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Abstract. The population protocol model [3] offers a theoretical frame-
work for designing and analyzing distributed algorithms among limited-
resource mobile agents. While the original population protocol model
considers the concept of anonymity, the issue of privacy is not investi-
gated thoroughly. However, there is a need for time- and space-efficient
privacy-preserving techniques in the population protocol model if these
algorithms are to be implemented in settings handling sensitive data,
such as sensor networks, IoT devices, and drones. In this work, we intro-
duce several formal definitions of privacy, ranging from assuring only
plausible deniability of the population input vector to having a full
information-theoretic guarantee that knowledge beyond an agent’s in-
put and output bear no influence on the probability of a particular input
vector. We then apply these definitions to both existing and novel proto-
cols. We show that the Remainder-computing protocol from [10] (which is
proven to satisfy output independent privacy under adversarial schedul-
ing) is not information-theoretically private under probabilistic schedul-
ing. In contrast, we provide a new algorithm and demonstrate that it cor-
rectly and information-theoretically privately computes Remainder under
probabilistic scheduling.

Keywords: Mobile ad-hoc networks · Population protocols · Information-
theoretic privacy.

1 Introduction

Various issues arise when applying the theoretical population protocol model to
real-world systems, one of the most critical of which is that of preserving privacy.
The motivation for furthering the study of privacy within population protocols
is to better adapt these algorithms to the real-world systems that they aim to
model, such as sensor networks, systems of IoT devices, and swarms of drones,
all of which handle sensitive data. Previous research in private population pro-
tocols only considers adversarial scheduling, which makes generous assumptions
about our obliviousness to the scheduler’s interaction choices and offers only very
weak criteria for satisfying the definition of “privacy.” In this work, we further
refine these definitions considering a realistic range of threat models and security
concerns under arbitrary schedules.
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1.1 Related Work

Research in private computation within ad hoc networks is distributed (pun
intended) over multiple academic fields. We limit our review of the literature to
works that most closely relate to the theoretical model we study in this paper.

Population Protocols Privacy was introduced to the population protocol
model in [10], where the authors define a notion of privacy called output in-
dependent privacy and provide protocols satisfying this definition for computing
the semilinear predicates. Output independent privacy basically states that for
any input vector and execution yielding a particular sequence of observations at
an agent, there exists a different input vector and execution yielding the same
sequence of observations at that agent. The practicality of this definition relies
on adversarial scheduling, which allows the schedule of interactions to delay pairs
of agents from interacting for an unbounded number of steps. Due to adversarial
scheduling, the existence of an execution is sufficient to achieve plausible deni-
ability: Agents have no metric for estimating time elapsed nor approximating
how many interactions in which another agent has participated. Therefore, the
observed state of an agent cannot be used to infer the agent’s input as it may
have deviated from its original state over the course of many interactions. How-
ever, if instead the scheduler is probabilistic, then there arises the issue of data
leakage from inferring the population’s interaction patterns.

Sensor Networks Population protocols are designed to model sensor networks,
but there is a large body of literature on sensor networks that is not connected
to the population protocol model. The capacity of agents in the domain of sensor
networks is much larger than is assumed in population protocols; in particular,
much of the privacy-preserving algorithms in this area involve encryption, which
requires linear state space in the size of the population.

In recent years, viral exposure notification via Bluetooth has become a pop-
ular area of study [7, 9], and one that demands verifiable privacy guarantees
due to widespread laws governing protected health data. However, the solutions
in [7, 9] require centralization and high storage overhead. The closely related
problem of anonymous source detection is studied in [5, 6]; however, these works
require superconstant state space and only address this one task. Other research
in wireless sensor networks investigates private data aggregation, which most
closely resembles the goal of our research [8, 12, 15]. As before, these works
require high computation and local memory as they implement their solutions
using homomorphic encryption. Where alternative methods are used to avoid
relying on encryption, a specialized network topology is needed for success [14]
or only specific functions are computable [15].

While far from comprehensive, this sample of related works suggests that
much of the research on privacy in wireless sensor networks is either limited
by network topology or relies on computationally intensive encryption. For this
reason, our goal is to develop privacy-preserving solutions for data aggregation
in population protocols, bearing in mind the resource restrictions of the model.
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1.2 Contribution

In this work, we study the privacy of population protocols in the random schedul-
ing model. We demonstrate how existing privacy definitions fail under certain
modelling assumptions, give new precise definitions of privacy in these settings,
and offer a novel protocol in the uniform random scheduling population proto-
col model satisfying the new privacy definitions. In this work, we restrict our
focus to computing the Remainder predicate. The proofs of all claims in this
publication can be found in the extended version of our paper [1].

2 Preliminaries

A population protocol P is a tuple (Q, δ,Σ, I, O,O) consisting of state set
Q, transition function δ, input set Σ, input function I, output set O,
and output function O [3]. Protocols are run by a population, which consists
of a set of n agents {Aj}nj=1 each with some input ij ∈ Σ. At the start of
the protocol, each agent converts its input to a state in Q via I : Σ → Q.
In the early population protocol literature, I is only ever considered to be a
deterministic function; however, in this work, we extend the model to allow
for I to be randomized. The transition function δ : Q2 → Q2 designates how
the agents update their states upon interacting with each other in pairs. As
a shorthand for saying δ(q1, q2) = (q′1, q

′
2), we write q1, q2 → q′1, q

′
2 where δ is

implied. The protocol aims to compute some function (whose output is in the
output set O) on the initial inputs of the agents in the population. An agent’s
output value is a function of the agent’s state, determined by O : Q→ O.

The collection of agents’ inputs is denoted as a vector I ∈ Σn, where each
index of I reflects the input of a particular agent in the population. Adopting
terminology from [10], we refer to I as an input vector. When the size of
the state space is O(1), the protocol cannot distinguish between two agents in
the same state nor with the same input; therefore, we may want to refer to
the multiset of input values in the input vector I, denoted multiset(I). After
converting these inputs to elements of Q, the global state of the population is
called a configuration and is represented as a vector C ∈ Qn, where the i-th
entry of the vector denotes the state of the i-th agent. Abusing notation, we say
that I(I) = ⟨I(ij)⟩nj=1 is the configuration resulting from applying the input
function I to each of the agent inputs in I = ⟨ij⟩nj=1.

Agents update their states via interactions with one another which are per-
formed at discrete intervals, called steps. At each step, an ordered pair of agents
(Ai, Aj) is selected from the population by the scheduler. To distinguish be-
tween the two agents in the ordered pair, we call the first agent the Initiator
and the second the Responder. When an interaction takes place, the two se-
lected agents update their states according to the transition function δ which
may change the counts of states in the population, thereby updating the configu-
ration. Let C be the configuration space, or the set of all possible configurations
for a population of n agents with state space Q. We say that a configuration
D ∈ C is reachable from C ∈ C via δ if there exists some series of ordered agent
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pairs such that starting from C, if the configuration is updated according to δ on
those ordered pairs, then the resulting configuration is D [3]. If D is reachable
from C, then we write C → D. The infinite sequence of configurations resulting
from the scheduler’s infinite choice of interaction pairs is called an execution.
An execution of a protocol is said to converge at a step τ when, for every step
t > τ , the output of each agent’s state at t is the same as it is at τ (i.e. the output
of every agent converges to some value and never changes thereafter). A stronger
notion of termination is for a protocol to stabilize, meaning that after reaching
some configuration C∗, the only configurations reachable from C∗ result in the
same outputs at every agent as in C∗. Abusing notation, we say O(C) = λ (or,
the output of the configuration is λ) if O(qj) = λ for every qj ∈ C.

The goal of the population is to compute some function Φ on the input
vector I, which means that the population eventually stabilizes towards a set
of configurations D ⊆ C for which O(D) = Φ(I) for all D ∈ D. The results
of our work are commensurable with those of [10] which demonstrate that the
semilinear predicates, which can be expressed using Threshold and Remainder,
can be computed with output independent privacy under adversarial scheduling.
Our work focuses on Remainder, defined for population protocols as follows:

Definition 1. Given positive integers k and n, non-negative integer r < k, and
input vector I ∈ Zn

k , let Remainder(I) = True iff
∑n

j=1 ij ≡ r (mod k).

The scheduler determines the pair of agents that interact at each step. The
scheduler’s choice of agent pairs may either be adversarial or probabilistic. An
adversarial scheduler chooses pairs of agents to interact at each step as it
desires, subject to a fairness condition. The condition used most commonly is
called strong global fairness, and it states that if some configuration C occurs
infinitely often, and C → C ′, then C ′ must occur infinitely often as well [3]. This
means that if some configuration can occur, it eventually must occur, even if
the adversarial scheduler wishes to delay its occurrence indefinitely. In works
adopting adversarial scheduling, it can be claimed that a protocol eventually
stabilizes to the correct answer, but not how quickly. A random or probabilistic
scheduler instead selects pairs of agents to interact with one another according
to some fixed probability distribution (usually uniform) over the ordered pairs of
agents. Although population protocols consider interactions to occur in sequence,
the systems they model typically consist of agents participating in interactions
in parallel. As such, a natural estimation of parallel time is to divide the total
number of interactions by n, as this roughly estimates the expected number of
interactions initiated by a particular agent in the population.1

Our work crucially relies on distinguishing between an externally visible com-
ponent of the agent state and a concealable secret state. Adopting notation from
[2], we let S be the internal state space and M the set of messages which
can be sent between the agents. Since each agent has both an internal and ex-
ternal state component, the total state space is then the Cartesian product of
these sets Q = S ×M . This means that δ is instead a function computed lo-
1 Under non-uniform random scheduling, this notion of time no longer applies.
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cally at each agent according to its own state and the “message received” by
its interacting partner δ : S ×M ×M × {Initiator,Responder} → S ×M . This
new mapping enforces the restriction that an agent can only use its received
message to update its own state, and it does not observe the update to its inter-
acting partner’s state. For convenience, we use the original shorthand notation
⟨s0,m0⟩, ⟨s1,m1⟩ → ⟨s′0,m′

0⟩, ⟨s′1,m′
1⟩ to reflect the agents’ state changes, where

it is understood that the state update of Ab is computed independently of s1−b.

3 Adversarial Model

In order to evaluate the extent to which private information can be learned by
an observer in a population protocol, we must define the nature of the observer
and its capabilities. In this work, we consider the agent inputs to be private in-
formation. We will consider the observer to take the form of an agent interacting
in the protocol, meaning that it can observe the population only as other agents
do, i.e., by participating in interactions as they are slated by the scheduler.
However, we do not preclude the possibility that the observer may have greater
computational capabilities than ordinary honest agents, and may therefore in-
fer additional information from its observed history of interactions. We assume
that the observer is semi-honest, meaning that it must adhere to the protocol
rules exactly, but may try to infer additional knowledge from the system [11]. As
such, the observer can only gather knowledge by interacting with other agents
as prescribed by the transition function δ.

Since an observer presents as an agent in the population, we can imagine that
multiple adversaries may infiltrate the system. However, we restrict that each
observer be non-colluding, meaning that it cannot communicate with other
nodes in the network besides participating in the protocol interactions honestly.
This is because otherwise we could imagine that an observer may disguise itself
as multiple agents in the population making up any fraction of the system.
Although not studied within this work, it is of interest to find bounds on the
fraction of agents that can be simulated by the observer in any network and
still successfully hide honest agents’ inputs. Notice that the restriction that the
observer is both semi-honest and non-colluding is equivalent to assuming that
there is only one such agent in the population, because from the point of view
of the observer, all other agents appear to be honest.

Finally, we allow a distinction between externally visible messages and inter-
nally hidden states as in [2] to allow agents to conceal a portion of their states
toward the end goal of achieving privacy. The distinction between messages and
the internal state will be crucial to studying privacy in the population model as
without it, there is no mechanism for hiding information from an observer.

4 Definitions of Input Privacy

In this section, we examine definitions of privacy in population protocols under
adversarial and probabilistic scheduling given our specified adversarial model.
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4.1 Output Independent Privacy

The privacy-preserving population protocol from [10] operates under the adver-
sarial scheduling model and uses constant state-space. Therefore, [10] demon-
strates privacy in the context of computing semilinear predicates only. The au-
thors offer a formal definition of input privacy under these circumstances called
output independent privacy, defined as follows:

“A population protocol has this property if and only if there is a constant
n0 such that for any agent p and any inputs I1 and I2 of size at least n0

in which p has the same input, and any execution E1 on input I1, and
any T , there exists an execution E2 on input I2, such that the histories
of p’s interactions up to T are identical in E1 and E2.”

Essentially, this definition states that a semi-honest process p cannot tell whether
the input vector is I1 or I2 given its sequence of observations because either input
could have yielded the same observations under an adversarial scheduler.

Output independent privacy is a successful measure in [10] because the
scheduling in that work is assumed to be adversarial, therefore no inference
can be made about the interaction pattern. The authors leverage this to achieve
privacy which is best framed as “plausible deniability” – an agent may directly
observe another agent’s input, but the unpredictability of the scheduler disallows
the observer to claim with certainty that the observed value is indeed the input.

This argument breaks down when the scheduler is probabilistic because now
an agent can infer a probability distribution on the interaction pattern, and thus
also infer a probability distribution on the input value of the agent’s interacting
partner. In light of this insight, we now introduce novel definitions for the purpose
of assessing privacy in population protocols with probabilistic scheduling.

4.2 Definitions of Privacy Under Probabilistic Schedules

Consider an agent A with initial state qA0 = (sA0 ,m
A
0 ). Given its sequence of

observed messages and the role (Initiator or Responder) played by A in each
interaction, A can deterministically compute each of its subsequent state up-
dates. Let’s call these messages (observed by A) oA1 , o

A
2 , o

A
3 , ..., and denote by

qAε = δ(ρAε , s
A
ε−1,m

A
ε−1, o

A
ε ) = (sAε ,m

A
ε ) the updated state of A, originally in

state qAε−1 = (sAε−1,m
A
ε−1), upon interacting as ρAε ∈ {Initiator,Responder} with

another agent with message oAε in its ε-th interaction. Adopting notation from
[11], we denote the view of an agent A participating in protocol P in an execu-
tion E by viewP

A(E) = ⟨iA; qA0 ; (ρA1 , o
A
1 ), (ρ

A
2 , o

A
2 ), ...⟩. This view consists of A’s

input, the initial state of A, and a list of A’s interactions over the course of the
execution, from which every subsequent state of A can be computed.2

Let viewP
A(C) be a random variable representing the view of agent A drawn

uniformly from all realizable executions starting from configuration C resulting
2 For randomized δ, we assume A has a fixed tape of random bits that it uses to update

its state, so A can still reconstruct its entire view from the specified information.
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from the possible randomness used by the scheduler. Similarly, let viewP
A(I)

be a random variable representing the view of agent A drawn from all possible
executions starting from any configuration C in the range of I(I) according to
the probability distribution given by the randomness of I. In general, we use the
convention that random variables appear in mathematical boldface.

Privacy, like many other security-related key terms, has a wide range of
technical interpretations. As such, we now offer several distinct formal definitions
of privacy in the population model.

Plausible Deniability Perhaps the weakest form of privacy we can possibly
define is that of plausible deniability, meaning that an adversary always doubts
its guess of an agent’s input value (even if it has unbounded resources). This
is not a novel concept [10, 13], but in the context of input vector privacy for
probabilistic population protocols, we define this notion as follows:

Let Mλ = {multiset(I) : Φ(I) = λ} be the set of all distinct multisets
of inputs whose corresponding input vector evaluates to λ,3 and let Mκ

λ =
{multiset(I) : multiset(I) ∈ Mλ ∧ κ ∈ multiset(I)} be the set of all distinct
multisets of inputs outputting λ which contain at least one input equal to κ.

Definition 2. Let P be a population protocol on n agents with input set Σ
and let D be any probability distribution on input vectors in Σn. Then P is
weakly private if for every distribution D on Σn, every non-colluding semi-
honest unbounded agent A in a population of size n executing P, and for any
view V = ⟨i; q; {(ρAε , oAε )}⟩ with output λ (as determined from the view V ) and
with |Mi

λ| > 1, there exist I1 and I2 in Sλ such that

1. both multiset(I1) and multiset(I2) are elements of Mi
λ,

2. multiset(I1) ̸= multiset(I2), and
3. Pr(viewP

A(I1) = V ) = Pr(viewP
A(I2) = V ),

where the probabilities in the final condition are taken over D, the randomness
of I, and the uniform randomness of the scheduler.

In plain English, Definition 2 says that any agent participating in the protocol
cannot simply guess the “most likely” input vector because for each such vector,
pending certain circumstances, there exists a distinct input vector yielding the
same views for that agent with the same probabilities. This definition differs
from output independent privacy [10] in that it considers adversarial strategies
for guessing the input vector which rely on distributional data collected from
interactions with other agents.

The condition |Mi
λ| > 1 necessitates that weak privacy may only hold for

multisets of inputs for which plausible deniability is even possible. For example,
if the output of the computation for the Or predicate is 0, then there is only one
possible multiset of inputs that could have yielded this outcome, so there is no
denying what the input vector must have been (namely, the all-zero vector).
3 Recall that agents in the same state are indistinguishable by the protocol; therefore,
Φ must map any input vectors with the same multiset of inputs to the same output.
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Information-Theoretic Input Privacy A stronger notion of privacy is one
that claims that an observer cannot narrow down the possibility of input vectors
at all based on its observations. This prompts our next definition.

Let P be a population protocol with input set Σ and let D be a probability
distribution on input vectors in Σn. Let I ∼ D be a random variable represent-
ing the selected input vector. Additionally, let iA and λA be random variables
representing the input and output at agent A, and let viewP

A(i, λ) be a random
variable representing the view of agent A participating in an honest execution
of P that is consistent with a fixed input i at A and observed output λ.

Definition 3. Protocol P satisfies information-theoretic input privacy if
for every non-colluding semi-honest unbounded agent A and every input i ∈ Σ,
output λ ∈ O, view V , input vector I ∈ Sλ, and distribution D on Σn,

Pr(I = I | viewP
A(i, λ) = V ) = Pr(I = I | iA = i,λA = λ),

where V is consistent with input i and output λ.

The above definition essentially states that conditioned on knowing one’s
own input and the output of the computation, the rest of the agent’s view in the
protocol’s computation gives no advantage in guessing the input vector.

We offer another definition of privacy called input indistinguishability in the
extended version of this paper that is independent of our main results.

Intuitively, it is straightforward to see that information-theoretic privacy is
the strongest of the definitions discussed in this section (proof in full paper):

Theorem 1. If P is information-theoretically private, then P also satisfies out-
put independent privacy, weak privacy, and input indistinguishability.

5 Private Remainder with Adversarial Scheduling

As a means for comparison, we analyze the Remainder protocol from [10], shown
in Algorithm 1. The protocol does not distinguish between internal state space
and message space, so the entirety of each agent’s state is seen by its interacting
partner. The agent states are tuples (v, f), initially (ij , 1), where v is the value
of the agent and f is a flag bit denoting whether or not the agent has decided
its output yet. The protocol accumulates the total sum (modulo k) of all agents’
inputs by transferring values in units rather than in full in a single interaction.
As shown in (M1), the protocol subtracts 1 (modulo k) from one of the inputs
and adds it to the other input, maintaining the invariant that the sum of all the
values in the population is the same at each step. Because all computations are
done modulo k, (M1) can be repeated indefinitely. Transitions (M2) and (M3)
handle the flag bit (where ∗ is a wildcard that can match any value), ensuring
that (M1) occurs an unbounded but finite number of times. The output values
are {⊥0,⊥1}, denoting that the predicate is False or True, respectively. The
protocol converges when all but one agent has ⊥0 or ⊥1 as their value.
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(v1, 1), (v2, 1) → (v1 + 1, 1), (v2 − 1, 1) (M1)

(∗, 1), (∗, ∗) → (∗, 0), (∗, ∗) (M2)

(∗, 0), (∗, 1) → (∗, 1), (∗, 1) (M3)

(v1, 0), (v2, 0) → (v1 + v2, 0), (0, 0) (M4)

(v1, 0), (0, 0) → (v1, 0), (⊥0, 0) (M5)

(⊥i, ∗), (∗, 1) → (0, 0), (∗, 1) (M6)

(r, 0), (⊥i, 0) → (r, 0), (⊥1, 0) (M7)

(v1, 0), (⊥i, 0) → (v1, 0), (⊥0, 0), if v1 ̸= r (M8)

Algorithm 1: Output Independent Private Remainder [10]

The crux of the proof that Algorithm 1 satisfies output independent privacy
focuses on transition (M1). When an adversarial process p interacts with an
honest agent A in state (v, f), p cannot know how close v is to A’s original input
because, for n ≥ 3, we can construct multiple executions wherein A has value
v upon interacting with p. For example, we can construct an execution where
some agent B transfers as many units to A via (M1) as needed to get A’s value
to be v, and as long as p and B do not interact with each other before p interacts
with A, p’s view is the same in this execution.

However, output independent privacy does not successfully carry over to the
random scheduling model because we can no longer construct any execution
“fooling” the process p, as some such executions are of very low probability. For
instance, the probability that agents A and B interact v′ times in a row, during
which time p does not interact with B at all, becomes small for large values of
v′. This means that it is less probable that an agent’s value will deviate from its
original input value early on in the execution.

6 Private Remainder with Probabilistic Scheduling

In this section, we introduce a novel algorithm for information-theoretically pri-
vately computing Remainder in the population protocol model with probabilistic
scheduling. Our algorithm is inspired by the famous example of cryptographi-
cally secure multiparty computation of Remainder in a ring network. We refer
to this algorithm as RingRemainder, and it works as follows:

There are n agents A1, ..., An arranged in a circle. Agent A1 performs the
leader’s role, which is to add a uniformly random element r ∈ Zk to their input
and pass the sum (modulo k) to agent A2. For each remaining agent Ai, upon
receiving a value from Ai−1, Ai adds its own input to that value and passes the
resulting sum to Ai+1 (mod n). When A1 receives a value from An, it subtracts r
and broadcasts the result to everyone. Suppose the agents have inputs i1, ..., in.
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Then A1 sends m1 = i1 + r to A2, A2 sends m2 = i1 + r + i2 to A3, and so on,
until An sends mn = r+

∑n
j=1 ij to A1. Thus, the value broadcast to all agents

mn − r is exactly equal to
∑n

j=1 ij , the sum of the agents’ inputs modulo k.
Assuming honest participants and secure pairwise communication, this protocol
achieves information-theoretic input privacy (see extended paper for proof).

We now adapt this scheme to compute Remainder in the population model
with information-theoretic privacy.

Algorithm Overview Our protocol simulates the transfer of information ex-
actly as in RingRemainder. We assume that the protocol has an initial leader
with a special token that circulates the population. Each time an agent receives
the token and some accompanying value, it adds its input to that value and
passes the sum, along with the token, to another agent. This means the current
owner of the token holds the aggregate sum of the agents’ inputs who previously
held the token. When an agent passes the token to another agent, it labels itself
as “visited” so as to ensure that its input is included in the sum exactly one
time. Once the token has visited all of the agents, it is returned to the leader
(along with the total sum of all of the agents’ inputs). In order to achieve this
functionality, there are two crucial obstacles we must overcome:

First, we need a mechanism for securely transferring a message between two
agents such that no other agent learns the message except the sender and the
intended recipient. This task is nontrivial because population protocols do not
allow agents to verify a condition before transmitting a message in an interaction;
it is assumed that the message exchange and state update occur instantaneously.
To do this, we provide a secure peer-to-peer transfer subroutine in Section 6.1.

Second, we need a way to determine whether or not every agent in the popu-
lation has been visited by the token. When this happens, we want the final token
owner to pass the token back to the leader so that the leader can remove the
randomness it initially added to the aggregate that has been passed among the
agents. We must try to prevent passing the aggregate back to the leader before
all inputs have been incorporated into the aggregate as this would cause some
agents to be excluded from the computation. In order to achieve this, we use the
probing protocol from [4] which we describe in further detail in Section 6.2.

Leveraging these two subroutines, we design our main algorithm for comput-
ing Remainder with information-theoretic privacy in Section 6.3.

6.1 Secure Peer-to-Peer Transfer

In order for our algorithm to guarantee input privacy, the communication of
the intermediate sums between any two agents must remain secure. Here we
introduce a novel secure peer-to-peer transfer protocol, defined as follows:

Definition 4. Let M be a message space, D be some distribution on M , and
I be any fixed input vector in Σn. A secure peer-to-peer transfer routine
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⟨µ, (r,S)⟩, ⟨∗, (∗, u)⟩ → ⟨µ, (r′,S)⟩, ⟨∗, (∗, u)⟩ (S1)

⟨µ, (r,S)⟩, ⟨∗, (∗, u)⟩ → ⟨⊥, (µ− r,S′)⟩, ⟨r, (∗,R)⟩ (S2)

⟨⊥, (x,S′)⟩, ⟨y, (∗,R)⟩ → ⟨⊥, (⊥, u)⟩, ⟨x+ y, (∗,S)⟩ (S3)

Algorithm 2: Population Protocol for Secure P2P Transfer

is a protocol P that transfers data m
D←− M from one agent Sender to another

Receiver such that there exist PPT algorithms W1,W2 where

Pr
(
W1(viewP

Sender(I)) = m
)
= Pr

(
W2(viewP

Receiver(I)) = m
)
= 1

and for all i : Ai ̸∈ {Sender,Receiver} and PPT algorithm W ′

Pr
(
W ′(viewP

Ai
(I)) = m

)
= Pr(m

D←−M)

In other words, a secure peer-to-peer transfer routine allows a Sender to
transfer a message m to a Receiver such that only Sender and Receiver are privy
to m and all other agents cannot guess m with any advantage over knowing only
the a priori distribution on the message space.

Our Algorithm 2 satisfies this definition: Each agent’s state ⟨µ, (r, L)⟩ consists
of a hidden secret µ, and a public randomness value r and label L. The goal of
the protocol is to pass a secret message from one agent (marked as Sender with
label S, of which there may only be one in the population) to another agent
meeting some specified criteria labeled by u, of which there may be any number
(including zero). Until the Sender meets an agent with label u, it refreshes its
randomness at each interaction to ensure that the randomness it transmits to
the Receiver is uniform (S1). When the Sender finally meets some agent with
u, it marks that agent as the Receiver and transmits r; it also updates its own
token to S′ to remember that it has met and labeled a Receiver (S2). Then, the
Sender waits to meet the Receiver again, at which point it gives it a message
masked with the randomness it sent in the previous interaction and marks itself
with the label u to signify the end of the transmission (S3). By the end of the
protocol, exactly one agent is selected as the Receiver and stores µ internally.
The protocol has state space (Zk ∪ {⊥})2 × {S,S′,R, u, u}, which for constant
k is of size O(1). As such, we conclude (and prove in the extended paper):

Theorem 2. Algorithm 2 is a secure peer-to-peer transfer routine.

6.2 Probing Protocol

In order to adapt RingRemainder to the population protocol model, we need
a way to detect when every agent has been included in the aggregation so the
final sum can be passed back to the leader. To do this, we use a probe.
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A probing protocol, or probe, is a population protocol that detects the ex-
istence of an agent in the population satisfying a given predicate [4]. In essence,
the probe (initiated by the leader) sends out a 1-signal through a population
of agents in state 0. If the 1-signal reaches an agent satisfying the predicate,
that agent initiates a 2-signal which spreads back to the leader by epidemic.
Higher number epidemics overwrite lower ones, so if some agent in the popula-
tion satisfies π then the leader eventually sees the 2-signal. The probe, used in
conjunction with the phase clock from the same work [4], allows the leader to
detect the presence of an agent satisfying π in O(n log n) interactions using O(1)
states with probability 1− n−c for any fixed constant c > 0.

We define the “output” of the protocol (computed only at the leader) to be 0
for states 0 and 1, and 1 for state 2 (i.e. the leader’s probe outputs 1 if and only if
some agent in the population satisfies π). At the start of each round of the phase
clock, agents reset their value to 0 and the leader initiates a new probe. Both
the probe and the phase clock states are components of the message space, and
the transitions for these subroutines are independent of the transitions for the
main protocol, so we consider the two “protocols” to be taking place in parallel.

6.3 Remainder with Information-Theoretic Privacy

We provide here a novel algorithm which computes Remainder and achieves
information-theoretic input privacy in the population protocol model with high
probability, assuming a uniform random scheduler.

First, each agent applies the input function I to their input as follows:

I(ij , ℓ) =

{
⟨ij + r0, (rj ,S, 1, Z = Z0)⟩ ℓ = 1

⟨ij , (rj , u, 0, Z = Z0)⟩ ℓ = 0

where rj is drawn uniformly at random from Zk for j ∈ {0, 1, ..., n}, and Z
(initialized to Z0) is a probe subroutine (including its associate phase clock). The
input function assumes an initial leader, specified by ℓ = 1. The components of
the state ⟨µ, (r, L, ℓ, Z)⟩ are µ (the hidden internal component of the state called
the secret), r (the mask), L (the agent’s label), ℓ (the leader bit), and Z (the
probe). The transitions describing the protocol can be found in Algorithm 3.

The general structure of the transitions from the secure peer-to-peer transfer
protocol in Algorithm 2 is used to send the intermediate sums in (R1), (R2), and
(R3). However, instead of just storing the message received, the Receiver com-
putes the sum of the message and its own input and stores the result internally.
Each subsequent Sender searches the population for an agent whose input has
not yet been incorporated into the sum (signified by the u state). When no one
in the population has u anymore, the probe detects this and outputs 1 at the
leader from this point onward.

Although not shown, each interaction also performs an update to the probing
subroutine by advancing the phase clock and probe at both agents in the inter-
action. When the probe begins to output 1, with high probability every agents’
label is set to u, alerting the leader to set its label to u. This makes the leader the
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⟨∗, (r,S, ∗, ∗)⟩, ⟨∗, (∗, u, ∗, ∗)⟩ → ⟨∗, (r′,S, ∗, ∗)⟩, ⟨∗, (∗, u, ∗, ∗)⟩ (R1)

⟨u, (r,S, ∗, ∗)⟩, ⟨v, (∗, u, ∗, ∗)⟩ → ⟨⊥, (u− r,S′, ∗, ∗)⟩, ⟨v + r, (∗,R, ∗, ∗)⟩ (R2)

⟨∗, (x,S′, ∗, ∗)⟩, ⟨y, (∗,R, ∗, ∗)⟩ → ⟨∗, (⊥, u, ∗, ∗)⟩, ⟨x+ y, (∗,S, ∗, ∗)⟩ (R3)

⟨⊥, (⊥, u, 1, 1)⟩, ⟨∗, (∗, ∗, ∗, ∗)⟩ → ⟨⊥, (⊥, u, 1, 1)⟩, ⟨∗, (∗, ∗, ∗, ∗)⟩ (R4)

Algorithm 3: Information-Theoretically Private Remainder

only agent able to be the next Receiver. When the leader receives the final value
stored at the Sender, the leader can place the answer into a separate portion of
the external state (not shown in Algorithm 3) so that all other agents can copy
it, which takes O(n2 log n) additional steps with high probability. The leader
must also have an additional component to its hidden state which stores the
randomness used in its initial message transfer (also not shown in Algorithm 3).

The correctness and privacy guarantees of Algorithm 3 are stated below (see
extended paper for proofs):

Theorem 3. For any fixed c > 0, Algorithm 3 computes Remainder in a popu-
lation of size n in Θ(n3 log n) steps with probability at least 1− n−c.

Theorem 4. When Algorithm 3 correctly computes the Remainder predicate, it
satisfies information-theoretic input privacy.

If the protocol fails due to a phase clock error in the probing subroutine, we
actually do not know how much information is leaked by the protocol, though
we suspect it to be limited. We designate this as outside of the scope of this
work and only make claims about privacy when the protocol succeeds. Note
that it is impossible to achieve information-theoretic privacy with probability 1
in asynchronous distributed systems because there is always the possibility of
premature termination due to indefinite exclusion of agents from the protocol.

7 Conclusion

In this work, we offer various new security definitions in population protocols,
such as multiple definitions of privacy which accommodate a range of threat
models and scheduling assumptions, and a formal definition of secure peer-to-
peer communication. We also develop algorithms solving secure pairwise commu-
nication in the model and information-theoretically private computation of the
Remainder predicate. In order to show that we can achieve information-theoretic
privacy (with high probability) for all semilinear predicates, as in [10], similar
algorithms for computing Threshold and Or are also needed. We leave these
problems as open for future work.
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