color;] # Fj[color;] then > possibly conflicting colors
2: color; « color’, > nondeterministic coloring
3: F;i[color;] < Fj[colors]

4: else > valid coloring

5: Fi[color;] < Fi[color]

6: Fj[color;] < Fj[colors]

7: end if

For a formal argument, we define the safe configurations to be the set of
configurations that satisfy the following conditions:

1. Let (u,v) and (v, w) be any two edges in the network, it holds that color, #
color,.

2. Let u and v be any two adjacent nodes, F,[color,| = Fy[color,].

Lemma 1. The trace of any execution of Protocol 1 starting from a safe con-
figuration is in D2C.

Proof. Let Cy be a safe configuration and (u,v) be any edge. Suppose Cy (0)
Cy. Because F,[color,| = F,[color,], no change of color occurs. Because both

F,[color,] and F,[color,] are complemented in the interaction, it still holds that
F,[color,] = Fy[color,]. Notice that if the first safety condition holds, among u’s
neighbors only v has the color color,, and wu is the only one of v’s neighbor with
color,,, therefore Fy[color,] and F,[color,] cannot be changed unless (u,v) is
activated. Therefore both requirements of safety are preserved. Because Cy and
(i,7) are chosen arbitrarily, we can conclude that the coloring does not change
in any execution starting from any safe configuration. ad

Lemma 2. Starting from an arbitrary configuration, there exists a finite execu-
tion fragment that reaches a safe configuration.

Proof (sketch). Suppose the second safety condition is violated in the starting
configuration. There exists an edge (u,v) such that Fy[color,] # F,[color,].
When (u,v) is activated, node v will change its color and ensure that
F,[color,] = F,[color,] holds for the new value of color,,.

If the first safety condition is violated, there exist two edges (u,v) and (v, w)
such that color, = color,. For any initial states of u, v, and w, there is a
sequence of activations of (u,v) and (w,v) which will cause the second condition
to be violated and either u or w to change its color.

Therefore the coloring cannot stabilize until a safe configuration is reached.
By fairness, the nondeterministic coloring rule will eventually choose colors that
lead to a safe configuration.

According to Corollary 1, there is a deterministic version of this protocol. We
remark without proof that one way to turn the nondeterministic protocol to a
deterministic one is to change line 2 to color; < (color; + 1) mod (d(d — 1)+ 1).

O



The following theorem follows from the lemmas and establishes the correct-
ness of the protocol.

Theorem 4. For each d, there exists a constant-space self-stabilizing implemen-
tation of the distance-2 coloring behavior in communication graphs of degree
bounded by d.

5.3 Directing an Undirected Ring

Given a graph colored by Protocol 1, Protocol 2 gives a sense of direction to
each edge on an undirected ring and guarantees global consistency.

Formally, the ring direction behavior RD on G(V, E) is defined as the set of
all constant traces t = A, \,... over an alphabet C' x C' x C, where we denote
A(v) by (¢y, €v,0, Cv1), satisfying the conditions:

1. Forallv eV, cy0 # cy-

2. For all (u,v) € E, there exists b € {0,1} such that ¢, = cup Ay = ¢, 3.

We think of ¢, as the color of node v, ¢, o as the color of its left neighbor and ¢, ;

as the color of its right neighbor, and the conditions ensure global consistency.
In the protocol, each node i has the following components:

color; the color of node ¢ (we assume this value is provided by the
input
behavior D2C'.)

color; o the color of the left neighbor

color; 1 the color of the right neighbor

Node i outputs (color;, color; o, color; 1). A configuration is safe if its output
assignment satisfies the requirement of RD.

Protocol 2 Directing an undirected ring
1: if color; = color; o and color; # color;1 then

2: color;1 < color;

3: else if color; = color;,1 and color; # color;.o then
4: color;j o < color;

5: else

6: color;,o < color;

7: color; 1 < color;

8: end if

Lemma 3. In the executions of Protocol 2, given input behavior D2C, all reach-
able configurations from any safe configuration are also safe configurations.

Proof. Let C be a safe configuration, that is, for all (i,j) € E, there exists b €

{0,1} such that color; = color;;, and color; = color; 3, and for all 7, color; o #



color; 1. Depending on the value of b, the condition in either line 1 or line 3 is
true, and the assignments in line 2 and 4 do not modify the states, since the
components already have the assigned values. Therefore, starting from a safe
configuration, the state of each node does not change. a

Lemma 4. Starting from an arbitrary unsafe configuration given input behavior
D2C, there exists a finite execution fragment of Protocol 2 that ends at a safe
configuration.

Proof (sketch). Starting from an arbitrary configuration, after each edge is acti-
vated once, all dangling pointers are eliminated, which means the “left neighbor”
pointer and “right neighbor” pointer of each node points to its actual neighbors.
Under this assumption, consider an arbitrary node and label it 0. Label the ring
sequentially in a direction such that colorg o = color;. If the scheduler activates
(0,1), it must hold afterwards that coloroo = color; and colory; = colorg,
because either of the conditions on line 1 or line 5 applies. Let the scheduler ac-
tivate (0,1),(1,2),...,(n — 1,0) sequentially. Each activation (¢, (i + 1) mod n)
ensures that color;o = color(i11) mod n and color((it1) mod n),1 = color;. After
this sequence of activations, all edges are directed consistently and a safe con-
figuration is reached. a

Theorem 5. Given the distance-2-coloring input behavior, there exists a
constant-space self-stabilizing implementation of ring direction.

5.4 Self-Stabilizing Spanning Trees in Regular Graphs

Assuming the existence of a special node and the local addresses assigned by
the distance-2 coloring protocol, a spanning tree rooted at the special node can
be constructed in a self-stabilizing fashion in a regular graph of degree d. Our
protocol uses O(log D) bits of memory, where D is the diameter of the graph.

Let N be a set of labels and ¢ € N be a special element. The spanning tree
behavior ST on graph G(V, E) consists of all constant traces t = A, A,... such
that:

1. For v € V, A(v) is a pair (¢,p) where ¢ € N and p € N U {¢}, and there
exists a unique r € V such that the second component of A(r) is ¢.

2. For all vy # r, there exists vg,v1,..., and vy = r, where v; € V, A(v;) =
(ciypi) and p; = ¢;41 for all 0 <4 < k.

Informally, N is the set of possible colors of nodes. If A(v) = (¢, p), ¢ is the color
of v and p is the color of its parent in the spanning tree. For the root node r in
the spanning tree, p = ¢.

We define the first spanning tree of a distance-2-colored graph with a unique
leader to be the spanning tree satisfying the following conditions:

1. The root of the tree is the leader.

2. The parent of each node is the neighbor closest to the root. Ties are broken
by an ordering of the colors.



It is easy to see that the first spanning tree is unique, if the coloring and the
leader is fixed. Due to space limitations, we leave the detailed specification of
the protocol to the full version of the paper and only informally describe the
protocol to construct the first spanning tree.

The protocol consists of two parts. Each node keeps a neighbors queue of
size d which records the distinct colors of the nodes it interacts with. When the
queue is full and the node interacts with a node whose color is not in the queue,
the oldest value is removed from the queue and the new value is recorded. After
the coloring protocol stabilizes, each node will eventually have the d distinct
colors of all its neighbors.

When node i interacts with node j, if 7 is the root, j sets its state variable
dist; to 1, which records the length of the shortest path from j to the root
that has been discovered, and it sets the parent variable parent; to color;, the
color of node i. Otherwise, if parent; is undefined or if parent; # color; and
dist; < dist; —1, j sets parent; to color; and dist; to dist; +1. If dist; = dist; —1
but color; < parent;, j also sets parent; to color;. If parent; = color;, j sets
dist; to dist; + 1.

Theorem 6. Given input behaviors LE and D2C', the above protocol is a self-
stabilizing implementation of output behavior ST for all reqular graphs of degree
d.

Proof. Given input behaviors D2C' and LE, we may assume that the interaction
graph G is properly distance-2 colored with one node marked L and all other
nodes marked N. Let T denote the unique first spanning tree of G. Starting from
an arbitrary configuration, after every edge has been activated in each direction,
the queue of neighbors of each node consists of the d colors of its neighbors, and
the parent pointer of every node except the root points to some neighbor of the
node. Define graph H to be: (i,7) is in H if parent, = j. We look at each edge
that is in H but not in 7" and show each such edge will be corrected. For ease
of description, we associate a number N; with each node i: the higher bits of N;
gives the distance from the root (the real distance in G, not the current value of
dist;), and the lower bits give i’s color.
Let ¢ be the node such that:

1. parent, = j ((i,5) € H), but (i,5) € T.
2. N; has the smallest value among those that satisfy 1.

Let k be the node such that (i,k) € T. That is, ¢’s parent should be k, but i
currently thinks j is his parent. There are two cases:

1. In graph H, the root is reachable from j. The scheduler activates the edges
on the path from the root to k in H sequentially. These edges are in both
T and H. Because each node will set its distance variable to be the distance
variable of its parent plus one, dist; will be the real distance of k from the
root. The scheduler then activates the edges on the path from the root to j
in H sequentially. After that it must holds that dist; > dist}, or the distances
are equal but the color of k precedes the color of j. Then (i, k) is activated,
and i will set parent;, = k.



2. In graph H, the root is not reachable from j. Let’s only look at H, and let
C consist of j and the nodes reachable from it. C' does not contain the root.
Because all nodes in C' have out-degree one, there must be a directed cycle in
C. By the definition of H, every node in the cycle think the next node is its
parent. By letting the scheduler keep activating the edges in the cycle, the
dist values of the nodes in that cycle can be increased to become arbitrarily
large. By activating the edges on the path from j to any of the nodes on the
cycle in the reversed order, the large dist value will be propagated back to
J. Thus 7 will switch the parent pointer to another node which has a smaller
dist component than j. If the root is reachable from the new parent, do (1),
otherwise repeat (2).

The process is repeated until H = T. a

We remark that a traversal of the tree can simulate a directed ring. Therefore,
token-circulation can be done in a regular graph by running the ring token-
circulation protocol in parallel with the distance-2 coloring protocol and the
spanning tree protocol.

5.5 Leader Election

Two of the above protocols assume a pre-designated special node. In our model,
self-stabilizing leader election is possible in some classes of interaction graphs
and impossible in others. In this section, we first describe a family of leader-
election protocols in directed rings. We also present an impossibility result for
leader election in general graphs. The formal definition of the leader-election
behavior (LE) is given in Section 5.1.

We first consider rings of odd size. Supposing each node has a label bit, we
call a maximal sequence of alternating labels a segment. Since the size of the ring
is odd, there is at least one pair of adjacent nodes with the same label. We define
the head and tail of a segment in the natural way according to the direction of
the ring. One edge of the form (0,0) or (1,1) connects the tail of one segment
to the head of another segment. We call such edges barriers.

The protocol consists of several parts. At the base is the “unstable clock”
protocol, in which the barriers move forward around the ring (which we call
“clockwise”). When two barriers collide, one of them is eliminated. There exists
a sequence of activations that remove all but one barrier. By fairness, eventually
there is a single barrier which rotates clockwise around the ring forever.

The remainder of the protocol manipulates the leader marks and two kinds
of tokens, bullet and probe. Probes move faster than barriers. Probes are sent
out by the barrier in a clockwise direction and absorbed by any leader they run
into. If a probe makes it all the way back to the barrier, it is converted to leader.
Leaders fire bullets counterclockwise around the ring. Bullets are absorbed by
the barrier, but they kill any leaders they encounter along the way.

Call a configuration “clean” if it contains exactly one barrier, exactly one
leader, and there are no bullet or probe marks on any node in the interval starting



from the leader and proceeding clockwise to the barrier. Thus, any bullet and
probe marks are confined to the interval starting from the barrier and proceeding
clockwise to the leader. As the barrier rotates, this region gets squeezed smaller
and smaller until finally the barrier passes leader, at which point there are no
bullet or probe marks at all. We leave the pseudocode specification of the protocol
to the full version, and only give proof sketches of correctness according to the
description above.

Lemma 5. All configurations reachable from a clean configuration are also
clean, and the same node is marked leader in each.

Proof. No probe ever encounters the barrier, because there are no probe marks
anywhere in the region between leader and the barrier, hence, no new leader is
created. No bullet ever encounters the leader because there are no bullet marks
anywhere in the region starting from the barrier and going counterclockwise
to the barrier, hence the leader is never killed. Newly created bullet and probe
marks are both confined to the region from the barrier to the leader. a

Lemma 6. For any configurations C there exists a clean configuration C' reach-
able from C.

Proof. Tt follows from our fairness condition that every fair computation contains
a clean configuration. From the above claim, all configurations following the first
clean configuration are also clean and have the same node marked as leader.
Here’s how to reach a clean configuration starting from an arbitrary con-
figuration C. First, pick a barrier edge and rotate the barrier once around the
ring as described above. This eliminates any other barriers that might have been
present. Next, take any bullet in the forbidden region starting from the bar-
rier and proceeding counterclockwise to the first leader (or the entire ring if no
node is marked leader) and propagate the bullets counterclockwise around the
ring until they are absorbed by the barrier. Some or all leaders may die in the
process. If any leader remains, take the farthest leader from the barrier (in the
counterclockwise direction), fire a bullet, and propagate it until it is absorbed
by the barrier. Now at most one leader remains. Next, let the barrier create a
probe mark, then propagate all probe marks clockwise around the ring until they
are absorbed by the leader or they encounter the barrier and are converted to
leader. At this point, we have a ring with one barrier, one leader, and no other
marks, so it is clean. O

Lemmas 5 and 6 complete the proof of correctness.

This protocol is a special case of a family of protocols. For any ring of size n,
we can pick an integer k > 1 that is relatively prime to n. Each node is labeled
by an integer between 0 and k — 1 inclusive. Call an edge a ”barrier” if it is (¢, )
wherei+1 # j (mod k). Because k is relatively prime to n, there is at least one
barrier. The barrier advancement rule would be (,5) — (4,7 + 1 mod k), where
i+1=#j (mod k). Calling this protocol P, then the protocol we detailed in
this section is P». We thus have a family of protocols P, Ps, ... such that for



any ring, P, accomplishes self-stabilizing leader election whenever k does not
divide the size of the ring.

Theorem 7. For each integer k > 2, there exists a constant-space self-
stabilizing implementation of the leader-election behavior on all rings whose sizes
are not multiples of k.

Finally, we present the following impossibility result:

Theorem 8. There does not exist a self-stabilizing protocol for leader election
in interaction graphs with general topology.

Proof. Assuming such a protocol A exists, we consider how it would behave in
directed lines. Let e be an arbitrary edge. If e were removed, the interaction
graph would become two directed lines, and by the correctness assumption of A,
the two shorter lines would each elect a leader. Therefore from any configuration
C there is a reachable configuration C’ in which there are two leaders, because
from C' the scheduler just stops activating e and only activates other edges for a
certain amount of time to reach C’. By fairness, in any fair execution of A, some
configuration C’ with two leaders occurs infinitely often. Therefore the output
trace of any fair execution of A cannot have a suffix in the behavior LE. a

A class C of graphs is simple if there does not exist a graph in C' which con-
tains two disjoint subgraphs that are also in C'. Notable simple classes of graphs
include rings, or, more generally, connected degree-d regular graphs. Directed
lines, connected graphs with a certain degree bound and strongly connected
graphs are non-simple classes of graphs. The proof above shows that there is
no self-stabilizing leader election protocol that works for all the graphs in any
non-simple class.

6 Conclusion and Open Problems

In this paper, we extended the population protocol model of [1] to allow for
inputs at each step, and we defined general classes of behaviors. We studied self-
stabilization protocols for token-circulation, distance-2 coloring, ring orientation,
spanning tree, and leader election in this extended model.

We remark that one of the applications of the self-stabilizing protocols is
to combine them with the protocols in [1,2] to compute algebraic predicates or
graph properties, with the additional benefit of transient-fault tolerance. For in-
stance the token-circulation protocol could be augmented to compute predicates
such as n > k or expressions like n mod k in regular graphs in which n is the
size of the network and k is a constant. We leave the detailed discussion to the
full version of the paper.

The leader election protocol we presented in this paper depends on the size
of the ring. There are impossibility results and space bounds on self-stabilizing
leader election in general rings in various other models [3,10]. Because of the
difference between our model and that of the previous papers, those results



cannot be easily extended to our model. The existence of a uniform constant-
space leader election protocol on the class of all rings or on the class of regular
communication graphs of degree d > 2 is still open for future research.
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