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Abstract We study the power of reliable anonymous
distributed systems, where processes do not fail, do not
have identifiers, and run identical programmes. We are
interested specifically in the relative powers of systems
with different communication mechanisms: anonymous
broadcast, read-write registers, or read-write registers
plus additional shared-memory objects. We show that a
system with anonymous broadcast can simulate a system
of shared-memory objects if and only if the objects sat-
isfy a property we call idemdicence; this result holds re-
gardless of whether either system is synchronous or asyn-
chronous. Conversely, the key to simulating anonymous
broadcast in anonymous shared memory is the ability to
count: broadcast can be simulated by an asynchronous
shared-memory system that uses only counters, but read-
write registers by themselves are not enough. We further
examine the relative power of different types and sizes of
bounded counters and conclude with a non-robustness
result.

Keywords Anonymous · Broadcast · Shared memory ·
Robustness · Simulations

1 Introduction

Consider a minimal reliable distributed system, perhaps
a collection of particularly cheap wireless sensor nodes.
The processes execute the same code, because it is too
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costly to program them individually. They lack identi-
ties, because identities require customization beyond the
capabilities of mass production. And they communicate
only by broadcast, because broadcast presupposes no in-
frastructure. Where fancier systems provide specialized
roles, randomization, point-to-point routing, or sophis-
ticated synchronization primitives, this system is just a
big bag of deterministic clones shouting at one another.
The processes’ only saving grace is that their uniformity
makes them absolutely reliable—no misplaced sense of
individuality will tempt any of them to Byzantine be-
haviour, no obscure undebugged path through their com-
mon code will cause a crash, and no glitch in their nonex-
istent network will lose any messages. The processes may
also have distinct inputs, which saves them from com-
plete solipsism, even though processes with the same in-
put cannot tell themselves apart. What can such a sys-
tem do?

Although anonymous systems have been studied be-
fore (see Section 1.2), researchers have focused on sys-
tems where processes communicate with one another by
passing point-to-point messages or by accessing shared
read-write registers. In this paper, we start with sim-
ple broadcast systems, where processes transmit mes-
sages to all of the processes (including themselves), which
are delivered serially but with no return addresses. We
characterize the power of such systems by showing what
classes of shared-memory objects they can simulate. In
Section 3, we show that such a system can simulate a
shared object if and only if the object can always return
the same response whenever it is accessed twice in a row
by identical operations, a property we call idemdicence;
examples of such idemdicent objects include read-write
registers, counters (with separate increment and read op-
erations), consensus objects and any object for which any
operation that modifies the state returns only ack.

This characterization does not depend on whether
either the underlying broadcast system or the simulated
shared-memory system is synchronous or asynchronous.
The equivalence of synchrony and asynchrony is partially
the result of the lack of failures, because in an asyn-
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chronous system we can just wait until every process
has taken a step before moving on to the next simulated
synchronous round, but it also depends on the model’s
primitives providing enough power to detect when this
has occurred.

Characterizing the power of broadcast systems in
terms of what shared-memory objects they can simulate
leads us to consider the closely related question of what
power is provided by different kinds of shared-memory
objects. We show in Section 5 that an n-process sys-
tem with only mod-n counters is sufficient to simulate
an n-process anonymous broadcast model, which in turn
means that they can simulate any reliable anonymous
shared-memory system with idemdicent objects. In con-
trast, read-write registers by themselves cannot simulate
broadcast, because they cannot distinguish between dif-
ferent numbers of processes with the same input value,
while broadcasts can. This impossibility result is gener-
alized to a class of object types in Section 4.

In Section 6, we consider the power of mod-m coun-
ters when m is less than the number of processes, n. We
show that, if m ≤ n − 1, systems containing only mod-
m counters are inherently limited and, if m ≤ n − 2,
this is also true even when read-write registers are also
available. Although these results hint at a hierarchy of in-
creasingly powerful anonymous shared-memory objects,
any such hierarchy is not robust [16,17]: we show in Sec-
tion 7 that mod-m counters with values of m which do
not divide one another can simulate more objects to-
gether than they can alone. Previous non-robustness re-
sults typically use rather unusual object types, designed
specifically for the non-robustness proofs (see [12] for a
survey). The result given here is the first to use natural
objects.

1.1 Pictorial summary of the main results

Some of the main results of the paper are summa-
rized in Figure 1. The figure is divided into four quad-
rants for synchronous and asynchronous broadcast and
shared-memory models. The parabola divides idemdi-
cent shared-memory models from non-idemdicent ones.
Solid arrows from one model to another indicate that
the first can simulate the second. Dashed arrows indi-
cate that such a simulation is impossible. The labels on
the arrows refer the theorem numbers in this paper that
prove the result. The vertical arrows are trivial simula-
tions. In the diagram, n refers to the number of processes
in the system. The types X and Y are arbitrary idemdi-
cent and non-idemdicent objects, respectively. Many ad-
ditional arrows can be drawn as consequences of the ones
shown. For example, a shared-memory system equipped
only with type X cannot simulate object type Y (re-
gardless of synchrony) since the synchronous broadcast
system can simulate type X but cannot simulate Y . The
triangle in the bottom-right corner of the diagram de-
scribes the non-robustness result of Section 7.

1.2 Related Work

Some early impossibility results in message-passing sys-
tems assumed that processes were anonymous [1]. This
assumption makes symmetry-based arguments possible:
all processes behave identically, so they cannot solve
problems that require symmetry to be broken. Many of
these results are surveyed in [12]. Typically, they assume
that the underlying communication network is symmet-
ric, often a ring or regular graph. Some work has been
done on characterizing the problems that are solvable in
anonymous message-passing systems, depending on the
initial knowledge of processes. For examples, see [6,7,23].

Randomization can be used to break the symmetry of
an anonymous system. If processes can choose names at
random from a large range, then, with high probability,
each process will get a distinct name, turning an anony-
mous system into a non-anonymous system. Shared read-
write registers can be used to detect whether all of the
chosen names are unique if no failures occur [20,25]. This
can also be done when failures occur using single-writer
registers, which provide some ability to distinguish be-
tween different processes’ actions [21]. However, this can-
not be done using only multi-writer registers in an asyn-
chronous system with halting failures [8,11,19]. Surpris-
ingly, Buhrman et al. [8] show that randomized wait-free
consensus can nonetheless be solved in this model, giving
an algorithm based on Chandra’s [9]. The upper bound
for consensus has since been extended to an anonymous
model with infinitely many processes by Aspnes, Shah,
and Shah [3].

Attiya, Gorbach and Moran [4] give a systematic
study of the power of asynchronous, failure-free anony-
mous shared-memory systems that are equipped with
read-write registers which are initialized to known val-
ues. They characterize the agreement tasks that can be
solved in this model if the number of processes is fixed
but unknown. Drulă has shown the characterization is
the same if the number of processes is known [10]. In
their model, the only functions f : Dn → R that are
computable with n ≥ 2 processes are constant functions.
Attiya et al. also show that consensus requires Ω(log n)
rounds and Ω(log n) read-write registers and is solvable
using O(n) rounds and O(n) read-write registers. How-
ever, consensus becomes unsolvable if the shared read-
write registers are not initialized to known values [18].

Guerraoui and Ruppert [14] have considered the
question of what can be implemented deterministically
in an asynchronous anonymous system using read-write
registers if failures can occur. They gave a wait-free im-
plementation of snapshot objects and a bounded-space
algorithm for obstruction-free consensus. They also char-
acterized the types of objects that have obstruction-free
implementations in this model.

The robustness question has been extensively stud-
ied in non-anonymous systems. It was first addressed by
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Fig. 1 Summary of the main results. Solid arrows represent simulations. Dashed lines indicate simulations are impossible.
Arrow labels are theorem numbers. See Section 1.1.

Jayanti [16,17]. See [12] for a discussion of previous work
on robustness.

2 Models

We consider anonymous models of distributed systems,
where each process executes the same algorithm. Pro-
cesses do not have identifiers, but they may begin with
input values (depending on the problem being solved).
We assume algorithms are deterministic and that sys-
tems are reliable (i.e. failures do not occur). Let n ≥ 2
denote the number of processes in the system.

We assume throughout that the value of n is known
to all processes. This assumption can be relaxed in some
models even if new processes can join the system. In
a shared-memory model with unbounded counters, it is
easy to maintain the number of processes by having a
process increment a size counter when it first joins the
system. In a broadcast model, a new process can start by
broadcasting an arrival message. Processes keep track of
the number of arrival messages they have received and
respond to each one by broadcasting this number. Pro-
cesses use the largest number they have received as their
current value for size. All algorithms presented in this
paper will work correctly when started after this num-
ber has stabilized.

In the asynchronous broadcast model, each process
may execute a broadcast(msg) command at any time.

This command sends a copy of the message msg to each
process in the system. The message is eventually deliv-
ered to all processes (including the process that sent it),
but the delivery time may be different for different re-
cipients and can be arbitrarily large. Thus, broadcasted
messages are not globally ordered: they may arrive in
different orders at different recipients.

The synchronous broadcast model is similar, but as-
sumes that every process broadcasts one message per
round, and that this message is received by all processes
before the next round begins.

We also consider an anonymous shared-memory
model, where processes can communicate with one an-
other by accessing shared data structures, called objects.
A process may invoke an operation on an object, and at
some later time it will receive a response from the object.
We assume that objects are linearizable [15], so that each
operation performed on an object appears to take place
instantaneously at some time between the operation’s
invocation and response (even though the object may
in fact be accessed concurrently by several processes).
The type of an object specifies what operations may be
performed on it. Each object type has a set of possible
states. We assume that a programmer may initialize a
shared object to any state. An operation may change
the state of the object and then return a result to the
invoking process that may depend on the old state of
the object. A step of an execution specifies an operation
(including any operands), the process that performs this
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operation, the object on which it is performed, and the
result returned by the operation. An object type is de-
terministic if there is only one possible outcome of an
operation: there is a unique response and state transi-
tion when any operation is applied to an object in any
state. If this is not the case, the object is called non-
deterministic.

A read-write register is an example of an object. It
has a read operation that returns the state of the object
without changing the state. It also supports write oper-
ations that return ack and set the state of the object to
a specified value.

Another example of an object is an (unbounded)
counter. It has state set N and supports two operations:
read, which returns the current state without changing
it, and increment, which adds 1 to the current state and
returns ack.

There are many ways to define a bounded counter,
i.e., one that uses a bounded amount of space. For
any positive integer m, a mod-m counter has state set
{0, 1, 2, . . . , m − 1} and an increment changes the state
from x to (x + 1) mod m. A threshold-m counter has
state set {0, 1, 2, . . . , m}. An increment adds 1 to the
current state provided it is less than m and otherwise
leaves it unchanged. A read of a mod-m or threshold-m
counter returns the current state without changing it.
An m-valued counter also has state set {0, 1, 2, . . . , m}
and increment behaves the same as for a threshold-m
counter. However, the behaviour of the read operation
becomes unpredictable after m increments: in state m,
a read operation may nondeterministically return any
value or may even fail to terminate. Note that both mod-
m counters and threshold-(m − 1) counters are imple-
mentations of m-valued counters. Also, for m′ > m, an
m′-valued counter can trivially implement an m-valued
counter.

In an asynchronous shared-memory system, processes
run at arbitrarily varying speeds, and each operation on
an object is completed in a finite but unbounded time.
The scheduler is required to be fair in that it allocates an
opportunity for each process to take a step infinitely of-
ten. In a synchronous shared-memory system, processes
run at the same speed; the computation proceeds in
rounds. During each round, each process can perform
one access to shared memory. Several processes may ac-
cess the same object during a round, but the order in
which those accesses are linearized is determined by an
adversarial scheduler.

When an asynchronous system is used to simulate
a synchronous one, it is impossible to ensure that sim-
ulated events at different processes happen simultane-
ously. Instead, a correct simulation will guarantee that
there exists some execution σ of the synchronous system
such that the sequence of local events occurring at each
process in the simulation is identical to the sequence of
events that occur at that process in σ. This notion of sim-
ulation is defined formally by Attiya and Welch [5], who

call it a local simulation. They remark that “local simu-
lations preserve correctness for internal problems, those
whose specifications do not depend on the real time at
which events occur” (p. 248).

Since all executions of a synchronous system can be
viewed as executions of an asynchronous system, it is
stronger to design simulations to work in asynchronous
systems, because they will also work in synchronous sys-
tems. Similarly, it is better to prove that simulations by
synchronous systems are impossible because they imply
the same impossibility results for asynchronous systems.

The anonymous ARBITRARY PRAM is a
concurrent-read concurrent-write (CRCW) PRAM
model where all processes run the same code and the
adversary chooses which one of any set of simultaneous
writes to the same read-write register succeeds. It is
equivalent to a synchronous shared-memory model in
which all writes in a given round are linearized before
all reads. Consequently, processes with the same inputs
behave as clones of one another: in each round they
either all read the same value from the same read-write
register or all write the same value to the same read-
write register. When different values are written to the
same read-write register during the same round, only the
value written by the write that the scheduler linearized
last can be read from that read-write register. In effect,
one arbitrary value chosen by the adversary appears
in the read-write register from among those values the
processes are attempting to write there. PRAM models
have been studied extensively for non-anonymous
systems [22].

3 When Broadcast Can Simulate Shared
Memory

In this section, we characterize the types of shared-
memory systems that can be simulated by broadcast
models in the setting of failure-free, anonymous systems.

Definition 1 An operation defined on a shared object
type is called idemdicent1 if, for every starting state, two
consecutive invocations of the operation (with the same
arguments) on an object of that type can return identical
responses.

It follows by induction that any number of repetitions
of the same idemdicent operation on an object can all
return the same result.

Definition 2 An operation defined on a shared object
type is called idempotent if, for every starting state, for
every operation, and every choice of operands for that
operation, it is possible that two consecutive invocations
of the operation with these operands return the same
response and the second invocation does not alter the
state of the object.

1 From Latin idem (same) + dicens -entis, present partici-
ple of dicere (say), by analogy with idempotent.
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In other words, idempotent operations are idemdicent
operations that can leave the object in the same state
whether they are applied once or many times consecu-
tively. Both of these definitions are applicable to non-
deterministic objects. In such cases, it must be the case
that some execution of two consecutive operations (start-
ing from any state) have the desired property.

Reads and writes are idempotent operations. Incre-
ment operations for the various counters defined in Sec-
tion 2 are idemdicent, but are not idempotent. In fact,
any operation that always returns ack is idemdicent.

An object is called idemdicent if every operation that
can be performed on the object is idemdicent. Similarly,
an object is called idempotent if every operation that can
be performed on the object is idempotent. Examples of
idempotent objects include read-write registers, sticky
bits, snapshots and resettable consensus objects. Coun-
ters are idemdicent objects that are not idempotent.

Definition 3 Let m be a positive integer. An object is
called m-idempotent if it is idemdicent and, for every
starting state, for every operation, and every choice of
operands for that operation, it is possible that m + 1
consecutive invocations of this operation with these
operands return the same response and the state of the
object after the first and last of these invocations is the
same.

If an object is m-idempotent, then, by induction, it
is km-idempotent for any positive integer k. Any idem-
potent object is 1-idempotent. A mod-m counter is m-
idempotent. An m-idempotent object has the property
that the actions of m + 1 clones (i.e. processes behaving
identically) are indistinguishable from the actions of one
process.

Theorem 4 An n-process asynchronous broadcast sys-
tem can simulate an n-process synchronous shared-
memory system that uses only idemdicent objects.

Proof Each process simulates a different process and
maintains a local copy of the state of each simulated
shared object. We now describe how a process P sim-
ulates the execution of the rth round of the shared-
memory computation. Suppose P wants to perform an
operation op on object X . It broadcasts the message
(r, X, op). (If a process does not want to perform a
shared-memory operation during the round, it broad-
casts the message (r, nil, nil).) Then, P waits until it
has received n messages of the form (r, ∗, ∗), including
the message it broadcast. (We include round numbers in
the messages because broadcasts may be delivered in dif-
ferent orders at different recipients, and we do not want
messages sent in round r + 1 to be misinterpreted as
round r messages.)

Process P orders all of the messages in lexicographic
order and uses this as the order in which the round’s
shared-memory operations are linearized. Process P sim-
ulates this sequence of operations on its local copies of

the shared objects to update the states of the objects and
to determine the result of its own operation during that
round. All identical operations on an object are grouped
together in the lexicographic ordering, so they all return
the same result, since the objects are idemdicent. This
is the property that allows P to determine the result of
its own operation if several processes perform the same
operation during the round. ⊓⊔

Since a synchronous execution is possible in an asyn-
chronous system, an asynchronous shared-memory sys-
tem with only idemdicent objects can be simulated by
a synchronous system with the same set of objects and,
hence, by the asynchronous broadcast model. However,
even an asynchronous system with one non-idemdicent
object cannot be simulated by a synchronous broadcast
system nor, hence, by an asynchronous broadcast sys-
tem. The difficulty is that a non-idemdicent object can
be used to break symmetry.

Theorem 5 A synchronous broadcast system cannot
simulate an asynchronous shared-memory system if any
of the shared objects are non-idemdicent.

Proof Consider an asynchronous shared-memory system
that has a non-idemdicent object X . Then there is a state
q from which two consecutive invocations of some oper-
ation with the same operands always returns different
values.

Suppose X is initialized in state q and each process
accesses X once with this operation and these operands
and outputs the values it receives as response. Then, in
every execution, at least two outputs are different.

However, in a synchronous broadcast system where
processes receive no input, all processes will execute
the same sequence of steps and be in identical states
at the end of each round. Hence the simple asyn-
chronous shared-memory algorithm described in the pre-
vious paragraph cannot be simulated in a synchronous
broadcast system. ⊓⊔

Theorems 4 and 5 together show that the broadcast
model can simulate a shared-memory model if and only
if the objects in the shared-memory model are idemdi-
cent, regardless of whether either model is synchronous
or asynchronous.

4 When Shared Memory Cannot Simulate
Broadcast

Next, we turn attention to the simulation of broadcast
models by shared-memory models. We begin, in this sec-
tion, by showing that there is some function which can
be computed in the asynchronous broadcast model (and,
hence, the synchronous broadcast model), but cannot be
computed in certain shared-memory models.
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A function of n inputs is called symmetric if the func-
tion value does not change when the n inputs are per-
muted. We say an anonymous system computes a sym-
metric function of n inputs if each process begins with
one input and eventually outputs the value of the func-
tion evaluated at those inputs. (It does not make sense
to talk about computing non-symmetric functions in an
anonymous system, since there is no ordering of the pro-
cesses.)

Proposition 6 Every symmetric function can be com-
puted in the asynchronous broadcast model.

Proof Any symmetric function can be computed as fol-
lows. Each process broadcasts its input value. When a
process has received n messages, it orders the n input
values arbitrarily and computes the function at those
values. ⊓⊔

In contrast, we show that there is a symmetric func-
tion that cannot be computed in synchronous or asyn-
chronous n-process shared-memory systems, if all of its
shared objects are m-idempotent, for some m ≤ n − 2.

The following technical lemma is the key to this and
later impossibility results. It describes how anonymous
processes can behave as clones if the objects they are
accessing are m-idempotent.

Lemma 7 Consider an algorithm for n ≥ m + 2
processes that uses only m-idempotent objects. Let
P1, . . . , Pm, P, Q be distinct processes. Let α be a syn-
chronous execution of the algorithm in which processes
P1, . . . , Pm all have the same input as P and, in each
round, they are scheduled immediately following P , all
get the same result as P , and the object they access
has the same state after P has taken its step and af-
ter P1, . . . , Pm have all taken their steps. Let β be the
execution which is the same as α except that processes
P1, . . . , Pm all have the same input as Q and, in each
round, they are scheduled immediately following Q, all
get the same result as Q, and the object they access
has the same state after Q has taken its step and after
P1, . . . , Pm have all taken their steps. Then no process
outside {P1, . . . , Pm} can distinguish α from β.

Proof The proof is by induction on the number of rounds
in α. To be formal, we prove the following four claims:
(1) each shared object is in the same state at the end of
round r of α and β,
(2) each process except P1, P2, . . . , Pm is in the same
state at the end of round r of α and β,
(3) processes P1, P2, . . . , Pm and P are all in the same
state at the end of round r of α, and
(4) processes P1, P2, . . . , Pm and Q are all in the same
state at the end of round r of β.

The base case is at the end of round 0, which is at
the beginning of the execution. The claims follow because
each process except P1, P2, . . . , Pm has the same input in

α and β, P1, P2, . . . , Pm all have the same input as P in
α, and P1, P2, . . . , Pm all have the same input as Q in β.

Assume the claims hold at the end of round r. Since
P1, P2, . . . , Pm and P are all in the same state at the
end of round r of α, they will perform the same oper-
ation to the same object in round r + 1 of α. They all
receive the same response and, hence, they will be in
the same state at the end of round r + 1 of α. More-
over, the m-idempotent object will be in the same state
after P performs its round r + 1 operation and after
P, P1, . . . , Pm perform their round r+1 operations. Sim-
ilarly, P1, P2, . . . , Pm and Q will all be in the same state
at the end of round r + 1 of β and the m-idempotent
object they access will be in the same state after Q per-
forms its round r + 1 operation and after Q, P1, . . . , Pm

perform their round r + 1 operations.
Each process R except P1, P2, . . . , Pm has the same

state at the end of round r in α and β, so it will perform
the same operation to the same object in round r+1 of α
and β. In both executions, this object has the same state
just before R performs this operation, so it will have the
same state immediately afterwards and R will have the
same state at the end of round r+1. It follows that each
shared object is in the same state at the end of round
r + 1 of α and β. Thus the claim is true at the end of
round r + 1 and, hence, by induction, at the end of the
executions. ⊓⊔

The n-ary threshold-2 function is a binary function
of n inputs whose value is 1 if and only if at least two of
its inputs are 1.

Proposition 8 For 1 ≤ m ≤ n−2, the n-ary threshold-
2 function cannot be computed in an n-process syn-
chronous shared-memory system if all shared objects are
m-idempotent.

Proof Suppose there is an algorithm that computes the
n-ary threshold-2 function in the shared-memory sys-
tem. Let P1, . . . , Pn be the processes of the system. Con-
sider an execution α of the algorithm in which processes
P1, . . . , Pn−1 all have input 0, Pn has input 1, and, in
each round, processes P1, . . . , Pm are scheduled imme-
diately following Pn−1, they all get the same result as
Pn−1, and the object they access has the same state af-
ter Pn−1 has taken its step and after P1, . . . , Pm have all
taken their steps. This is possible since the object they
access is m-idempotent.

Let β be the execution which is the same as α ex-
cept that processes P1, . . . , Pm all have input 1 and, in
each round, they are scheduled immediately following
Pn, they all get the same result as Pn, and the object
they access has the same state after Pn has taken its
step and after P1, . . . , Pm have all taken their steps.

By Lemma 7, processes outside the set {P1, . . . , Pm}
cannot distinguish between α and β, so they must output
the same result in both α and β. This contradicts the
assumption that the algorithm correctly computes the
n-ary threshold-2 function. ⊓⊔
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Theorem 4 implies that the asynchronous broad-
cast model can simulate the anonymous ARBITRARY
PRAM model. Because read-write registers are 1-
idempotent, the following result says that the anonymous
ARBITRARY PRAM model is strictly weaker than the
asynchronous broadcast model for more than two pro-
cesses.

Corollary 9 A synchronous (or asynchronous) shared-
memory system all of whose shared objects are m-
idempotent cannot simulate the asynchronous (or syn-
chronous) broadcast model for n processes if n − 2 ≥
m ≥ 1.

Proof Since the n-ary threshold-2 function is symmet-
ric, it is computable in the asynchronous (and, hence,
synchronous) broadcast model, by Proposition 6. How-
ever, by Proposition 8, for n − 2 ≥ m ≥ 1, it can-
not be computed in a synchronous (or asynchronous)
shared-memory system, all of whose shared objects are
m-idempotent. ⊓⊔

5 When Counters Can Simulate Broadcast

In this section, we consider conditions under which un-
bounded counters and various types of bounded counters
can be used to simulate broadcast. Specifically, we prove
that an asynchronous shared-memory system with mod-
n counters can be used to simulate a synchronous broad-
cast system. Unbounded counters can simulate mod-n
counters (and hence synchronous broadcast). Moreover,
since counters are idemdicent, an asynchronous shared-
memory system with counters can be simulated by an
asynchronous broadcast system. Hence, shared-memory
systems with mod-n counters, shared-memory systems
with unbounded counters, and broadcast systems are
equivalent in power. This equivalence holds regardless
of whether either model is synchronous or asynchronous.

Theorem 10 An n-process asynchronous shared-
memory system with mod-n counters or unbounded
counters can simulate the n-process synchronous
broadcast system.

Proof An unbounded counter can be used to directly
simulate a mod-n counter by taking the result of every
read modulo n, so it suffices to construct a simulation
from mod-n counters.

The idea is to have each of the n asynchronous pro-
cesses simulate a different synchronous process and have
a mod-n counter for each possible message that can
be sent in a given round. Each process that wants to
send a message that round increments the correspond-
ing counter. Another mod-n counter, WriteCounter, is
used to keep track of how many processes have finished
this first phase. After all processes have finished the first
phase, they all read the message counters to find out

which messages were sent that round. One additional
mod-n counter, ReadCounter, is used to keep track of
how many processes have finished the second phase. Sim-
ulation of the next round can begin when all processes
have finished the second phase.

First, we consider the case where the set of pos-
sible different messages that can be sent is finite and
known to all processes. Let d be this number. We use
an array of d shared counters M [1..d]. The counter M [i]
corresponds to the i-th possible message (say, in lexico-
graphic order) that can be sent in the current round. For
i = 1, . . . , d, the local variables x0,i and x1,i, are used by
a process to store the value of M [i] in the most recent
even- and odd-numbered round, respectively. The vari-
ables x0,1, . . . , x0,d are initialized to 0 at the beginning
of the simulation. WriteCounter and ReadCounter are
also initialized to 0.

The simulation of each round is carried out in two
phases. In phase 1, a process that wants to broad-
cast the i-th possible message increments M [i] and
then increments WriteCounter. A process that does
not want to broadcast in this round just increments
WriteCounter. In either case, each process repeatedly
reads WriteCounter until it has value 0, at which point
it begins phase 2. Note that WriteCounter will have
value 0 whenever a new round begins, because each of
the n processes will increment it exactly once each round.

In phase 2, each process reads the values from
M [1], . . . , M [d] and stores them in its local variables
xr,1, . . . , xr,d, where r is the parity of the current round.
From these values and the values of x1−r,1, . . . , x1−r,d,
the process can determine the number of occurrences of
each possible message that were supposed to be sent dur-
ing that round. Specifically, the number of occurrences
of the i-th possible message is xr,i − x1−r,i mod n, ex-
cept when this is the message that the process sent and
xr,i = x1−r,i. In this one exceptional case, the number of
occurrences of the i-th possible message is n rather than
0. Once the process knows the set of messages that were
sent that round, it can simulate the rest of the round by
doing any necessary local computation. Finally, the pro-
cess increments ReadCounter and then repeatedly reads
it until it has value 0. At this point, the process can begin
simulation of the next phase.

The number of counters used by this algorithm is
Θ(d). If d is very large, the space complexity of this algo-
rithm is poor. The number of counters can be improved
to Θ(n) by simulating the construction of a binary trie
data structure [13] over the messages transmitted by the
processes; up to 4n counters are used to transmit the
trie level by level, with each group of 4 used to count
the number of 0 children and 1 children of each node
constructed so far.

In terms of messages, processes broadcast their mes-
sages one bit per round and wait until all other mes-
sages are finished before proceeding to their next mes-
sage. However, it does not suffice to count the number of
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0’s and 1’s sent during each of the rounds. For example,
it is necessary to distinguish between when messages 00
and 11 are sent and when messages 01 and 10 are sent.

Each process uses the basic algorithm described
above to broadcast the first bit of its message. Once pro-
cesses know the first k bits of all messages that are k
or more bits in length, they determine the next bit of
each message or whether the message is complete. Four
counters (M [0], M [1], WriteCounter, and ReadCounter)
are allocated for each distinct k-bit prefix that has been
seen. Since all processes have seen the same k-bit pre-
fixes, they can agree on this allocation without any com-
munication with one another. If a process has a message
s1s2 . . . sℓ, where ℓ > k, it participates in an execution of
the basic algorithm described above to broadcast sk+1,
using the four counters assigned to the prefix s1s2 . . . sk.
Each process also participates in executions of the basic
algorithms for the other k-bit prefixes that have been
seen, but does not send messages in them. This proce-
dure to broadcast one more bit of the input of each mes-
sage continues until an iteration occurs where none of
the M counters are incremented, indicating that the end
of every message has been reached. Because counters are
reused for different bits of the messages, the number of
counters needed is at most 4n. ⊓⊔

A similar algorithm can be used to simulate the n-
process synchronous broadcast system using threshold-n
or (n+1)-valued counters, provided the counters support
a decrement operation or a reset operation. Decrement
changes the state of such a counter from x ∈ {1, . . . , n} to
x− 1. Decrement leaves a threshold-n counter in state 0
unchanged. In an (n+1)-valued counter, when decrement
is performed in state 0 or n + 1, the new state is n + 1.
(Recall that this state indicates that the (n + 1)-valued
counter has been accessed improperly, and the counter
can behave arbitrarily once it is reached.) Reset changes
the state of a counter to 0. The only exception is that
an (n + 1)-valued counter in state n + 1 does not change
state. Both decrement and reset always return ack.

Theorem 11 An n-process asynchronous shared-
memory system with threshold-n or (n + 1)-valued
counters that also support a decrement or reset opera-
tion can simulate the n-process synchronous broadcast
system.

Proof The simulation is similar to the one given in the
proof of Theorem 10, but there is an additional counter,
ResetCounter, and each round has a third phase. Read-
Counter and ResetCounter are initialized to n. All other
counters are initialized to 0. Here we present the algo-
rithm for the case where there are a finite number, d, of
possible messages that can be sent. The space complex-
ity of the following construction can be improved from
Θ(d) to Θ(n), and we can deal with the possibility of
unbounded messages in exactly the same way as in the
proof of Theorem 10.

In phase 1 of a round, a process that wants to broad-
cast the i-th possible message increments M [i]. A pro-
cess that does not want to broadcast in this round does
not increment M [i] for any i. In either case, each pro-
cess then decrements or resets ReadCounter, increments
WriteCounter, and repeatedly reads WriteCounter un-
til it has value n. When WriteCounter first has value n,
ReadCounter will have value 0.

In phase 2, each process first decrements or re-
sets ResetCounter. Next, it reads the values from
M [1], . . . , M [d] to obtain the number of occurrences
of each possible message that were supposed to be
sent during that round. Then it can simulate any nec-
essary local computation. Finally, the process incre-
ments ReadCounter and then repeatedly reads it until
it has value n. When ReadCounter first has value n,
ResetCounter has value 0.

In phase 3, each process first decrements or resets
WriteCounter. If it incremented M [i] during phase 1,
then it now decrements or resets it. Finally, the process
increments ResetCounter and then repeatedly reads it
until it has value n. When ResetCounter first has value
n, WriteCounter and each of the M [i] counters has value
0. ⊓⊔

6 When Counters Can and Cannot Simulate
Other Counters

We now consider when mod-m counters can simu-
late asynchronous systems containing different types of
bounded counters for m < n.

Proposition 12 If m + 2 ≤ v, then a v-valued counter
cannot be simulated in a shared-memory system of n ≥
m + 2 processes using only mod-m counters and read-
write registers.

Proof Suppose there is such a simulation. We consider
two executions of the simulation where the simulated
v-valued counter has initial value 0. Let α be the syn-
chronous execution where process Pn performs an in-
crement of the v-valued counter followed by a read. All
other processes perform no operations on the v-valued
counter, and processes P1, . . . , Pm are scheduled imme-
diately following Pn−1 in each round. Let β be the syn-
chronous execution where processes P1, . . . , Pm and Pn

each increment the counter and then read it. All other
processes perform no operations on the v-valued counter,
and processes P1, . . . , Pm are scheduled immediately fol-
lowing Pn in each round.

The simulated read operation by Pn must return the
value 1 in α. Since v ≥ m + 2, no non-deterministic
behaviour can occur in the v-valued counter in β and Pn

must return the value m + 1.
Read-write registers and mod-m counters are m-

idempotent, so by Lemma 7, process Pn cannot distin-
guish between α and β. Thus it must return the same
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Increment

increment C
write 1 to R

end Increment

Read

y ← R
x← C
if y = 0 then return 0
elsif x = 0 then return m
else return x

end Read

Fig. 2 Implementation of an (m + 1)-valued counter from a
mod-m counter and a register.

result for its read in both α and β. This is a contradic-
tion. ⊓⊔

The requirement in Proposition 12 that m + 2 ≤ v
is necessary: A mod-m counter is an implementation of
a v-valued counter for v ≤ m. Furthermore, in an n-
process shared-memory system, it is possible to simulate
an (m + 1)-valued counter using only mod-m counters
and read-write registers.

Proposition 13 It is possible to simulate an asyn-
chronous system containing an (m + 1)-valued counter
using only one mod-m counter and one read-write regis-
ter.

Proof Consider the implementation of an (m+1)-valued
counter from a mod-m counter C and a read-write reg-
ister R in an asynchronous system given in Figure 2.
Assume C and R are both initialized to 0. The variables
x and y are local variables.

Linearize all Increment operations whose accesses
to C occur before the first write to R in the execution at
the first write to R (in an arbitrary order). Linearize all
remaining Increment operations when they access C.

Linearize any Read that reads 0 in R at the mo-
ment it reads R. Since no Increments are linearized be-
fore this, the Read is correct to return 0. Linearize each
other Read when it reads the counter C. If at most m
Increments are linearized before the Read, the result
returned is clearly correct. If more than m Increments

are linearized before the Read, the Read is allowed to
return any result whatsoever. ⊓⊔

The following result shows that the read-write regis-
ter is essential for the simulation in Proposition 13.

Proposition 14 It is impossible to simulate an n-
process asynchronous system containing an (m + 1)-
valued counter using only mod-m counters, if n > m.

Proof Suppose there is such a simulation. We consider
two synchronous executions of the simulation where the
simulated counter is initially 0, and processes P1, . . . , Pn

take steps in this order in each round. Execution α begins
with processes P1, . . . , Pm each executing an increment
in lock step, while the other processes are not performing
any operation on the simulated counter. Suppose it takes
k rounds of the synchronous execution for the increments

to be completed. Process Pn then performs a read oper-
ation while all other processes perform no operations on
the simulated counter.

In execution β, the only process to perform an oper-
ation on the simulated counter is Pn, which executes a
read, starting in round k + 1.

Note that, in each execution, the processes
P1, . . . , Pm will execute the same sequence of steps, since
they are executing the same algorithm, run in lockstep,
and access only idemdicent objects.

We prove by induction that, at the end of each round,
Pm+1, . . . , Pn will each be in the same state in α and β
and each shared mod-m counter will have the same state
in α and β. Suppose the claim is true at the end of some
round r. In both α and β, after the first m steps of round
r + 1, each shared mod-m counter will be in the same
state as it was at the end of round r, since processes
P1, . . . , Pm perform the same operation in round r + 1,
and any mod-m counter they all access will end in the
same state that it started in.

For any process Pi with i > m, Pi performs the same
operation in round r + 1 of α and β, and it will get the
same response in both executions. So any shared mod-
(n − 1) counters accessed by processes Pm+1, . . . , Pn in
round r + 1 will have the same value at the end of the
round.

Pn’s read operation must return m in α and 0 in
β. But α and β are indistinguishable to Pn. This is a
contradiction. ⊓⊔

7 Counter Examples Demonstrating
Non-Robustness

This section proves that the reliable, asynchronous,
anonymous shared-memory model is not robust. Specif-
ically, we show how to implement a 6-valued counter
from mod-2 counters and mod-3 counters. Then we ap-
ply Proposition 12, which says that a 6-valued counter
cannot be implemented using only mod-2 counters and
read-write registers or using only mod-3 counters and
read-write registers.

Let m = lcm(m1, . . . , mr). We give a construction
of an m-valued counter from the set of object types
{mod-m1 counter, . . . , mod-mr counter}. We shall make
use of the following theorem, which is proved in introduc-
tory number theory textbooks. (See, for example, Theo-
rem 5.4.2 in [24].)

Theorem 15 (Generalized Chinese Re-
mainder Theorem) The system of equations
x ≡ bj (mod mj) for 1 ≤ j ≤ r has a solution
for x if and only if bj ≡ bk (mod gcd(mj , mk)) for
all j 6= k. If a solution exists, it is unique modulo
lcm(m1, m2, . . . , mr).

Proposition 16 Let m1, . . . , mr be positive
integers. Let m = lcm(m1, . . . , mr). In the
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Increment

for i← q downto 1
for j ← r downto 1

increment A[i, j]
end for

end for
end Increment

Read

loop
for i← 1..q

for j ← 1..r
B[i, j]← A[i, j]

end for
end for
exit when B[i, j] ≡ B[1, j] (mod mj) ∀i, j and

B[1, j] ≡ B[1, k] (mod gcd(mj , mk)) ∀j 6= k
end loop
return the value x ∈ {0, . . . , m− 1} that satisfies

x ≡ B[1, j] (mod mj) for all j
end Read

Fig. 3 Implementation of m-valued counter

asynchronous model, there is an implemen-
tation of an m-valued counter from the set
{mod-m1 counter, . . . ,mod-mr counter} for any number
of processes.

Proof Let q = 2m/m1 + 1. The implementation uses a
shared array A[1..q, 1..r] of base objects. The base object
A[i, j] is a mod-mj counter, initialized to 0. The array
B[1..q, 1..r] is a private variable used to store the results
of reading A. (We assume the m-valued counter is ini-
tialized to 0. To implement a counter initialized to the
value v, one could simply initialize A[i, j] to v mod mj ,
and the proof of correctness would be identical.)

The implementation is given in Figure 3. A process
Increments the m-valued counter by incrementing each
counter in A. A process Reads the m-valued counter by
repeatedly reading the entire array A (in the opposite
order) until the array appears consistent (i.e. the array
looks as it would if no Increments were in progress).
We shall linearize each operation when it accesses an el-
ement in the middle row of A, and show that each Read

operation reliably computes (and outputs) the number of
times that element has been incremented. Note that the
second part of the loop’s exit condition guarantees that
the result to be returned by the last line of the Read

operation exists and is unique, by Theorem 15.
Consider any execution of this implementation where

there are at most m− 1 Increments. After sufficiently
many steps, all Increments on the m-valued counter
will be complete (due to the fairness of the scheduler).
Let vfinal be the number of increment operations on
the m-valued counter that have occurred at that time.
The collection of reads performed by any iteration of the
main loop of the Read algorithm that begins afterwards
will get the response vfinal mod mj from each mod-mj

counter, and this will be a consistent collection of reads.
Thus, every operation must eventually terminate. If more

than m− 1 Increments occur in the execution, Reads

need not terminate.
Let s = m/m1 + 1. Ordinarily, we linearize each op-

eration when it last accesses A[s, 1]. However, if there is
a time T when A[q, r] is incremented for the mth time,
then all Increments in progress at T that have not been
linearized before T are linearized at T (with the Incre-

ments preceding the Reads). Each operation that starts
after T can be linearized at any moment during its ex-
ecution. Note that m Increments are linearized at or
before T , so any Read that is linearized at or after T is
allowed to return an arbitrary response.

Consider any Read operation R that is linearized
before T . Let x be the value R returns. We shall show
that this return value is consistent with the linearization.
Let ai,j ∈ {0, . . . , m − 1} be the number of times A[i, j]
was incremented before R read it for the last time. Then
ai,j ≡ x( mod mj) for all i and j. Because Increments

and Reads access the base objects in the opposite order,
ai,j ≤ ai,j+1 and ai,r ≤ ai+1,1. From the exit condition
of the main loop in the Read algorithm, we also know
that ai,j ≡ a1,j (mod mj). We shall show that x = as,1,
thereby proving that the result of R is consistent with
the linearization.

We first prove by cases that, for i ≥ 1, ai+1,1 ≥
min(x, ai,1 + m1).

Case I (ai+1,1 = ai,1): Since ai,1 ≤ ai,2 ≤ · · · ≤
ai,r ≤ ai+1,1 = ai,1, we have ai,1 = ai,2 = · · · = ai,r =
ai+1,1. Thus, for all j, ai+1,1 = ai,j ≡ a1,j (mod mj).
By the uniqueness claim of Theorem 15, ai+1,1 = x ≥
min(x, ai,1 + m1).

Case II (ai+1,1 > ai,1): Since ai+1,1 ≡ ai,1 (mod m1),
it must be the case that ai+1,1 ≥ ai,1+m1 ≥ min(x, ai,1+
m1).

It follows by induction that ai,1 ≥ min(x, a1,1 + (i −
1)m1). Thus, as,1 ≥ x, since s was chosen so that (s −
1)m1 = m > x.

We now give a symmetric proof to establish that
as,1 ≤ x. We can prove by cases that, for i < q,
ai,1 ≤ max(x, ai+1,1 − m1).

Case I (ai,1 = ai+1,1): Since ai,1 ≤ ai,2 ≤ · · · ≤ ai,r ≤
ai+1,1 = ai,1, we have ai,1 = ai,2 = · · · = ai,r. Thus,
for all j, ai,1 = ai,j ≡ a1,j (mod mj). By the uniqueness
claim of Theorem 15, ai,1 = x ≤ max(x, ai+1,1 − m1).

Case II (ai,1 < ai+1,1): Since ai,1 ≡ ai+1,1 (mod m1),
it must be the case that ai,1 ≤ ai+1,1 − m1 ≤
max(x, ai+1,1 − m1).

It follows by induction that ai,1 ≤ max(x, aq,1 − (q −
i)m1). Thus we have as,1 ≤ x, since s was chosen so that
(q− s)m1 = m and aq,1 − (q − s)m1 = aq,1 −m < 0 ≤ x.
So we have shown that x = as,1, and this completes the
proof of correctness for the implementation of the m-
valued counter. ⊓⊔

Theorem 17 The reliable, asynchronous, anonymous
model of shared memory is non-robust. That is, there
exist three object types A, B, and C such that an object
of type A cannot be implemented from only read-write
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registers and objects of type B and an object of type A
cannot be implemented from only read-write registers and
objects of type C, but an object of type A can be imple-
mented from objects of types B and C.

Proof Let A be a 6-valued counter, B be a mod-3 counter
and C be a mod-2 counter. In a 4-process shared-memory
system, an object of type A cannot be implemented from
read-write registers and objects of type B, by Proposi-
tion 12. Similarly an object of type A cannot be imple-
mented from read-write registers and objects of type C.
However, by Proposition 16, an object of type A can be
implemented using objects of type B and C. ⊓⊔

8 Conclusions and Open Problems

We have given an initial characterization of the relative
powers of various communications mechanisms in reli-
able anonymous distributed systems, showing in partic-
ular that when the number of processes is known, an
anonymous broadcast system has equivalent power to
a shared-memory system with counters. We have fur-
ther explored the relative power provided by different
types and sizes of bounded counters, and shown the non-
robustness of the asynchronous model by demonstrating
that mod-p and mod-q counters can together implement
a pq-valued counter, even though neither can implement
a pq-valued counter alone (for primes p and q).

The question of what happens when the number of
processes is unbounded or unknown remains open. We
suspect that in a system with unbounded counters, it
may be possible to have processes register themselves as
they first enter the system, thereby reducing these cases
to the case where n is bounded and known. But guar-
anteeing that all processes have a consistent and accu-
rate view of the count appears difficult, and may require
mechanisms tailored for specific applications.
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