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ABSTRACT
An asynchronous algorithm is described for rapidly con-
structing an overlay network in a peer-to-peer system where
all nodes can in principle communicate with each other di-
rectly through an underlying network, but each participat-
ing node initially has pointers to only a handful of other
participants. The output of the mechanism is a linked list
of all participants sorted by their identifiers, which can be
used as a foundation for building various linear overlay net-
works such as Chord or skip graphs. Assuming the initial
pointer graph is weakly-connected with maximum degree d
and the length of a node identifier is W , the mechanism
constructs a binary search tree of nodes of depth O(W ) in
expected O(W log n) time using expected O((d+W )n log n)
messages of size O(W ) each. Furthermore, the algorithm
has low contention: at any time there are only O(d) unde-
livered messages for any given recipient. A lower bound of
Ω(d + log n) is given for the running time of any procedure
in a related synchronous model that yields a sorted list from
a degree-d weakly-connected graph of n nodes. We conjec-
ture that this lower bound is tight and could be attained by
further improvements to our algorithms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems
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1. INTRODUCTION
Consider the problem of rapidly building a peer-to-peer

system with a ring or line structure such as Chord [19] or
skip graphs [3]. The default assumption in both systems ap-
pears to be that nodes will be inserted sequentially, giving
a construction time of O(n log2 n) for Chord and O(n log n)
for skip graphs. But how quickly can we build such a sys-
tem if we do so in parallel, assuming that initially each node
only knows about a few other nodes in the system? At min-
imum, we need to be able to construct the bottom ring of
the system, which consists of all of the nodes sorted by their
identifiers (randomly chosen in Chord, based on keys in skip
graphs). Constructing such a system thus depends on be-
ing able to sort nodes quickly; having done so, rebuilding
the rest of the system takes little additional time. If build-
ing a peer-to-peer system from scratch can be done quickly
enough, the payoff is high: we can instantly deploy peer-
to-peer networks as needed as a tool in more complex dis-
tributed algorithms, and we can drop the cumbersome repair
mechanisms found in many practical structured peer-to-peer
systems in favor of a policy of periodic mass destruction and
renewal.

In our model, we assume that any node can communi-
cate with any other node once it knows the other’s address,
and that initially, the nodes are organized into a weakly-
connected knowledge graph of bounded degree d, where
a (directed) edge from u to v means that u knows v’s ad-
dress. Our algorithm proceeds by reorganizing this weakly-
connected graph as a low-depth binary search tree where
each node supplies both a leaf and at most one internal
node; the sorted list can then be read off of the leaves. Our
algorithm has low contention: each node receives at most
O(d) messages in a single round (in the synchronous version
of the algorithm) or has at most O(d) pending undelivered
messages at any time (in the asynchronous version). It also
uses only short messages, of size proportional to the node



identities, and requires storing only O(d) identities per node.
Our algorithm is constructed from three components:

1. A randomized pairing algorithm that, starting from
a degree-d weakly-connected graph, pairs off a con-
stant fraction of the nodes on average in O(1) time.1

This algorithm is described in Section 3.1. The prob-
lem solved is similar to the problem of constructing a
distributed matching [11, 20], except that there is no
requirement that paired nodes be joined by an edge in
the original knowledge graph. A complication is that
since the original knowledge graph is directed, at any
time a node may learn of the existence of new neigh-
bors, and care needs to be taken to prevent deadlocks.

The output of the pairing algorithm is used to join in-
dividual nodes into simulated supernodes that then
participate in subsequent iterations of the pairing algo-
rithm. These supernodes are in turn joined into larger
supernodes, until only a single supernode (consisting
of all the nodes in the system) remains, after an ex-
pected O(log n) iterations. For this construction to
work, we need two additional mechanisms.

2. A distributed merging algorithm for combining bal-
anced trees of nodes. In a synchronous model, this
algorithm can be very simple: because all the trees
constructed after k rounds will have depth O(k), it is
enough to recruit a new root node to join two trees
together into a tree of depth O(k + 1). In an asyn-
chronous model, an adversarial scheduler can arrange
for particularly fast nodes to merge early followed by a
slower succession of singleton nodes, leading to a tree
of depth Θ(n) using the simple algorithm. Instead,
we describe an algorithm obtained by parallelizing the
sequential Patricia tree merge procedure of Okasaki
and Gill [18]; this algorithm, described in Section 3.2,
assigns a single leaf node and at most one internal
node of the Patricia tree to each physical node in the
system, and merges two Patricia trees of depth W in
time O(W ), where W is the length of a node identity.
Though we do not use this fact in our main result, our
merging algorithm can be pipelined: a depth-k tree of
up to 2k merge operations can be carried out in parallel
in O(k + W ) time with O(1) contention.

Note that because Patricia trees are a form of binary
search tree, a consequence of using Patricia trees to
represent supernodes is that the leaves are automati-
cally sorted. We use this fact to generate the sorted
ring of physical nodes that our main result promises,
but the ability to rapidly generate a binary search tree
with low contention starting from a weakly-connected
knowledge graph may also be useful for other applica-
tions.

3. A supernode simulation that allows trees of ordi-
nary physical nodes to simulate a single supernode in
the pairing algorithm (Section 3.3). Though the es-
sential idea of this simulation is simple—have the root
of each tree simulate the supernode—some care needs
to be taken to keep the root from being swamped with
information. The actual simulation algorithm uses the

1In a synchronous model, time is measured in rounds. In an
asynchronous model, time is measured by assuming a con-
stant maximum message delay, and assigning all events the
latest possible time consistent with this assumption. Details
are given in Section 2.

leaves of the tree to communicate with other supern-
odes, with internal nodes aggregating the incoming
data for delivery to the root. This increases the tree’s
effective bandwidth proportional to the size of the tree
while keeping the contention down to the minimum
O(d) necessitated by the degree of the original knowl-
edge graph. The cost of this strategy is that incoming
messages are effectively delayed by the depth W of
the Patricia tree, adding a factor of W slowdown to
the algorithm. Using the entire tree also means that
the simulated supernode must wait for a merge to com-
plete before starting a new iteration of the pairing al-
gorithm, which prevents its from taking advantage of
pipelined merges. We discuss some ideas for how such
bottlenecks might be avoided in Section 5.

We also consider how to use the tree to build a ring (Sec-
tion 3.4) and the effects of churn (Section 3.5).

In an asynchronous model, the total time for the expected
O(log n) iterations of pairing multiplied by the O(W ) merg-
ing and communications costs of each iteration is O(W log n).
In a synchronous model, this can be improved by using the
simple pairing algorithm described above to construct a bal-
anced tree of depth O(log n) in O((d+log n) log n) time (the
d factor vanishes if nodes are allowed to send more than one
outgoing message per time unit), and the nodes can then be
sorted using pipelined Patricia tree merges in an additional
O(W + log n) time for a total of O(W + (d + log n) log n)
time. All of these algorithms have contention at most O(d),
use messages of size O(W ), and store O(dW ) bits of state
per node.

These limits compare favorably to previously known algo-
rithms in this model for resource discovery [2,10,13,14,16]
or leader election [4], which also construct trees over nodes
that initially form a weakly-connected graph. In these al-
gorithms, a single participant may receive messages from a
very large number of other participants in a short amount of
time; messages are often impractically long, conveying in the
worst case the identities of every node in the system; and the
resulting trees have very high degree, which not only leads to
high contention in any algorithm that uses them but limits
performance if nodes are also limited in how many messages
they can send per time unit. We discuss these results further
in Section 1.1.

Though our algorithm is reasonably efficient, we do not
believe that it is optimal. The best lower bound we know
how to prove for constructing a sorted list of nodes start-
ing from a weakly-connected graph with maximum degree d
in the synchronous model is Ω(d + log n); here the d term
comes from the assumption that a node can only send to one
recipient per round, and the log n term comes from the time
to communicate from one end of a length-n line to the other
using pointer jumping (see Section 4 for details). Our sus-
picion is that this lower bound is in close to the true upper
bound, and that an algorithm that interleaved pairing and
merging operations more tightly could achieve something
very close to it with high probability.

Due to space limitations, most proofs in this extended
abstract are omitted or only briefly sketched.

1.1 Related Work
The problem of organizing a weakly-connected set of nodes

into a useful data structure combines aspects of both sorting
and resource discovery. We discuss the extensive prior lit-
erature on resource discovery first, and then consider some
other algorithms that solve problems closer to ours.



1.1.1 The Resource Discovery Problem
Harchol-Balter, Leighton, and Lewin [10] introduced the

Resource Discovery Problem to model the situation in which
all the processes in an initial weakly connected knowledge
graph learn the identities of all the other processes, prelim-
inary to cooperating in a distributed computation [10]. In
terms of the knowledge graph, the goal is to construct the
complete graph from an arbitrary weakly connected graph.
Subsequently, the problem definition was relaxed to require
that one process become the leader and learn the identities
of all the other processes, which each learn the identity of
the leader [14]. This implies that the final knowledge graph
contains a star (with bi-directional edges) on all the vertices.

The problem has been considered in both synchronous and
asynchronous models of computation. In the synchronous
model, in each round each node may contact one or more of
its neighbors in the current knowledge graph and exchange
some subset of its neighbor list. Harchol-Balter, Leighton
and Lewin give a simple randomized algorithm to solve the
complete-graph version of the problem with high probability
in O(log2 n) rounds, O(n log2 n) messages, and O(n2 log3 n)
bit complexity. Law and Siu give another randomized al-
gorithm that improves each of these bounds by a factor of
log n [16].

Kutten, Peleg, and Vishkin give a deterministic algorithm
to solve the star-graph version of the problem in O(log n)
rounds, O(n log n) messages, and O(|E0| log

2 n) bit com-
plexity, where E0 is the set of edges of the initial knowledge
graph [14]. A single additional round in which the leader
sends the whole list to all processes achieves a complete
graph, and adds O(n) to message complexity and O(n2 log n)
to bit complexity.

In the asynchronous model of computation, all messages
sent will eventually arrive after a finite but unbounded time,
and messages from u to v are delivered to v in the order in
which u sent them. Kutten and Peleg give a determinis-
tic algorithm to solve the star-graph version of the prob-
lem in O(n log n) messages and O(|E0| log

2 n) bit complex-
ity [13]. Abraham and Dolev also consider asynchronous
computation, and generalize the problem to finding a leader
in each weakly connected component of the initial knowl-
edge graph [2]. They show that knowledge of n, the size
of a node’s component, affects the achievable bounds. In
particular, when n is unknown, they give a lower bound of
Ω(n log n) on message complexity, and a deterministic algo-
rithm with message complexity O(n log n) and bit complex-
ity O(|E0| log n + n log2 n). When n is known, they give a
deterministic algorithm with O(nα(n)) message complexity
and O(|E0| log n + n log2 n) bit complexity, where α(n) is
the inverse Ackermann function. They also define the Ad-
hoc Resource Discovery Problem, in which each non-leader
must only have an identified path to its leader, rather than
a direct edge. For this problem, they show a lower bound
on message complexity of Ω(nα(n)), and an algorithm that
achieves message complexity O(nα(n)) and bit complexity
O(|E0| log n+n log2 n). This algorithm also deals efficiently
with dynamic additions of nodes and links to the network.

It is worth mentioning that our trees solve the Ad-hoc Re-
source Discovery Problem, which means the Abraham and
Dolev Ω(nα(n)) lower bound for messages applies.

1.1.2 Leader Election
Cidon, Gopal and Kutten [4] introduce a detailed and

technologically motivated model in which processes in a net-
work may use newly learned routes to send messages at
cost O(1), although the physical route may consist of sev-

eral links, analogous to the addition of edges in a knowledge
graph. Assuming n nodes in an initial knowledge graph that
is connected and undirected, they give a deterministic algo-
rithm for leader election in O(n) messages and time O(n).
Upon termination, the corresponding knowledge graph con-
tains an edge from the leader to every process in the network,
and a path of length at most O(log n) from each non-leader
to the leader, solving the Ad-hoc Resource Discovery Prob-
lem as defined by Abraham and Dolev [2]. The time bound
reflects the fact that there may be long chains of merges that
happen sequentially.

1.1.3 Parallel Sorting
Algorithms for sorting on parallel machines have been

studied extensively. The closest such algorithm to our work
is that of Goodrich and Kosaraju [9] for a parallel pointer
machine, which also proceeds by building a binary tree over
nodes and then merging components according to the tree.
Their algorithm makes use of a clever parallel linked-list
merge operation that allows consecutive merging phases to
be pipelined, giving an O(log n) total time. We believe that
essentially the same merging algorithm could be adapted to
our model, although improvements in other parts of our al-
gorithm would be necessary for this change to improve our
overall running time.

1.1.4 Tree structures in previous work
A distributed trie is used as a search structure for P2P sys-

tems in several previous papers. Karl Aberer [1] designed
a scalable access structure named P-Grid based on a multi-
level trie with each node representing one specific interval
of the key space. And at each level every peer is associ-
ated with exactly one tree node and maintains references to
cover the other side of the search tree so that a search can be
started at any peer. The convergence of P-Grid construc-
tion strongly depends on the assumption that peers meet
frequently and randomly pairwise which is not so achievable
in application. Although the paper provides some simula-
tion results, it doesn’t give further proof. Michael J. Freed-
man and Radek Vingralek [7] presented a similar approach
while taking advantage of information piggybacking during
lookups to achieve dynamic partitioning and lazy updates.
However, the performance of the algorithm depends on the
lookup pattern and the paper also lacks proof. Others have
proposed using B-tree variants to index small numbers of
nodes (hundreds) in distributed databases [12,21].

2. MODEL
We assume that in the initial state each process knows

the identifiers of some number of other processes. This in-
formation forms a knowledge graph, a directed graph with
one vertex per process and an edge from u to v whenever
u knows about v. The knowledge graph may evolve over
time as processes tell each other about other processes; if
u knows about both v and w, it may send a message to v
containing w’s identifier, and when v receives this message
the edge vw is added to the graph. We assume throughout
that a process u can only send a message to another process
v if uv is present in the graph when the message is sent. We
assume that the initial knowledge graph G0 is weakly con-
nected and has maximum degree d, where the degree d(u)
of a vertex u is defined to be the sum of its indegree d−(u)
and its outdegree d+(u), which are the number of incoming
and outgoing edges for u, respectively.

Processes communicate by passing messages along edges
of the knowledge graph. Formally, we assume that messages



are of the form (s, t, σ) or (s, t, σ, U), where s is the sender,
t is the receiver, σ is a message type, and U (if present) is a
vector of O(1) process identifiers. The state of each process
consists of a state variable q together with a set of successors
S. Upon receiving a set M of one or more messages, a
process s adds all process identifiers that appear in M to
S, and then executes a probabilistic transition function δ
mapping (q, S, M) to (q′, m), where q′ is a new state and
m is either ⊥ (indicating no message sent) or a message
(s, t, σ, u) where t is in S and u is in S ∪ {⊥}. When and
how this message is delivered depends on whether we are
in a synchronous or asynchronous model; we discuss both
variants below.

In the synchronous model, the computation proceeds in
rounds, and all messages sent to a process s in round i are
delivered simultaneously in round i + 1. In other words,
we assume the standard synchronous message-passing model
with the added restrictions that processes can only commu-
nicate with “known” processes and can only send one mes-
sage per round. This yields a model essentially identical to
the one used in the resource discovery literature, except that
we have added a limitation on the number of identifiers that
can be sent in a single message. We are also interested in
minimizing contention, which we take to be the maximum
number of messages received by any single process in any
single round of the computation.

In the asynchronous model, messages arrive one at a time
after a delay that may vary from message to message and
that is controlled by an adversary scheduler. It is assumed,
however, that no message is delayed by more than one time
unit and that messages between any two nodes are delivered
in FIFO order. Processing time is treated as zero.

Defining contention for an asynchronous model can be
tricky, as the adversary could choose to deliver many mes-
sages in a short period of time; we adopt a simple measure
of contention equal to the maximum number of distinct mes-
sages with the same recipient that are in transit at any point
in time.2 Assuming that each process sends at most one
message to each neighbor in the knowledge graph before re-
ceiving a reply, the contention is trivially bounded by the
degree of the knowledge graph in both the synchronous and
asynchronous models.

3. ALGORITHMS
This section contains our main results, a family of algo-

rithms for quickly constructing tree-structured overlay net-
works starting with a weakly-connected communication graph.
We begin by describing (in Section 3.1) a randomized dis-
tributed algorithm for pairing nodes; this produces a match-
ing on the set of nodes that includes a constant fraction of
the nodes on average, in time O(d), with O(d) contention
and O(n) messages, each of size at most O(W ), where W is
the maximum identifier size. Paired nodes are then joined
together into simulated combined nodes that are internally
organized as balanced trees (see Section 3.3). The partici-
pants in each combined node are carefully deployed so that
the pairing and joining algorithms in later rounds still pro-
duce only O(d) contention; however, communication within
each subtree adds an factor to the cost of communication in
the pairing algorithm that depends on the depth of the tree.

2An alternative assumption is that each process is only guar-
anteed to accept at least one message per time unit, with
other messages waiting in a delivery queue. This yields sim-
ilar time bounds, except that the running time must be mul-
tiplied by the contention to account for queuing delays.

In Section 3.2, we show that Patricia trees [17], using a
parallelized version of the Patricia tree merge procedure of
Okasaki and Gill [18], are a good choice for the balanced tree
data structure. Using Patricia trees, we obtain a sorted final
data structure in time O(W log n) (or O((d+W ) log n) in the
lower-bandwidth synchronous model), with O(d) contention
and O((d + W )n log n) messages.

Finally, we briefly discuss constructing a ring (Section 3.4)
and the effects of node departures and arrivals (Section 3.5).

3.1 Pairing
The pairing problem has some similarities to the problem

of finding a matching, but because we are not restricted in
which nodes we pair off—except for the limits imposed by
communication along edges of the knowledge graph—our al-
gorithm can perform an initial pruning step that pairs off
many of the nodes deterministically, leaving only a degree-
2 surviving subgraph. We then run a simple randomized
matching algorithm on this subgraph using a coin-flipping
technique similar to that of Law and Siu [16] to resolve con-
flicts.

From a very high-level perspective, the algorithm proceeds
as follows. Start with an directed graph G with maximum
degree d. Each node starts by sending a probe to all of its
successors. The recipient of such a probe responds by ac-
cepting the first one and rejecting subsequent probes; in
this way every node has at most one designated predecessor,
producing a graph of designated predecessors G1 in which
every node has in-degree at most 1. This graph is further
pruned by having each node with two or more successors
pair them off, leaving a graph G2 in which every node has
both in-degree and out-degree at most 1. Each component
in such a graph is either a line or a cycle, and a constant
fraction of the nodes can be matched along edges by simply
having each node that is not at the end of a line flip a coin
to decide whether to pair with its remaining predecessor or
successor, and pairing those adjacent nodes whose choices
are consistent. A simple calculation shows that on average
half of the nodes in G2 (and all nodes in G−G2) are paired
by this procedure, from which we can deduce that about half
of the nodes are paired on average in the worst case where
G−G2 is empty.

The algorithm sketched above can be implemented di-
rectly in a synchronous system where all nodes start simul-
taneously, because after the initial probing phase there is
no confusion about the structure of the graph, and after
a phase consisting of a known number of rounds any un-
matched nodes can simply restart the protocol along with
any supernodes resulting from merges in the previous phase.
But in an asynchronous setting the situation is more com-
plicated. While some of the early pruning steps can still be
used (in particular, we still have each node accept and re-
spond to a single designated predecessor), the final matching
stages require more care.

There are two main problems. The first is that no node
can detect when a phase of the pairing protocol has fin-
ished, so that an unmatched node cannot detect the end of
a pairing phase and restart the protocol. Instead, the best
an unmatched node can hope for is that the faithless suitor
who spurned it initially will return to accept its advances af-
ter it finishes digesting luckier candidates. But this creates
the possibility of creating very long chains of nodes, each
waiting for the next to finish a merge that is itself delayed
by waiting for nodes further down the chain.

This problem is compounded by the fact that a node that
has not yet received a probe cannot tell whether it has no



predecessors or merely slow predecessors. If an unprobed
node simply assumes that it has no predecessors and that it
should pair with any successor that accepts it, the adversary
can schedule events so that every node in a long chain only
learns of its unrequited predecessor after it has committed
to its successor, creating the linear-time backlog described
above. On the other hand, if a node chooses to wait for
a predecessor to come, it may be left stuck in this state
forever.

The solution is to retain the coin-flip by which a node
chooses its orientation, but let the presence of a successor
who wants to pair now override the wait for a predecessor
that may never arrive. In addition, the successor-pairing
procedure is modified slightly: instead of pairing all succes-
sors, possibly leaving none, a process always saves the first
successor for itself and pairs off only subsequent pairs. This
may leave an odd successor that is not paired, but there is at
most one such node left out for each node that participates
in the (now very implicit) randomized matching protocol. If
this left-out node is waiting for its predecessor, it will even-
tually be picked up after the predecessor merges with its
preferred successor.

What makes all of this work is that the randomization
breaks up long waiting chains: it is unlikely that a long chain
of nodes will all be pointed the same way by their coin-flips.
At the same time, opportunistic merging by nodes with the
first available suitor prevents deadlocks in cycles, even if
all nodes are pointed in the same direction, as some node’s
proposal gets in first.

3.1.1 Details of the Algorithm
Formally, each node can be in one of four different states,

depending on what messages it has received. The four dif-
ferent states and their attitudes towards incoming pairing
proposals are described as follows:

• ISOLATED: The node has not yet received any probes
and has no predecessor. So once it receives a proposal
from its successor, it can accept it immediately.

• PROBED: The node has been probed, but not yet
been told whether it is paired off by its predecessor,
nor it has a pairable successor. In this case, it waits
to find out what its predecessor will do with it. If
it receives a proposal from its successor and its coin is
also pointed to its successor, it enters the PROPOSED
state. If the proposal conflicts with its coin, it refuses
the proposal immediately.

• PROPOSED: The node has a waiting proposal, but
has not yet been told whether it is paired off by its
predecessor. It defers responding to the proposal until
its state changes due to the notice from its predecessor.

• PROPOSING: The node has a predecessor and has
been told by the predecessor that it is not paired off.
So the node should actively send out a proposal in
the direction indicated by its coin and accept immedi-
ately any proposal that does not conflict with its coin.
Proposals that conflict with its coin are refused imme-
diately.

• PAIRED: The node has been paired, either by its pre-
decessor or due to coins. It refuses any proposals (al-
though it may later be available for new proposals once
it has completed a merge operation with its partner).

For each node u, we assume that it maintains a neighbors
set Nu, which induces an underlying graph G with edges
(u, v) for all pairs with v ∈ Nu. Initially Nu consists of those
nodes whose identity u knows at the start of the protocol. It
is updated by adding any node that sends u a probe message.
Neighbor sets are merged when two nodes join into a single
supernode. A neighbor that refuses a proposal is removed:
this prevents a slow node from being pestered by arbitrarily
large numbers of duplicate proposals from a faster neighbor,
since the faster neighbor will only try again after the slow
node has rejoined its neighbor set (by sending out a probe
message after completing a merge).

The algorithm is described below. It has a main thread
which is responsible for the main function of the pairing,
and four daemon threads which are triggered by messages
and responsible for state transitions. The execution of the
daemon threads should be implemented to be atomic, which
is quite reasonable because there is no waiting in the daemon
threads and our model ignores the running time of a process.

For each node u:

1. Let state←ISOLATED; let chosen be picked uni-
formly at random from {pred, succ}.

2. For each v ∈neighbors, send a message (u, v, probe)
to v and wait for all replies;

3. Let v1, v2, . . . vk be the nodes that reply with ‘ac-
cept.’ For each odd i less than k, send a mes-
sage (u, vi, pair, vi+1) to vi and (u, vi+1, pair, vi)
to vi+1. If k is odd, let succ← vk, and send a
message (u, succ, no pair) to the node succ; else
let chosen←pred ;

4. While (state=ISOLATED or state=PROBED) wait;

5. If state=PROPOSING then:

Send a message (u, chosen, propose) to the
node chosen;

If reply is (chosen, u, accept) then let
state←PAIRED and obj←chosen;

else if reply is (chosen, u, reject propose) then
let neighbors←neighbors−{chosen}

else if reply is (chosen, u, paired) then
do nothing but proceed;

6. If state=PAIRED, then merge with obj ;

7. Go to line 1.

Upon receiving message (v, u, probe) from node v do:

Let neighbors←neighbors∪{v};

If state=ISOLATED then:

Let pred← v and state←PROBED;

Send a message (u, v, accept) to node v;

else:

Send a message (u, v, reject) to node v.

Upon receiving message (v, u, propose) from node v
do the one of the following according to the value
of state:

ISOLATED: Let state←PAIRED and obj←v ;
reply with (u, v, accept);

PROBED: If chosen=v, then let waiting← v and
state←PROPOSED;
if otherwise, reply with (u, v, reject propose);



PROPOSING: If chosen=v, then let
state←PAIRED and obj←v, and
reply with (u, v, accept);
if otherwise, reply with (u, v, reject propose);

PROPOSED: Reply with (u, v, reject propose);
PAIRED: Reply with (u, v, paired).

Upon receiving message (pred, u, pair, w) from node
pred do:

If state 6=PAIRED then:
Let state←PAIRED and obj←w ;

If state = PROPOSED then:
Send a message (u, waiting,paired) to node
waiting.

Upon receiving message (pred, u, no pair) from node
pred do:

If state=PROBED then:
Let state←PROPOSING;

else if state = PROPOSED then:
Let state←PAIRED and obj←waiting ;
Send a message (u, waiting, accept) to node
waiting.

The algorithm terminates when there is only one node
remaining.

3.1.2 Analysis
The analysis of the pairing algorithm is quite involved,

and can be found in the full paper. We give some highlights
of the argument here. The basic idea is to analyze the se-
quence of graphs Gt derived from the neighbor lists Nu at
each time t. We use M for the time to perform a merge
operation and D for the maximum message delay; note that
since the nodes in the protocol may in fact be trees simu-
lating single supernodes, D can be as large as the depth of
the tree.

First, we show that for any edge (u, v) in the initial knowl-
edge graph G0, at least one of (u, v) or (v, u) (taking into
account new identities assumed by supernodes that absorb
them) appears in Gt until the nodes merge; this implies
that the operation of the algorithm does not disconnect the
graph.

Second, we define an iteration as an interval between
times when the node enters the ISOLATED state, and show
by case analysis that during each iteration, a node remains
at most O(D) time in the PROBED, PROPOSED, and
PROPOSING states, including time waiting for a neighbor
to respond in the PROPOSING state, and at most M+O(D)
time in the PAIRED state, since this state leads immedi-
ately to a merge. Bounding the time in the ISOLATED
state requires a more detailed analysis, but by considering
all possible states of the node’s neighbors we can show that
T (ISOLATED) ≤ T (PROBED) + T (PROPOSING)
+T (PROPOSED)+T (PAIRED)+O(D) = O(M+D). Since
each state can be entered at most once during a single iter-
ation, the maximum time TI for an iteration is O(M + D).

Finally, we show by an argument similar to that sketched
out for the simple pairing algorithm that during an iteration,
for each node there is a probability of at least 1/2 that the
node either is paired or is the unique unpaired successor
of a predecessor that is paired. The situation is slightly
complicated by the fact that iterations are not synchronized
across nodes, but with some additional work it is possible
to show that the expected number of surviving supernodes
at the end of any interval of 2TI time units is at most 8/9
of the number at the start. This suffices to prove:

Theorem 1. The expected running time of the pairing
protocol is O((M + D) log n).

For the Patricia trees described in Section 3.2, D and
M are both proportional to the maximum depth W given
by the length in bits of node identifiers, giving a cost of
O(W log n). In the synchronous model, an additional delay
of O(d) time units is imposed on each probing step, because
each leaf node may have to probe up to d neighbors and is
limited to sending one message per time unit. This gives a
synchronous running time of O((d + W ) log n).

3.2 Merging
In this section, we describe a distributed implementation

of a variant on big-endian Patricia trees [18]. This im-
plementation permits two trees to be merged in time O(W )
with O(1) contention and O(min(n+m, W min(n, m))) mes-
sages of size O(W ) each, where W is the length in bits of
an identifier and n and m are the number of elements in the
two trees.

A Patricia tree [17] is similar to a binary trie [5,6] with all
keys stored in the leaves, except that paths with no branches
are compressed to single edges. We assume that all keys
are bit-strings with fixed width W : shorter strings can be
padded with zeros. Each node in the tree stores a prefix that
is common to all of the keys in its subtree. The two children
of a node with prefix x store prefixes that begin with x0 and
x1; it is possible that their prefixes will be longer if all nodes
with prefix xb have additional prefix bits in common.

In our implementation, keys are identifiers of processes,
and there is a natural one-to-one correspondence between
keys, processes, and the leaves of the tree. To allow opera-
tions to be performed in parallel on internal nodes, we must
also assign processes to these nodes. Because Patricia trees
are binary trees, there are exactly n − 1 internal nodes in
a Patricia tree with n leaf nodes. Thus we can assign one
internal node to each process, leaving one process left over.
Each process is thus responsible for simulating at most two
nodes in the tree. If we think of the nodes in the tree as
simulated processes, the contention on any real process is at
most twice the contention on any simulated process.

The unused “internal node” of the leftover process is kept
in reserve as an extra node by the root of the tree. When
two trees merge, the extra node from one of them is used to
supply the new internal node required for the merge, and the
other is kept in reserve for a subsequent merge. Note that in
the initial state of any process, it is both leaf and root of a
singleton tree, and thus acts as its own extra node. The use
of such extra nodes to avoid the need for a global allocation
mechanism for internal nodes is the main technical trick that
distinguishes our merge algorithm from Okasaki-Gill.

Let us now describe the merge procedure. Intuitively,
when two Patricia trees merge, either their roots share a
common prefix, in which case the roots are combined and
the matching subtrees of each tree are merged in parallel;
or one root’s prefix is a prefix of another, in which case the
root with the longer prefix is merged into the appropriate
child of the other; or the prefixes are incomparable, in which
case the two old roots become children of a new root. What
makes it possible to pipeline this procedure is that wave of
merging proceeds down the trees one layer at a time, and as
soon as the roots of merging subtrees have communicated
they can determine immediately which node becomes the
root of the new subtree and which nodes are denoted to
extra nodes in inferior merges, merged with children, etc.
This immediate determination of the new root means that
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Figure 1: A Patricia tree storing the strings 000111,
001010, 010011, 010100, and 010110.

it can begin a second merge in O(1) time, waiting only to
fix the identities of its new children. It follows that the first
merge takes O(W ) time, but that subsequent merges add
only O(1) additional time, allowing up to 2k merge opera-
tions to be completed in O(k+W ) time if the tree of merges
is perfectly balanced. Unfortunately, our pairing algorithm
is not sophisticated enough to construct a balanced tree of
merges in parallel with the merges occurring, but we can
imagine situations where such pipelining may be useful.

Formally, a non-root node x in the tree stores a bit string
x.prefix and two child pointers x.child[0] and x.child[1]. For
leaf nodes, x.prefix is a key of width W and both child point-
ers are null (⊥). For internal nodes, x.prefix is the common
prefix of all keys in the subtree rooted at x and both child
pointers are non-null. A root node stores in addition to these
values a pointer x.extra to the extra node for the tree.

We write x ⊑ y if x is a prefix of y. The invariant for
the tree is: For each b ∈ {0, 1}, if x.child[b] 6= ⊥, then
x.child[1 − b] 6= ⊥ and x.prefix + b ⊑ x.child[b].prefix. See
Figure 1 for an example.

3.2.1 Merging Two Patricia Trees: Global View
Below is a global description of the merging algorithm.

Though this is given as pseudocode for a centralized con-
troller, the reader should not be misled into thinking that
a centralized controller is required; instead, all steps of the
merge can be carried out by direct communication between
nodes in the trees, as we will describe later.
// Merge two Patricia trees in parallel, returning the new
root
// extra is the unused node needed for this merge procedure
procedure Merge(x, y, extra)

if x.prefix = y.prefix (Case 1)
// combine roots and merge matching subtrees in par-

allel:
x.child[0]←Merge(x.child[0], y.child[0], extra)
// y is freed and used as the extra node for submerge
x.child[1]←Merge(x.child[1], y.child[1], y)
return x

else if x.prefix ⊑ y.prefix (Case 2)
// merge y with appropriate subtree of x
let b be the first bit in y.prefix that is not in x.prefix
x.child[b]←Merge(x.child[b], y, extra)
return x

else if y.prefix ⊑ x.prefix (Case 3)
// merge x with appropriate subtree of y
let b be the first bit in x.prefix that is not in y.prefix
y.child[b]←Merge(y.child[b], x, extra)
return y

else if x.prefix and y.prefix are incomparable (Case 4)
// use the extra node to create a new node that holds

the common prefix

let p be the longest common prefix of x.prefix and y.prefix
let b be the first bit of x.prefix that differs from y.prefix
allocate a new node z = extra with:

z.prefix = p
z.child[b] = x
z.child[1− b] = y

return z

3.2.2 Merging Two Patricia Trees: Local View
As described above, we think of each node in the tree

as represented by a “virtual process” whose operations are
carried out by one of the actual processes in the system.
Allocating a new node consists of allocating a new virtual
process at some physical process. We extend our message-
passing model to allow virtual processes to communicate
with each other; this involves the corresponding physical
processes sending messages on the virtual processes’ behalf,
with appropriate tags to distinguish between a physical pro-
cess’s multiple virtual processes.

Each call to Merge is handled by the process
that holds node x, and is triggered by a message
(v, x, merge, y) from some initiator v, typically x’s par-
ent. In response, x first queries y for its state
with a message (x, y, getState) and y responds with
(y, x, returnState, (y.prefix, y.child[0], y.child[1])).3 Upon
receiving y’s state, x applies one of the four cases of the
Merge procedure, issuing up to two merge messages and
waiting for corresponding return messages before sending
its own return back to the initiator v.

Some additional machinery is needed to avoid sending
merge operations to children before they are ready; details
are given in the full paper.

Theorem 2. Merging two Patricia trees of size n and m
with W -bit keys requires O(W ) time, O(1) contention, and
O(min(n + m,W min(n, m))) messages of O(W ) bits each.

Proof. Start with the time bound. Consider a single call
to Merge as executed by some process x. The time for x to
complete this merge operation is the maximum time of any
recursive merges, plus O(1) time to send and receive all the
messages at the top level. Note that except for possibly re-
ceiving a return message, x is idle during the recursive calls,
so its physical process can simulate other virtual processes
with at most one time unit of delay (to receive the return)
during this time without increasing the contention beyond
O(1) as long as it simulates only one per branch of the tree.
The running time increases by O(1) for each level of the tree,
giving a total time of O(W ).

Now let us consider the total number of messages. Each
recursive call to Merge generates O(1) additional messages,
so we just need to bound the number of such calls. Each call
returns a distinct node in the combined tree, and the number
of internal nodes in the combined tree is bounded by n+m,
the number of leaves; this gives a bound of n + m. To get
the other side of the bound, let T (w, n, m) be the number
of calls needed to merge two trees where w is the number
of bits that are not in the common prefix of both trees, and
n and m are the number of elements in the two trees. Let
n0 and n1 be the number of elements in the left and right
subtrees of the first tree, and m0 and m1 be the number of
elements in the corresponding subtrees of the second tree.
Then we have

T (w, n, m) ≤ 1 + T (w − 1, n0, m0) + T (w − 1, n1, m1),

3To escape the one-identifier-per-message restriction, this
can be sent as three consecutive messages



with T (0, ·, ·) = T (·, 0, ·) = T (·, ·, 0) = 0.
We will now show by induction on w+m+n that T (w,m, n) ≤

w min(m, n). Clearly this holds for the base cases. Now
consider T (w, n, m) where w, n, and m are all nonzero, and
suppose the bound holds for w′+n′+m′ < w+n+m. Then

T (w, n, m) ≤ 1 + T (w − 1, n0, m0) + T (w − 1, n1, m1)

≤ 1 + (w − 1) min(n0, m0) + (w − 1) min(n1, m1)

≤ 1 + (w − 1) min(n, m)

≤ w min(n, m).

3.2.3 Merging Many Patricia trees
To merge many Patricia trees, observe first that in the

pairwise merge procedure above a new root is determined
immediately—it is not necessary to wait for the recursive
merges of subtrees to complete. It is thus possible to start
a new merge between the combined tree (as represented by
its new root) and another Patricia tree (which may also be
the result of a recently-initiated merge) without waiting for
the subtree merges to complete. If we think of the first
merge operation as a wave propagating down through the
trees, the second merge operation propagates as a wave just
a few steps behind it. Subsequent merge operations can
be similarly pipelined, so long as we have enough processes
to handle the operations at the individual tree nodes. The
result is that a tree of merges of maximum depth k can be
completed in O(k + W ) time.

We do not use pipelined merges, as limitations of the pair-
ing algorithm and supernode simulation require merges to
be carried out sequentially. However, we can imagine an
improved pairing algorithm that chooses new pairings while
merges are still in progress. The ability to pipeline merges
may also have other applications, such as building a Patricia
tree from a pre-existing but unsorted balanced tree of nodes
obtained by some other means.

3.3 Simulating Supernodes
Intuitively, the idea behind the tree-construction algo-

rithm is to use the merging procedure to join each pair of
nodes selected by the pairing algorithm into a single compo-
nent that acts like a single “supernode” in the next round of
pairing. If contention were not an issue, we could simulate
such a supernode easily by choosing a single representative
of each component, and have it handle all the edges that
previously went into some member of the component.

The problem with this approach is that we will quickly
raise the degree of the representative nodes; toward the end
of the algorithm we this accumulation of edges could produce
both linear contention and a linear slowdown in the pairing
procedure. To avoid these problems, we organize the mem-
bers of a component in a binary tree, and leave the task of
communicating with other components to the leaves, with
the root acting as a global coordinator. In this construc-
tion, the neighbors set is distributed across the leaf nodes,
while the other components of the supernode’s state reside
at the root. The resulting protocol is similar in many ways
to the classic distributed minimum spanning tree protocol
of Gallager et al. [8], although the internal communication
costs of components are reduced by our ability to construct
a balanced tree by adding new edges to the communication
graph.

In carrying out this strategy, we have to be very careful
to ensure that the atomic operations of the daemon threads
continue to appear atomic. If we were willing to accept sub-

stantial overhead, a natural approach would be to serialize
the processing of incoming messages at the leaves using a
parallel-prefix computation [15], taking advantage that the
effects of processing the various incoming messages on the
states can be summarized as simple state updates plus pos-
sible assignment to the variables waiting and obj, and such
operations are composable. However, this approach could
in the worst case require a parallel-prefix operation on the
entire tree to collect and process a single incoming mes-
sage, giving an O(n) worst-case blow-up in message traffic.
Instead, we will consider the structure of the pairing algo-
rithm carefully, and show that many incoming messages can
be sent directly to the root of the tree without significantly
increasing contention, while others can be processed using a
convergecast operations.

The key observation is that at any time a supernode has
at most one designated predecessor and at most one desig-
nated successor node, and that only these nodes can send
propose, pair, and no pair messages. So these messages (and
their responses) can be sent directly between roots, and the
roots can update the state of the simulated supernode lo-
cally. (To enable this, we assume that all messages are ex-
tended by including the identity of the root node of the send-
ing component, and all message-ids within.) For reasons of
space, we do not discuss processing of these messages fur-
ther. However, probe messages and their responses occur in
much greater abundance, and thus require special handling.

3.3.1 Consolidating Probes and Probe Responses
Probe messages appear in the algorithm in two places: in

the main thread, the supernode sends probes to all neighbors
and waits for responses, and in the daemon thread handling
received probes, the supernode must accept only the first
probe. The main thread must also collect up to d responses
per leaf node and pair off those that accept.

The task of sending probes and collecting responses is
handled by a modified convergecast procedure, initiated by
the root. Pseudocode for each node’s role in this proce-
dure is given below. A wrinkle that does not appear in the
simple pairing algorithm is the same component response;
this allows a node to detect that its neighbor is in the same
component and should not be troubled further.

Upon receiving message (parent, u, initiate probe) from
node parent do:

If u is a leaf node:

For each v ∈neighbors, send a message
(u, v, probe, root) to v and wait for all replies.

For each node v that replies with
(v, u, same component), remove v from neighbors.

Let v1, . . . vk be the nodes that reply with ‘accept.’ For
each odd i less than k, send a message (u, vi, pair, vi+1)
to vi and (u, vi+1, pair, vi) to vi+1. If k is odd, send
(u, parent, respond probe, vk) to parent.

Else u is an internal node:

For each child node c, send (u, c, initiate probe) and
wait for all replies.

Let V be the union of all sets of nodes appear-
ing in the replies. If V = v1, v2, send messages
(u, v1, pair, v2) and (u, v2, pair, v1) to v1 and v2, and
send (u, parent, respond probe, ) to parent. If instead
|V | < 1, send (u, parent, respond probe, V ) to parent.



The code at the root is similar to the case for an inter-
nal node, except that a singleton surviving element of V
becomes the chosen successor as in the original pairing al-
gorithm.

Note the addition of the root variable to the probe mes-
sage, which tracks the root of the component that u belongs
to. We assume that this variable is updated as part of the
merge protocol.

Incoming probes are similarly handled by a convergecast
operation. The idea is that any node receiving one or more
probes forwards the first to its parent and rejects any others.
This allows the root to accept exactly one incoming probe
on behalf of the simulated supernode. Enforcement of the
reject-all-but-one strategy is handled using a flag probed that
is reset during the merge procedure. Note that this flag
appears in both leaf and internal nodes; a process simulating
two such nodes must maintain two separate flags.

Upon receiving message (v, u, probe, root′) from node v do:

Let neighbors←neighbors∪{v}.

If root′ = root send (u, v, same component) to v.

Else If probed = 0: send (u, parent,probed, u, root′)
to parent and set probed ← 1.

Else Send (u, v, reject) to v.

Upon receiving message (v, u, probed, leaf, root′) from
node v do:

If probed = 0: send (u, parent,probed, leaf, root′)
to parent and set probed ← 1.

Else Send (leaf, v, reject) to v.

The root responds to probed messages as if they were
probes: accepting and switching to a PROBED state if in
an ISOLATED state, and rejecting otherwise.

It is not difficult to see that these procedures correctly
simulate the behavior of the pairing algorithm in handling
probe messages. The only tricky part of this analysis is to
argue that message arrivals are serialized properly: in par-
ticular, responses to probes arrive at times that are consis-
tent with the behavior of a single node running the pairing
algorithm. But here the assumption that the system is asyn-
chronous works for us, as the algorithm guarantees that a
probe is rejected only if some other probe can be accepted,
and the delay in propagating any probe that is ultimately
accepted up the tree can be hidden behind asynchronous
message delays. For a synchronous system, we can instead
explicitly delay responding to any probes until the converge-
cast has had time to terminate. We omit the details.

3.4 Building a Ring
The preceding sections allow us to build a tree of nodes

quickly, but do not quite achieve our original goal of building
the sorted base ring of a ring-structured distributed data
structure like Chord or a skip graph. Building such a ring
is, fortunately, an easy extension of building a binary tree,
as it is enough for each leaf node to know its successor,
which can be computed quickly from the tree structure. A
natural way to do this is to have each node in the tree keep
track of its minimum and maximum leaf, values which can
easily be updated during the merge procedure. To inform
a leaf node of its successor, we pass with each recursive
call to Merge the identity of the first node to the right of
the trees being merged (the minimum-key leaf node in the
case of the rightmost trees). This value is either obtained

from the parent call, for the right subtrees, or by taking the
minimum of the leftmost values of the right subtrees, for the
left subtrees. Details are given in the full paper.

3.5 Failures, Latecomers, and Churn
An important issue in building peer-to-peer systems is

churn, the rapid arrival and departure of component nodes.
Arrival of new nodes is not a problem: we can simply treat
them as very slow nodes in the asynchronous pairing al-
gorithm. But our algorithms do not deal well with node
departures; indeed, the failure of any node during the tree-
construction procedure could in principle lead to deadlock
of the entire system. We believe that a judicious use of time-
outs combined with restarting parts of the algorithm could
handle such difficulties, but avoiding deadlocks or inconsis-
tencies will require substantial further work.

4. LOWER BOUNDS
The upper bound of O((d+W ) log n) on time to sort nodes

in a weakly-connected graph contrasts with our best current
lower bound of Ω(d + log n), which is proved in this section.
We suspect that the lower bound is closer to the optimal
time; this issue is discussed further in Section 5.

The model we use here is a simplification of the one de-
fined in Section 2. During the algorithm, each vertex in
a weakly connected directed graph G represents a process
with some unique identifier u, maintaining a knowledge set
Ku which contains the identifiers of endpoints of all its
outgoing edges. A communication is denoted as a triple
(u, v, w), where u, v and w are processes identifiers as well
as v, w ∈ Ku, and after the communication, Kv becomes
Kv ∪ {w}, as well as a new directed edge from v to w is
added to G. A procedure is defined as a sequence of such
triples, which are arranged into different time units, where
in each time unit there is at most one triple starting with
u for any u in G. Besides, a total order of all identifiers is
given and for each identifier u, there is a unique successor,
denoted as succ(u). A procedure is said to yield a sorted
list from G, if after the procedure, for any u in G, it holds
that succ(u) ∈ Ku.

One may easily notice that this model only captures the
aspect of exchanges of knowledge of identifiers. However,
since the knowledge availability is a necessary condition for
the sorting problem, this model is sufficient to build the
lower bounds.

In the full paper, we show that (a) any graph with diam-
eter ∆ requires Ω(log ∆) time to sort in the worst case, and
(b) any graph that can be separated into d components by
the removal of a single vertex requires Ω(d) time to sort in
the worst case. Considering a graph consisting of a degree-d
star with a chain of n − d − 1 nodes attached to one of its
outer vertices then gives:

Theorem 3. For any n > d > 0, there exists a degree-
d weakly-connected graph of n nodes with some identifier
permutation, such that, for any procedure, yielding a sorted
list from this graph requires Ω(d + log(n− d + 1)) time.

Proof. Let G be a graph whose underlying graph is a
d-degree star with a chain of n − d − 1 vertices connected
to one of its outer vertices. Notice that the diameter of G’s
underlying graph is n−d+1, and after removing the central
vertex of star, G is separated into d components. Then by
the above two lemmas, it is easy to obtain the lower bound
on the running time Ω(d + log(n− d + 1)).



5. CONCLUSIONS
We have described an asynchronous distributed algorithm

for quickly converting the nodes in a weakly-connected pointer
graph into the leaves of a Patricia tree with depth bounded
by the length of node identifiers. Applications of this pro-
tocol include solving resource discovery or leader election
subject to contention, message-size, or memory constraints
that limit how many identifiers can be transmitted in a sin-
gle message or stored in a single node; and the construction
of sorted lists as a foundation for more sophisticated peer-to-
peer data structures. The application to peer-to-peer data
structures is of interest not only for building such structures
quickly ab initio, but also as a repair mechanism for dam-
aged structures; our protocol is fast enough that it is would
not be unreasonable to use it to repair damaged structures
by periodically rebuilding them from scratch.

Our analysis assumes that no failures occur during its ex-
ecution, an assumption unlikely to hold in practice despite
the speed of the algorithm. Handling failures is an interest-
ing avenue for future work.

Finally, the optimal running time of self-sorting starting
from a weakly-connected knowledge graph remains open.
Our upper bound of O((d + W ) log n) for the synchronous
model is tantalizingly close to our lower bound of Ω(d +
log n), and it would not be surprising if the extra near-
logarithmic factor of W could be eliminated by pipelining
the effectively sequential phases of the pairing algorithm.
The key difficulty is that until a merge reaches them, it is
difficult for the nodes deep in a newly-combined component
to distinguish between external edges and edges that are now
internal to the component. Such an improvement would re-
quire either a mechanism for discarding internal edges from
each component quickly, or for choosing candidate external
edges in a way that produced good pairings with high prob-
ability. We plan to pursue such possibilities in future work.
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