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Abstract. The advantage of the RDF/DAML+OIL family of languages
over ordinary XML is that it is topic-neutral and composable. However,
its expressivity is severely limited. This limitation is well known, and the
usual remedy is reification, in which RDF is used to describe formulas in
aricher language. We propose a method for encoding typed predicate cal-
culus using reification, which handles bound variables cleanly and causes
the size to increase by only a constant multiple. The method generalizes
to virtually any system, a claim which we illustrate by describing our
program, PDDAML, which encodes domain specifications in PDDL us-
ing our technique. We argue that reification, while logically suspect, is in
practice benign because any algorithm capable of doing inferences using
logical notations can be easily extended to “unreify” those notations as
needed. We also argue that the ability to represent predicate calculus on
the semantic web is crucial.

1 Introduction

The “semantic web” really ought to be called the “inferential web.” Although
people often talk as though RDF [7] and related tools such as DAML+OIL [12]
specify the “meaning” of symbols, they really specify relations among symbols
that allow inferences to be drawn. RDF can be thought of as a simple logical
system in which assertions are made about objects denoted by URIs. By provid-
ing a uniform syntax, it allows for different RDF documents to be combined in a
straightforward way. This contrasts with XML, in which the allowable contents
of an element depend entirely on the meaning of its tag. In RDF, whether an
element is a description or a property is easy to determine syntactically, and
RDF puts no restrictions at all on what values a property can have. Hence an
arbitrary RDF node can occur as the value of a property, and that node can
itself have an indefinite amount of further descriptive material. A description in
one document can be pointed to from another, without any restrictions on how
the vocabularies of the two documents relate.
However, RDF does have limitations:

* This research was supported by the DARPA DAML program. The technical ideas
in the paper were arrived in collaboration with Jonathan Borden, Mark Burstein,
Doug Smith, and several other contributors to the www-rdf-logic mailing list.



1. Tts syntax is a graph structure, reminiscent of semantic networks. Such graph
structures have well-known problems with scoping of quantifiers, negations,
and disjunctions. RDF solves these problems by disallowing all these con-
structs. (Anonymous nodes can be considered to be existentially quantified,
but the scope of the quantifier is the entire graph [5].)

2. It does not allow arbitrary terms, just bags and sequences.

There are two ways of fixing these bugs: by extending RDF, or by building
on top of RDF using some sort of quotation device, such as reification. The
former approach seems more natural, but runs into opposition from users and
developers who believe that the simplicity of RDF is worth preserving. So in this
paper we use the second approach.

Reification is the use of RDF to describe formulas in another language, which
we call the embedded language. We use the word “another,” but of course the
language may look a lot like RDF itself. Describing a formula is a matter of
providing an RDF graph whose properties correspond to the syntactic relations
of the embedded language. For instance, consider a simple language whose gram-
mar is

S—al|b|c
S—(SSS)

The sentence (a { b b b ) ¢ ) might be described by the RDF graph:
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The graph is expressed in “triples” thus:

(top rdf:type S)
(top second g2)
(top third c)



(top first a)
(g2 rdf:type S)
(g2 first b)
(g2 second b)
(g2 third b)

Our goal in this paper is to explain how to embed logic in RDF using reifi-
cation, and to argue that embedding logic this way is a good idea. We will use
Lisp-like notation for logical formulas, specifically the typed logic of PDDL [8].
So the formula traditionally written as Vz(P(z) D Q(z)) will be written as
(forall (x) (if (P x) (Q x))).If type declarations are involved, we declare
the types of variables by writing “—wvars— - type,” as in

(forall (x y - animal)
(if (and (predator x) (bigger x y))
(fears y x)))

2 Our Approach

It is easy to do the wrong thing when embedding logic using reification. For
instance, if one thinks of implication as a relationship between two reified for-
mulas, then (if (if P @) R) becomes a relationship between two objects,
the first of which contains the reification of two reifications. As can be seen from
the example above, reification blows up the size of anything it is applied to. We
can tolerate one layer of this blowup, but any solution that requires reifications
of reifications of ...is ruled out.

Fortunately, this will not happen if we think of reifying entire expressions.
Again appealing to our simple example, the fact that we have S’s inside S’s
doesn’t cause a blowup, because each S becomes a node of type S. Here we use
type in the technical sense used in [7], and we view it as roughly synonymous
with a DAML+OIL class [12]. To embed logic, we will simply take if, or, and
other connectives to correspond to classes. So the formula (if (if P Q) R)
will get transformed to

(top rdf:type drs:If)

(top drs:antecedent g3)
(top drs:consequent R)
(g3 rdf:type drs:If)
(g3 drs:antecedent P)
(g3 drs:consequent ())

For conciseness we will use the N3 notation [1,2] for RDF instead of the XML
serialization. The result is:

:top a drs:If;
drs:antecedent [a drs:If;



drs:antecedent P;
drs:consequent QJ;
drs:consequent R.

Here we have pretended that P, @), and R are atomic, but if they aren’t we
can just continue the process. We use the namespace prefix drs: to refer to
symbols that are part of our system. For brevity, we will use drs as the default
namespace, and drop it in what follows.

We extend N3 slightly, in the spirit of the type abbreviations used in [7].
When “a T” (N3’s notation for <rdf:type resource="T"/>) occurs as the
first element of a node (as it often, by convention, does), we use a little syntactic
sugar to write it as T'/. So the example above could be written:

:top If/
antecedent [If/
antecedent P;
consequent (J];
consequent R.

When we reach an atomic formula, of the form (predicate —args—), we use
the basic trick of [7], describing it as having three parts, subject, predicate, and
object. So (loves Fred Sally) would be represented as

[Atomic_formula/ rdf:subj Fred!;
rdf :pred lovest;
rdf:obj Sally']

where we use daggers to remind you that in practice these terms will be resolved
into URIs, or possibly something more complex.

The basic trick won’t work unless there are exactly two args. In all other
cases, we represent the arguments after the first by a term sequence, defined as
a DAML+OIL list [12] whose elements are all terms.

Terms are defined in the usual way, as constants, variables, or functional
terms, of the form (f —args—). We translate them into an instance of the
class Functional_term, whose function property is f! and whose term_args
property is a term sequence. So the logical formula

(child Bates (mother Bates) (father Bates))
“Bates is the child of Bates’s mother and Bates’s father.”

would be translated into the RDF

[Atomic_formula/
rdf :subj Bates';
rdf :pred childf;
rdf:obj [Term seq/
rdf:_1 [Functional_term/
term_function motherf;



term_args[Term seq/
rdf:_1 Batest]];
rdf: 2 [Functional_term/
term_function fatherf;
term_args [Term seq/
rdf:_1 Bates]1]]1]

Of course, we must also provide an XML serialization of the formula, which
is what computers produce for consumption by other computers on the net:

<Atomic_formula>
<rdf:subj> Bates' </rdf:subj>
<rdf:pred> child! </rdf:pred>

<rdf:obj>
<Term_seqg>
<rdf:_1>
<Functional _term>
<term_funct ion>motherf</term_funct ion>
<term_args>
<Term_seq>
<rdf:_1>Batest</rdf: 1>
</Term _seq>
</term args>
</Functional term>
</rdf:_1>
<rdf: 2>
<Functional _term>
<term_function>fatherf</term function>
<term_args>
<Term_seq>
<rdf:_1>Batest</rdf: 1>
</Term_seq>
</term args>
</Functional_term>
</rdf: 2>
</Term seq>
</rdf:obj>
</Atomic_formula>

The only part of the translation framework left to explain is how variables
are handled. The obvious variable binders (and declarers) are the standard quan-
tifiers forall and exists, but there are other possibilities, such as the lambda
expressions allowed by higher-order logic. Here we will focus on the standard
quantifiers only, but the idea will work for all variable binders.

When a variable is declared, it is meaningful only within the scope of its
quantifier. RDF provides no notion of scoping. A described entity may be given
a name by the use of the ID attribute in a description of it. If you write



<rdf:Description rdf:ID="x"> then anywhere else in the file you can re-
fer to the object described by using the attribute resource="#x". Hence IDs
behave like existential variables whose scope is the entire graph (or document)
they occur in. There is no way to narrow the scope of an ID, thus avoiding name
conflicts among variables that happen to have the same name. There is no way
to declare an ID to correspond to a universally quantified variable.

The solution is to defer the issue to the quoted level. Name conflicts are
avoided by making up a new name for each variable as it is encountered. Vari-
ables just become anonymous entities with features such as being universally
quantified. So the formula (forall (x - Person) (moral_agent x)) would
become

[Forall/
quantifier_vars
[variables 1list/
rdf: 1 :var_1];
body
[Atomic_formula/
rdf:subj :var_1;
rdf:pred moral_agent’]]

:var_1 a Var; name "x"; type Personf.

Here we have made the rdf : type property (“a Var”) of var_1 explicit, in order
to contrast the rdf:type and the type (i.e., the drs:type) properties of a vari-
able, which play two entirely different roles. The former identifies the the variable
as a variable, syntactically; the second constrains the values of the variable to
be objects of type Person.

The collection of classes Atomic_formula, Term seq, etc. and their interrela-
tions constitute an ontology in the formal sense. A DAML+OIL formalization of
that ontology may be found at http://www.cs.yale.edu/ dvm/daml/drsonto.daml.

Let us be perfectly clear about what we are doing here. When one uses
reification, one commits to describing a formula rather than directly ezpressing
it. The description of a formula does not by itself assert that formula. It may be
taken as asserting that such a formula exists, but that assertion conveys no useful
information, because every syntactically well-formed formula (and perhaps many
others) already exist. Hence, reification is useful only when used in conjunction
with tools that know to treat the description of a formula in a certain context
as the assertion of that formula. We will come back to this issue in section 4.

3 Application: Web-PDDL

PDDL, the Planning Domain Definition Language [8], is used to define domains
and problems for input to automated planners. It was originally developed as the
input language for the semiannual AI Planning Systems (AIPS) Competition,
but has gained acceptance as a standard for classical planners generally. PDDL



continues to evolve under the guidance of the ATPS Competition Committee.
In this paper, we have taken the liberty of evolving it in a slightly different
direction, which we will discuss as we go. We will call the result Web-PDDL.!

Web-PDDL is not just a curiosity as far as the World-Wide Web is con-
cerned. There is intense interest in development of notations for describing web
services [3], and PDDL is ideal for that purpose. Its purpose is to describe sets
of actions an agent can take, and what their preconditions and effects are. In
the Web world, actions comprise the sending and receiving of messages; typical
preconditions include knowing data to be included in a message, and typical
effects include learning information, putting an order in a “shopping cart,” or
finalizing a purchase.

Web-PDDL uses the Lisp-like syntax described in section 2, with special ex-
tensions for describing actions and declaring the types of symbols. (The resulting

enlarged ontology may be found at http://www.cs.yale.edu/ dvm/daml/pddlonto.d

Type declarations, actions, and axioms are organized into domains. A domain
can inherit the contents of other domains, so they can be mixed and matched [8].
Here is an example:

(define (domain www-agents)
(:extends (uri "http://www.yale.edu/domains/knowing")
(uri "http://www.yale.edu/domains/regression-planning")
(uri "http://www.yale.edu/domains/commerce"))
(:requirements :existential-preconditions :conditional-effects)
(:types Message - Obj Message-id - String)

(:functions (price-quote ?m - Money)
(query-in-stock ?pid - Product-id)
(reply-in-stock 7?b - Boolean)

- Message)

(:predicates (web-agent 7x - Agent)

aml)

(reply-pending a - Agent id - Message-id msg - Message)

(message-exchange 7interlocutor - Agent
?sent 7received - Message
?7eff - Prop)

(expected-reply a - Agent sent expect-back - Message))

(:axiom
:vars (7agt - Agent 7msg-id - Message-id
7sent 7reply - Message)
:implies (normal-step-value (receive 7agt 7msg-id)
7reply)
:context (and (web-agent 7agt)

! Some of the features we discuss are not yet fully operational, and we will point these
out as we go.



(reply-pending 7agt 7msg-id 7sent)
(expected-reply 7agt 7sent 7reply)))

(:action send
:parameters (7agt - Agent 7sent - Message)
:value (7sid - Message-id)
:precondition (web-agent 7agt)
:effect (reply-pending 7agt 7sid 7sent))

(:action receive

:parameters (7agt - Agent 7sid - Message-id)

:vars (7sent - Message 7eff - Prop)

:precondition (and (web-agent 7agt)

(reply-pending 7agt 7sid 7sent))
:value (?received - Message)
:effect (when (message-exchange 7agt 7sent Preceived 7eff)
7eff)))

This description, of domain www-agents, describes two actions, send and receive?
The www-agents domain extends the domains knowing, regression-planning,
and commerce, identified by URIs®

In turn, this domain can be used as a foundation for other, more specific
domains about the content of particular messages. Symbols such as Agent (from
the commerce domain, and know-val from the knowing domain, can be freely
inherited here and in descendent domains. In other words, a domain closely
resembles a DAML+OIL ontology, a resemblance we shall return to below.

The task at hand is to translate PDDL domain definitions into RDF. Many
of the subexpressions of a domain definition are logical formulas of the sort
we discussed in section 2, but the top level of a domain includes idiosyncratic
constructs such as (:action name ...). But these new constructs present no
particular problem, because we can use the same bag of tricks as in section 2,
introducing rdf : types such as pddl:Action. For example, the embedding of the
send action into RDF is

:send pddl:Action/
pddl:parameters [Param seq/ rdf:_1 :ag20; rdf: 2 :me21];
pddl:value [Param seq/ rdf:_1 :me22];
pddl:precondition [Atomic_formula/
rdf:subj :ag20;

2 The :functions field of the domain definition is an extension of PDDL 1.0, but it
will be incorporated into the PDDL2.1 the next official version. The :value field of
:action definitions is our own extension, which we hope will eventually become an
official part of PDDL.

3 For testing purposes, we currently load all such domains in advance, and
do not have the program actually visit remote sites for domains such as
"http://wuw.yale.edu/domains/commerce".



rdf:pred :web-agent;
rdf:obj drs:empty];
pddl:effect [Atomic_formula/
rdf:subj :ag20;
rdf:pred :reply-pending;
rdf:obj [Term-seq/
rdf:_1 :me22;
rdf: 1 :mel1]].
:ag20 Param/ name "7agt"; type com:Agent .
:me21 Param/ name "7sent"; type com:Message .
:me22 Param/ name "7sid"; type com:Message-id .

(In this formula, the presence of drs:empty as the object (“rdf:obj”) of the
predicate :web-agent indicates that it is unary.)

The translation from PDDL to RDF is straightforward. We treat PDDL
expressions as trees in the usual Lisp way. The first element of each expres-
sion gives its basic syntactic type. It is either a PDDL reserved word (such
as :precondition), a connective (such as and or when), a predicate (such as
reply-pending), or a function (such as price-quote). Connectives and func-
tions are handled by a recursive walk through their arguments. A predicate is the
beginning of an atomic formula, which is reified into four triples (for rdf:type,
rdf:subj, rdf:pred and rdf:obj) as exemplified above, the only complexity
being how the object is handled. In any case, because the subject and object
may be arbitrary terms, the recursive walk must continue through them.

Each reserved word has its own special handler. For example, the word
:requirements must be followed by a list of “requirement” names (we discuss
the purpose of these in section 4). The handler for :requirements creates a
rdf :Bag whose elements are strings corresponding to the requirement names,
and makes it the value of the requirements property of the domain being con-
structed.

The output of this process is a set of triples, as described in [7], such as

:www-agents requirements :bag309 .

which are equivalent to an RDF graph.

It is important to keep track of multiple pointers to a given node of that
graph. For identifiers like web-agent, it is obvious that any occurrence of that
identifier must be translated into the same internal node (which we give the
name :web-agent in N3, or resource="#web-agent" in the XML version). For
variables we have to use special internal names to avoid scope ambiguities, as
explained in section 2. Every time we create a graph node, we enter it into a
hash table to ensure that we can find it the next time we need a reference to it.

Having produced the set of triples, we print out its XML serialization, in as
readable a format as we can. Space does not allow us to show that serialization
here; we will continue to use N3 to show RDF encodings.

Wherever possible, the Web-PDDL translator outputs its content in a way
compatible with DAML+OIL. As we said above, a domain resembles an ontology,



so in fact we output the standard DAML+OIL ontology boilerplate as the top
level of our domain representation:

<rdf :RDF

xmlns:rdf = "http://www
xmlns:rdfs ="http://wuw
xmlns:daml ="http://wuw
xmlns:xmls ="http://www

xmlns ="">

<daml:0Ontology rdf:about="">
1abe1>www—agents</rdfs:1abe1>

<rdfs:
<daml:
<daml
<daml:
<daml:
<daml:
<daml:

imports

:imports

imports
imports
imports
imports

rdf
rdf
rdf
rdf
rdf
rdf

:resource="http
:resource="http
:resource="http
:resource="http
:resource="http
:resource="http

Insert domain content here

</daml:0Ont
</rdf:RDF>

ology>

2/ [ww .
2/ /www .
2/ /v .
2/ /e
/e
/e

daml.
yale.
yale.
yale.
yale.
yale.

.w3.0rg/1999/02/22-rdf-syntax-ns#"
.w3.0rg/2000/01/rdf-schema#"
.daml.org/2001/03/daml+oil.daml#"
.w3.0rg/2000/10/XMLSchema#"

org/2001/03/daml+oil.daml" />
edu/domains/drsonto"/>
edu/domains/pddlonto"/>
edu/domains/knowing"/>
edu/domains/regression-planning"/>
edu/domains/commerce" />

Types in Web-PDDL resemble classes in DAML. In fact, types are simpler
than classes. The relationships between types are declared once and for all,
and two atomic-named types are disjoint unless one is a subtype of the other.
Because they are simpler, PDDL types can simply become DAML classes. For
the www-agents domain, we output?:

<daml:Class rdf:ID="Message"/>
<daml:Class rdf:ID="Message-id">
<rdfs:subClass0f rdf:resource="#String"/>
<daml:disjointWith rdf:resource="#Message'"/>
</daml:Class>

Our translator can also translate back from a DAML+OIL ontology to Web-
PDDL. It checks to see if the ontology imports the Web-PDDL ontology
("http://www.yale.edu/domains/pddlonto"), and if so it assumes that an oc-
currence of a description of a formula is to be taken as an occurrence of the
formula itself. It also assumes that the classes declared in the ontology can be

turned into Web-PDDL types.

Reconstructing the Lisp-like syntax of formula descriptions is straightfor-
ward. The translator parses XML into RDF triples. The triples are isomorphic
to a Lisp list structure, with IDs playing the role of pointers, so it is easy to walk

4 The current version of our algorithm does not actually map types to classes in this
way, but treats types as ordinary PDDL symbols.



through the triples rebuilding the PDDL formulas. Of course, we have to undo
the tricks we used for the arguments to functions and non-binary predicates.

We have made our program, called PDDAML, available on the web at
ftp://ftp.cs.yale.edu/pub/mcdermott/daml pddl translation doc.tar.gz,
and also from the daml . org tools library (http://www.daml.org/tools/pdd12daml).
The program is written in Java. The internal object model for RDF graphs is
based on that of Jena (an experimental RDF parser written by Brian McBride,
and available at http://www.hpl.hp.co.uk/people/bwm/rdf), although we made
several adjustments to it. We developed the algorithms for parsing, reifying,
unreifying, and printing from scratch. Because PDDL looks like Lisp, and is
conveniently represented as Lisp list structures internally, we used a simple im-
plementation of Lisp’s data types in Java. It may occasionally sound as if we are
talking about a Lisp program, but Lisp-o-phobes may reassure themselves that
the program is pure Java.

4 Objections and Replies

We have encountered several objections to the proposal we make here:®

1. “The fact that RDF can be used to encode the syntax of other, richer lan-
guages is already well known. DAML4OIL basically used the same trick to
encode a description logic in RDF.”

2. “DAML+OIL does ‘layering’ the right way, so that expressions in the new
layer are also expressions in RDF, with the same meaning. The encoding of
Web-PDDL lacks this property.”

3. “Typed predicate calculus has little in common with RDF (e.g., object-
oriented notions like class, subclass, range, and domain are not all directly
applicable). There’s a good reason why RDF has evolved toward description
logics and not toward predicate calculus: theorem proving is a computational
quagmire.”

4. ”A scheme of this sort is worthwhile only if everyone uses it. If another
scheme gains popularity, no one will write programs that understand Web-
PDDL, and so no one will represent anything in Web-PDDL.”

To the first objection the reply is simple: We know of no previous system
for representing disjunction and bound variables in RDF that does not suffer
from exponential blowup. DAML+OIL does not use a “trick” similar to ours.
In fact, it doesn’t have to use any tricks, because RDF is essentially a subset of
DAML+4OIL. That’s why DAML+OIL can not handle disjunction or implication,
which are simply unrepresentable in RDF, due to the fact that asserting any RDF
graph asserts all its subgraphs.

To objection 2 we reply that we have tried wherever possible to use DAML+OIL
representations. For instance, we declare Web-PDDL types to be DAML+OIL

% Some of these are quotes or paraphrases of comments from anonymous referees who
rejected an earlier version of this paper submitted to the World-Wide Web 2002
conference.



classes instead of reifying their declarations. But there fewer opportunities for
using DAML+OIL-style representations than one might think. A simple fact
at the top level of a domain would qualify. For instance, if a domain asserted
(sells wabash.com books), that could become a single triple :wabash.com
:sells :books. instead of a description of an atomic formula. But domains
usually assert type declarations and axioms, not atomic formulas.

As far as objection 3 is concerned, we agree that general-purpose theorem
proving is unlikely to be a useful technique on the web, and that therefore various
special-purpose techniques (such as Horn-clause theorem proving, or inference
using description logics) will play a key role. However, we disagree that the best
way to control inference is by limiting the syntax of the representation langugage.
A good illustration of this point comes from the field of automated planning. The
planning problem is intractable, but that has not prevented the development of
algorithms that can produce plans with hundreds of steps, in time measured
in seconds, not hours.® These algorithms require domain specifications using
notations of the complexity of Web-PDDL. One way this complexity is controlled
is through a set of “requirement declarations” that allow domain definers to
specify exactly which subset of PDDL the domain requires. In the www-agents
domain we specified:

(:requirements :existential-preconditions :conditional-effects)

which allows a planner that can’t cope with existential preconditions or condi-
tional effects to recognize immediately that the domain is beyond its reach. But
when all is said and done, any planner can potentially run forever on a problem
that appears to be within its domain; the only way to prevent that is to ration
the time it is allowed to take.

The obvious conclusion is that “notation-complexity control” is not the re-
sponsibility of the designers of RDF. On the other hand, RDF is not likely to
evolve into a language with syntax so general that every notation in the world
(PDDL, KIF [6], ...) is a subset of it. Hence there will probably always be a
need for languages embedded in RDF by reification or some other “quoting”
technique.

Achieving interoperability across the web requires managing several nota-
tional levels. At the lowest level we have XML, which is rapidly becoming a
standard. Above that we have XML-based languages, which supply particular
vocabulary items to allow domain-specific structures to be described. For many
applications, this is all you need. However, to achieve the sort of self-description
the semantic web would be based on, we need languages for describing resources
in a way that is neutral and composable. RDF can play that role, but to achieve
more expressive power we must go one step further and embed more complex
languages in RDF.

5 We hasten to add that most of the domains these algorithms can handle are artificial;
planners that can actually find plans in realistic domains such as web services are
still in the “laboratory curiosity” stage.



All these levels may sound messy, but there are good reasons for each level,
and the problem of translating them all into a uniform internal representation
is tricky but tractable, as we have demonstrated. The difficult part arises when
we run into differences in vocabulary — or “ontology” — among different infor-
mation sources. That is a subject of ongoing research [11].

Finally, there is objection 4, that if our encoding does not become standard
then no one will hear of it again. This does bother us, since it may keep us from
becoming rich and famous. The real question, however, is whether something
with essentially the same power is going to be necessary. We believe the answer
is Yes. If the notation of the future improves on our proposal, or even if it’s just
inexplicably more popular, we will cheerfully switch to it.

5 Conclusion and Related Work

We have argued that it is possible and useful to embed general logic constructs
in RDF and XML. We have demonstrated the possibility by providing a pro-
gram, PDDAML, that translates between RDF/XML and PDDL, the Planning
Domain Definition Language. We are incorporating this in a system for planning
interactions with web services [9].

The key technical contribution is a method for representing arbitrary for-
mulas with bound variables as elements of RDF classes. Logical symbols of
the embedded language (such as or in predicate calculus) are translated into
rdf:types, so that (or P @) becomes a description of an entity of type Or
whose arguments are Px and @, the translations of P and Q. For a fuller tech-
nical description see [10]. Similar ideas were proposed in [4]. The N3 notation [2]
was originally intended as a concise encoding of RDF graphs, and that is how
we have used it here. Lately Berners-Lee has made extensions that go beyond
the expressive power of RDF; if these should be incorporated into RDF it would
make it easier for us to embed logic in RDF, and reduce the number of places
where quotation devices would be necessary.

The ability to represent arbitrary formulas in RDF should free us from think-
ing of the semantic web as graph structures serialized as a nightmarish number
of pointy brackets. The semantic web will surely exist as a marketplace of alter-
native notations, which will show up as alternative quotational ontologies at the
notational level, just as alternative ontologies will coexist at the context level.
Only a few of the competing notations will survive. We argue that the winners
will be those notations that have the following properties:

— Declarativeness: Good notations will express truths. Any inference engine
with access to their ontologies can make inferences from them.

— Composability: An expression from one source can be combined with an
expression from another, regardless of whether their designers intended that.

— Generality: A notation should be able to express what people want to express.

— Maintainability: Information sources will evolve, and they must be compre-
hensible to their maintainers for this to be so.



If we are right, then notations such as WSDL [3] will wither away in favor of
alternatives that describe services instead of dictating (to someone with a man-
ual) how to write code to connect to them. Notations such as RDF will have to
evolve to allow disjunctions and quantifiers, or quotational devices such as the
one we have presented will have to become standard. And, finally, XML serial-
izations should be hidden away from human view lest small children accidentally
see them and become frightened. XML is a wonderful way of making data “self
describing” to a computer; to a person, it’s a way of concealing information. It
is especially critical for the semantic web that better surface notations be found.
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