
Plan Constraints and Preferences in PDDL3

The Language of the Fifth International Planning Competition

Alfonso Gerevini+ and Derek Long∗
+ University of Brescia (Italy), gerevini@ing.unibs.it

∗ University of Strathclyde (UK), derek.long@cis.strath.ac.uk

Technical Report, Department of Electronics for Automation, University of Brescia, Italy, August 2005

1 Motivations and Goals

The notion of plan quality in automated planning is a practically very important issue. In many real-world
planning domains, we have to address problems with a large set of solutions, or with a set of goals that
cannot all be achieved. In these problems, it is important to generate plans ofgood or optimal quality
achieving all problem goals (if possible) or some subset of them.

In the previous International planning competitions, the plan generation CPU-time played a central role
in the evaluation of the competing planners. In the fifth International planning competition (IPC-5), while
considering the CPU-time, we would like to give greater emphasis to the importance of plan quality. The
versions of PDDL used in the previous two competitions (PDDL2.1 and PDDL2.2) allow us to express
some criteria for plan quality, such as the number of plan actions or parallel steps, and relatively complex
plan metrics involving plan makespan and numerical quantities. These are powerful and expressive in
domains that include metric fluents, but plan quality can still only be measured by plan size in the case
of propositional planning. We believe that these criteria are insufficient, and we propose to extend PDDL
with new constructs increasing its expressive power about the plan quality specification.

The proposed extended language allows us to expressstrong and soft constraints on plan trajectories
(i.e. constraints over possible actions in the plan and intermediate states reached by the plan), as well
asstrong and soft problem goals(i.e. goals that must be achieved in any valid plan, and goals that we
desire to achieve, but that do not have to be necessarily achieved). Strong constraints and goals must be
satisfied by any valid plan, while soft constraints and goals express desired constraints and goals, some
of which may be more preferred than others. Informally, in planning with soft constraints and goals,
the best quality plan should satisfy “as much as possible” the soft constraints and goals according to the
specified preference relation distinguishing alternative feasible plans (satisfying all strong constraints and
goals). While soft constraints have been extensively studied in the CSP literature, only very recently has
the planning community started to investigate them [1, 2, 3, 4, 5, 6], and we believe that they deserve more
research efforts.

The following are some informal examples of plan trajectory constraints and soft goals. Additional
formal examples will be given in the next section.

Examples in a blocksworld domain: a fragile block can never have something above it, or it can have at
most one block on it; we would like that the blocks forming the same tower always have the same colour;
in some state of the plan, all blocks should be on the table.

Examples in a transportation domain: we would like that every airplane is used(instead of using only a
few airplanes, because it is better to distribute the workload among the available resources and limit heavy
usage);whenever a ship is ready at a port to load the containers it has to transport, all such containers
should be ready at that port; we would like that at the end of the plan all trucks are clean and at their
source location; we would like no truck to visit any destination more than once.

1

When we have soft constraints and goals, it can be useful to give different priorities to them, and
this should be taken into account in the plan quality evaluation. While there is more than one way to
specify the importance of a soft constraint or goal, as a first attempt to tackle this issue, for IPC-5 we
have chosen a simple quantitative approach: each soft constraint and goal is associated with a numerical
weight representing the cost of its violation in a plan (and hence also its relative importance with respect the
other specified soft constraints and goals). Weighted soft constraints and goals are part of the plan metric
expression, and the best quality plans are those optimising such an expression (more details are given in
the next sections).

Using this approach we can express that certain plans are more preferred than others. Some examples
are (other formalised examples are given in the next sections):I prefer a plan where every airplane is used,
rather than a plan using 100 units of fuel less, which could be expressed by weighting a failure to use all
the planes by a number 100 times bigger than the weight associated with the fuel use in the plan metric;I
prefer a plan where each city is visited at most once, rather than a plan with a shorter makespan, which
could be expressed by using constraint violation costs penalising a failure to visit each city at most once
very heavily;I prefer a plan where at the end each truck is at its start location, rather than a plan where
every city is visited by at most one truck, which could be expressed by using goal costs penalising a goal
failure of having every truck at its start location more heavily than a failure of having in the plan every city
visited by at most one truck.

We also observe that the rich additional expressive power we propose to add for goal specifications
allows the expression of constraints that are actually derivable necessary properties of optimal plans. By
adding them as goal conditions, we have a way to express constraints that we know will lead to the planner
finding optimal plans. Similarly, one can express constraints that prevent a planner from exploring parts of
the plan space that are known to lead to inefficient performance.

In the next sections, we outline some extensions to PDDL2.2 that we propose for IPC-5. We call
the extended language PDDL3.0. It should be noted that this is a preliminary version of the extended
language, and that a more detailed description will be prepared in the future. Moreover, given that the
proposed extensions are relatively new in the planning community, and that the teams participating in IPC-
5 will have limited time to develop their systems, we impose some simplifying restrictions to make the
language more accessible.

2 State Trajectory Constraints

2.1 Syntax and Intended Meaning

State trajectory constraints assert conditions that must be met by the entire sequence of states visited during
the execution of a plan. They are expressed through temporal modal operators over first order formulae
involving state predicates. We recognise that there would be value in also allowing propositions asserting
the occurrence of action instances in a plan, rather than simply describing properties of the states visited
during execution of the plan, but we choose to restrict ourselves to state predicates in this extension of the
language. The use of the extensions described here imply a new requirements flag,:constraints .

The basic modal operators we propose to use in IPC-5 are:always , sometime , at-most-once ,
and at end (for goal state conditions). We use a special default assumption that unadorned conditions
in the goal specification are automatically taken to be “at end” conditions. This assumption is made in
order to preserve the standard meaning for existing goal specifications, despite the fact that in a standard
semantics for an LTL formula an unadorned proposition would be interpreted according to the current
state. We addwithin which can be used to express deadlines. In addition, rather than allowing arbitrary
nesting of modal operators, we introduce some specific operators that offer some limited nesting. We
havesometime-before , sometime-after , always-within . Other modalities could be added, but we
believe that these are sufficiently powerful for an initial level of the sublanguage modelling constraints.

It should be noted that, by combining these modalities with timed initial literals (defined in PDDL2.2),
we can express further goal constraints. In particular, one can specify the interval of time when a goal
should hold, or the lower bound on the time when it should hold. Since these are interesting and useful
constraints, we introduce two modal operators as “syntactic sugar” of the basic language:hold-during

2

andhold-after .
Trajectory constraints are specified in the planning problem file in a new field, called:constraints

that will usually appear after the goal. In addition, we allow constraints to be specified in the action domain
file on the grounds that some constraints might be seen as safety conditions, or operating conditions, that
are not physical limitations, but are nevertheless constraints that must always be respected in any valid
plan for the domain (say legal constraints or operating procedures that must be respected). This also uses a
section labelled(:constraints ...) . The interpretation of(:constraints ...) in the conjunction
of a domain and a problem file is that it is equivalent to having all the constraints added to the goals.
The use of trajectory constraints (in the domain file or in the goal specification) implies the need for the
:constraints flag in the:requirements list.

Note that no temporal modal operator is allowed in preconditions of actions. That is, all action precon-
ditions are with respect to a state (or time interval, in the case ofover all action conditions).

The specific extensions to the syntax are the requirement flag and constraints section listed above,
together with the modalities that may be used in goal descriptors for top level goals (in the problem speci-
fication). The modalities have the following syntax:

<GD> ::= (at end <GD>) | (always <GD>) | (sometime <GD>) |
(within <num> <GD>) | (at-most-once <GD>) |
(sometime-after <GD> <GD>) | (sometime-before <GD> <GD>) |
(always-within <num> <GD> <GD>) |
(hold-during <num> <num> <GD> |
(hold-after <num> <GD> | ...

where<num> is any numeric literal (in STRIPS domains it will be restricted to integer values) and “... ”
includes all existing goal descriptors. There is a minor complication in the interpretation of the bound
for within andalways-within when considering STRIPS plans (and similarly forhold-during and
hold-after): the question is whether the bound refers to sequential steps (in other words, actions) or to
parallel steps. For STRIPS plans, the numeric bounds will be counted in terms of planhappenings. For
instance,(within 10 φ) would mean thatφmust hold within 10 happenings. These would be happenings
of one action or of multiple actions, depending on whether the plan is sequential or parallel.

2.2 Notes on Semantics

The semantics of goal descriptors in PDDL2.2 evaluates them only in the context of a single state (the state
of application for action preconditions or conditional effects and the final state for top level goals). In order
to give meaning to temporal modalities, which assert properties of trajectories rather than individual states,
it is necessary to extend the semantics to support interpretation with respect to a finite trajectory (as it is
generated by a plan). We propose a semantics for the modal operators that is the same basic interpretation
as is used in TLPlan forLT and other standard LTL treatments. Recall that ahappeningin a plan for a
PDDL domain is the collection of all effects associated with the (start or end points of) actions that occur
at the same time. This time is then the time of the happening and a happening can be “applied” to a state by
simultaneously applying all effects in the happening (which is well defined because no pair of such effects
may be mutex).

Definition 1 Given a domainD, a planπ and an initial stateI, π generates the trajectory

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉

iff S0 = I and for each happeningh generated byπ, with h at timet, there is somei such thatti = t and
Si is the result of applying the happeningh to Si−1, and for everyj ∈ {1 . . . n} there is a happening inπ
at tj .

Definition 2 Given a domainD, a planπ, an initial stateI, and a goalG, π is valid if the trajectory it
generates,〈(S0, 0), (S1, t1), ..., (Sn, tn)〉, satisfies the goal:〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= G.

This definition contrasts with the original semantics of goal satisfaction, where the requirement was that
Sn |= G. The contrast reflects precisely this requirement that goals should now be interpreted with respect

3

to an entire trajectory. We do not allow action preconditions to use modal operators and therefore their
interpretation continues to be relative to the single state in which the action is applied. The interpretation
of simple formulae,φ (containing no modalities), in a single stateS continues to be as before and continues
to be denotedS |= φ. In the following definition we rely on context to make clear where we are using
the interpretation of non-modal formulae in single states, and where we are interpreting modal formulae in
trajectories.

Definition 3 Let φ andψ be atomic formulae over the predicates of the planning problem plus equality
(between objects or numeric terms) and inequalities between numeric terms, and lett be any real constant
value. The interpretation of the modal operators is as follows:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at end φ) iff Sn |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φ iff Sn |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always φ) iff ∀i : 0 ≤ i ≤ n · Si |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime φ) iff ∃i : 0 ≤ i ≤ n · Sj |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (within t φ) iff ∃i : 0 ≤ i ≤ n · Si |= φ

andti ≤ t
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at-most-once φ) iff ∀i : 0 ≤ i ≤ n · if Si |= φ then

∃j : j ≥ i · ∀k : i ≤ k ≤ j · Sk |= φ
and∀k : k > j · Sk |= ¬φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(sometime-after φ ψ) iff ∀i · if Si |= φ then∃j : i ≤ j ≤ n · Sj |= ψ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(sometime-before φ ψ) iff ∀i · if Si |= φ then∃j : 0 ≤ j < i · Sj |= ψ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(always-within t φ ψ) iff ∀i · if Si |= φ then∃j : i ≤ j ≤ n · Sj |= ψ

andtj − ti ≤ t

Note that this interpretation exploits the fact that modal operators are not nested. A more general
semantics for nested modalities is a straight-forward extension of this one. Note also that the last four
expressions are expressible in different ways if one allows nesting of modalities and use of the standard
LTL modality, until. We take (until φ ψ) to mean that there is a state in whichψ is true and in all states
before this (if any)φ is true. The modalityweak-until is also occasionally used, where (weak-until φ ψ)
is taken to mean thatφ is true in all states before some state in whichψ is true,if there is one(otherwiseφ
is always true). The following equivalences can be proved:

(weak-until φ ψ) ≡ (until φ (ψ ∨ (always φ)))

(always-within t φ ψ) ≡ (always (φ→ (within t ψ)))

(sometime-before φ ψ) ≡ (weak-until (¬φ ∧ ¬ψ) (ψ ∧ ¬φ))

(at-most-once φ) ≡ (always (φ→ (until φ (always ¬φ))))

(sometime-after φ ψ) ≡ (always (φ→ (sometime ψ))

Note thatat-most-once is satisfied if its argument becomes true and then stays true across multiple
states and then (possibly) becomes false and stays false. Thus, there is only at most oneinterval in the plan
over which the argument proposition is true.

For general formulae (which may or may not contain modalities):

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (and φ1...φn) iff, for every i, 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φi

and similarly for other connectives.
Concerninghold-during andhold-after , (hold-during t1 t2 φ) states thatφ must be true dur-

ing the interval[t1, t2), while (hold-after t φ) states thatφ must be true after timet. The first can
be expressed by using timed initial literals to specify that a dummy timed literald is true during the time
window [t1, t2) together with the goal

4

(always (implies d φ)).

A variant ofhold-during whereφmust holdexactlyduring the specified interval could be easily obtained
in a similar way. The second can be expressed by using timed initial literals to specify thatd is true only
from timet, together with the goal

(sometime-after d φ) .

3 Soft Constraints, Preferences and Plan Quality

A soft constraint is a condition on the trajectory generated by a plan that the user would prefer to see satis-
fied rather than not satisfied, but is prepared to accept might not be satisfied because of the cost of satisfying
it, or because of conflicts with other constraints or goals. In case a user has multiple soft constraints, there
is a need to determine which of the various constraints should take priority if there is a conflict between
them or if it should prove costly to satisfy them. This could be expressed using a qualitative approach but,
following careful deliberations, we have chosen to adopt a simple quantitative approach for this version of
PDDL.1

3.1 Syntax and Intended Meaning

The syntax for soft constraints falls into two parts. Firstly, there is the identification of the soft constraints,
and secondly there is the description of how the satisfaction, or lack of it, of these constraints affects the
quality of a plan.

Goal conditions, including action preconditions, can be labelled as preferences, meaning that they do
not have to be true in order to achieve the corresponding goal or precondition. Thus, the semantics of
these conditions is simple, as far as the correctness of plans is concerned: they are all trivially satisfied
in any state. The role of these preferences is apparent when we consider the relative quality of different
plans. In general, we will consider plans better when they satisfy soft constraints and worse when they do
not. A complication arises, however, when comparing two plans that satisfy different subsets of constraints
(where neither set strictly contains the other). In this case, we rely on a specification of the violation costs
associated with the preferences.

The syntax for labelling preferences is simple:

(preference [name] <GD>)

The definition of a goal description can be extended to include preference expressions. However, we
will reject as syntactically invalid any expression in which preferences appear nested inside any connec-
tives, or modalities, other than conjunction and universal quantifiers. We will also consider it a syntax
violation if a preference appears in the condition of a conditional effect.Note that where a named prefer-
ence appears inside a universal quantifier, it is considered to be equivalent to a conjunction (over all legal
instantiations of the quantified variable) of preferences all with the same name.The use of preferences
in a domain or problem implies the requirements flag:preferences . Preferences over state trajectory
constraints are expressed in the(:constraints ...) field, while preferences over goals are expressed
in the (:goal ...) field. If a preference involves both a constraint and a goal, it is expressed in the
:constraints field. Goal preferences expressed in the:goal field are implicitly interpreted under the
at end modality.

Where a name is selected for a preference it can be used to refer to the preference in the construction
of penalties for the violated constraint. The same name can be shared between preferences, in which case
they share the same penalty.

Penalties for violation of preferences are calculated using the expression(is-violated <name>)

where<name> is a name associated with one or more preferences. This expression takes on a value equal
to the number of distinct preferences with the given name that are not satisfied in the plan. Note that we

1In a future version of this report we will discuss an alternative qualitative method for assigning different priorities to soft con-
straints and goals, and for evaluating the plans according to them.

5

do not attempt to distinguish degrees of satisfaction of a soft constraint — we are only concerned with
whether or not the constraint is satisfied. Note, too, that the count includes each separate constraint with
the same name. This means that:

(preference VisitParis (forall (?x - tourist) (sometime (at ?x Paris))))

yields a violation count of1 for (is-violated VisitParis) , if at least one tourist fails to visit Paris
during a plan, while

(forall (?x - tourist) (preference VisitParis (sometime (at ?x Paris))))

yields a violation count equal to the number of people who failed to visit Paris during the plan. The intention
behind this is that each preference is considered to be a distinct preference, satisfied or not independently of
other preferences. The naming of preferences is a convenience to allow different penalties to be associated
with violation of different constraints.

Plans are awarded a value through the plan metric, introduced in PDDL2.1. The constraints can be used
in weighted expressions in a metric. For example,

(:metric minimize (+ (* 10 (fuel-used)) (is-violated VisitParis)))

would weight fuel use as ten times more significant than violations of theVisitParis constraint. Note
that the violation of a preference in the preconditions of an action is counted multiple times, depending
on the number of the action occurrences in the plan. For instance, suppose thatp is a preference in the
precondition of an actiona, which occurs three times in planπ. If the plan metric evaluatingπ contains the
term(* k (is-violated p)) , then this is interpreted as if it were(* v (* k (is-violated p))) ,
wherev is the number of separate occurrences ofa in π for which the preference is not satisfied.

Anonymous constraints (constraints for which no name is provided) are automatically considered to
be weighted1 and are included as an implicit additional additive term in the metric, positively if the
metric is to be minimised and negatively if is to be maximised. This ensures that a plan that satisfies
more constraints will be better than one that satisfies fewer, all else being equal. The default treatment of
anonymous constraints can be avoided simply by naming the constraints.

3.2 Notes on Semantics

We say that〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (preference Φ) is always true, so this allows preference
statements to be combined in formulae expressing goals. The point in making the formula always true is
that the preference is a soft constraint, so failure to satisfy it is not considered to falsify the goal formula.
In the context of action preconditions, we saySi |= (preference Φ) is always true, too, for the same
reasons.

We also say that a preference(preference Φ) is satisfiediff 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= Φ and
violatedotherwise. This means that(or Φ (preference Ψ)) is the same as(preference (or ΦΨ)) ,
both in terms of the satisfaction of the formulae and also in terms of whether the preference is satisfied.
The same idea is applied to action precondition preferences.

Hence, a goal such as:

(:goal (and (at package1 london) (preference (clean truck1))))

would lead to the following interpretation:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (and (at package1 london)

(preference (clean truck1)))

iff

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at package1 london)

and
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (preference (clean truck1))

6

iff Sn |= (at package1 london)

iff (at package1 london) ∈ Sn, since the preference is always interpreted as true.

In addition, the preference would besatisfiediff:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at end (clean truck1))

iff (clean truck1) ∈ Sn.

If the preference is not satisfied, it is violated.
Now suppose that we have the following preferences and plan metric (note that we are extending the

sum operator inside the metric expression from a binary operator to an operator with an arbitrary number
of arguments greater than 1):

(:constraints
(and (preference p1 (always (clean truck1)))

(preference p2 (and (at end (at package2 paris))
(sometime (clean track1))))

(preference p3 (...))
...))

(:metric (+ (* 10 (is-violated p1)) (* 5 (is-violated p2))
(is-violated p3)))

Suppose we have two plans,π1, π2, andπ1 does not satisfy preferences p1 and p3 (but it satisfies
preference p2) andπ2 does not satisfy preferences p2 and p3 (but it satisfies preference p1), then the metric
for π1 would yield a value (11) that is higher than that forπ2 (6) and we would say thatπ2 is better thanπ1.

Formally, a preference precondition is satisfied if the state in which the corresponding action is applied
satisfies the preference. Note that the restriction on where preferences may appear in precondition formulae
and goals, together with the fact that they are banned from conditional effects, means that this definition
is sufficient: the context of their appearance will never make it ambiguous whether it is necessary to
determine the status of a preference. Similarly, a goal preference is satisfied if the proposition it contains is
satisfied in the final state. Finally, an invariant (over all) condition of a durative action is satisfied if the
corresponding proposition is true throughout the duration of the action.

In some case, it can be hard to combine preferences with an appropriate weighting to achieve the in-
tended balance between soft constraints and other factors that contribute to the value of a plan (such as
plan make span, resource consumption and so on). For example, to ensure that a constraint takes priority
over a plan cost associated with resource consumption (such as make span or fuel consumption) is partic-
ularly tricky: a constraint must be weighted with a value that is higher than any possible consumption cost
and this might not be possible to determine. With non-linear functions it is possible to achieve a bounded
behaviour for costs associated with resources. For example, if a constraint,C, is to be considered always
to have greater importance than the make span for the plan then a metric could be defined as follows:
(:metric minimize (+ (is-violated C) (- 1 (/ 1 (total-time))))) . This metric will al-
ways prefer a plan that satisfiesC, but will use make span to break ties.

Nevertheless, for the competition, where it is important to provide an unambiguous specification by
which to rank plans, the use of plan metrics in this way is clearly very straightforward and convenient. We
leave for later proposals the possibilities for extending the evaluation of plans in the face of soft constraints.

4 Some Examples

“A fragile block can never have something above it”:

(:constraints
(and (always (forall (?b - block)

(implies (fragile ?b) (clear ?b))))
...))

7

“A fragile block can have at most one block on it”:

(:constraints
(and (always (forall (?b1 ?b2 - block)

(implies (and (fragile ?b1) (on ?b2 ?b1)) (clear ?b2))
...))

“We would like that the blocks forming the same tower always have the same color”:

(:constraints
(and (preference

(always (forall (?b1 ?b2 - block ?c1 ?c2 - color)
(implies (and (on ?b1 ?b2)

(color ?b1 ?c1)
(color ?b2 ?c2))

(= ?c1 ?c2)))))
...))

“Each block should be picked upat leastonce”:

(:constraints
(and (forall (?b - block) (sometime (holding ?b)))

...))

Similarly, “each block should be picked upat mostonce”:

(:constraints
(and (forall (?b - block) (at-most-once (holding ?b)))

...))

“In some state visited by the plan all blocks should be on the table”:

(:constraints
(and (sometime (forall (?b - block) (on-table ?b)))

...))

This constraint requires all the blocks to be on the table in thesamestate. In contrast, if we only require
that every block should be on the table insomestate we can write:

(:constraints
(and (forall (?b - block) (sometime (on-table ?b)))

...))

“Whenever I am at a restaurant, I want to have a reservation”:

(:constraints
(and (always (forall (?r - restaurant)

(implies (at ?r) (have-reservation ?r))))
...))

“Each truck should visit each cityat mostonce”:

(:constraints
(and (forall (?t - truck ?c - city) (at-most-once (at ?t ?c)))

...))

“At some point in the plan all the trucks should be at city1”:

(:constraints
(and (sometime (forall (?t - truck) (at ?t city1)))

...))

8

“Each truck should visit each cityexactly once”:

(:constraints
(and (forall (?t - truck ?c - city) (at-most-once (at ?t ?c)))

(forall (?t - truck ?c - city) (sometime (at ?t ?c))))
...))

“Each city is visited by at most one truck at the same time”:

(:constraints

(and (forall (?t1 ?t2 - truck ?c1 city)
(always (implies (and (at ?t1 ?c1) (at ?t2 ?c1)) (= ?t1 ?t2))))

...))

The following two examples use the IPC-3 Rovers domain involving numerical fluents.
“We would like that the energy of every rover should always be above the threshold of 5 units”:

(:constraints
(and (preference (always (forall (?r - rover) (> (energy ?r) 5))))

...))

“Whenever the energy of a rover is below 5, it should be at the recharging location within 10 time units”:

(:constraints
(and (forall (?r - rover)

(always-within 10 (< (energy ?r) 5) (at ?r recharging-point)))
...))

The next two examples illustrate the usefulness ofsometime-before andsometime-after . The
first one states that “a truck can visit a certain city (where initially there is no truck) only after having
visited another particular one”; the second one that “if a taxi has been used and it is at the depot, then it has
to be cleaned” (if a taxi is used but it does not go back to the depots, then there is no need to clean it).

(:constraints
(and (forall (?t - truck)

(sometime-before (at ?t city1) (at ?t city2)))
...))

(:constraints
(and (forall (?t - taxi)

(sometime-after (and (at ?t depot) (used ?t)) (clean ?t)))
...))

“We want a plan moving package1 to London such that truck1 is always maintained clean, and at some
point truck2 is at Paris. Moreover, we also prefer that truck3 is always clean and that at the end of the plan
package2 is at London”:

(:goal (and (at package1 london)
(preference (at package2 london))

...))

(:constraints
(and (always (clean truck1))

(sometime (at truck2 paris))
(preference (always (clean truck3)))
(preference (at end (at package2 london)))
...))

9

“We prefer that every fragile package to be transported is insured”.

(:constraints
(and (forall (?p - package)

(preference P1 (always (implies (fragile ?) (insured ?p)))))
...))

We now consider an example with a plan metric.
“We want three jobs completed. We would prefer to take a coffee-break and that we take it when everyone
else takes it (at coffee-time) rather than at any time. We would also like to finish reviewing a paper, but it
is less important than taking a break. Finally, we would like to be finished so that we can get home at a
reasonable time, and this matters more than finishing the review or having a sociable coffee break”:

(:goal (and (finished job1)
(finished job2)
(finished job3)))

(:constraints (and (preference break (sometime (at coffee-room)))
(preference social (sometime (and (at coffee-room)

(coffee-time))))
(preference reviewing (reviewed paper1))))

(:plan-metric minimize (+ (* 5 (total-time))
(* 4 (is-violated social))
(* 2 (is-violated break))
(is-violated reviewing)))

Now consider three plans,π1, π2 andπ3, such that all three plans complete the three jobs. Supposeπ1

achieves this in 4 hours, but takes no break and does not include reviewing the paper. Supposeπ2 completes
the jobs in 8 hours, but takes a coffee-break at coffee-time and reviews the paper. Finally,π3 completes the
jobs in 6 hours, including reviewing the paper, but only by taking a short break when the coffee room is
empty. Then the values of the plans are:

Plan Quality
π1 5*4 + 4*1 + 2*1 + 1 = 27
π2 5*8 + 4*0 + 2*0 + 0 = 40
π3 5*6 + 4*1 + 2*0 + 0 = 34

This makesπ1 the best plan andπ2 the worst.

5 Plan Validation and Evaluation

A plan validator will be developed as an extension of the existing validator used in the previous compe-
titions. The two key aspects of this extension are checking state trajectory constraints in the goal, which
does not complicate the execution simulation for a plan, and the checking of preferences in order to com-
pare plans. This latter extension will involve identifying the constraint violations associated with each plan
and their violation times, in order to evaluate the plan quality according to the specified metric (which
may include terms for the preference violations). The organizers of IPC-5 are considering the possibil-
ity of using different variants of the test problems involving only strong constraints or soft constraints,
with a possible additional distinction between simple preferences, involving only goals or action precon-
ditions, and more complex preferences involving general soft constraints. More details about this orga-
nization of the benchmarks will be announced in the the web page of the deterministic track of IPC-5:
http://ipc5.ing.unibs.it .

10

6 Extensions and Generalization

There is considerable scope for developing the proposed extension. First, and most obviously, modal
operators could be allowed to nest. This would allow a rich expressive power in the specification of modal
temporal goals. Nesting would allow constraints to be applied to parts of trajectories, as is usual in modal
temporal logics. In addition, we could introduce propositions representing that an action appears in a plan.

Other modal operators could be added. We have excluded them in this extension for IPC-5 because we
have found that many interesting and challenging goals can be captured without them, and we do not wish
to add unnecessarily to the load on potential competitors. The modal operatoruntil would be an obvious
one to add. Without nesting, a relatedalways-until andsometime-until would allow expression of goals
such as “every time a truck arrives at the depot, it must stay there until loaded” or “when the truck arrives
at the depot, it must stay there until cleaned and fully refuelled at least once in the plan”. The formal
semantics ofalways-until andsometime-until can be easily derived from the one ofuntil in LTL. By
combiningalways-until and other modalities we can express complex constraints such as that “whenever
the energy of a rover is below 5, it should be at the recharging location within 10 time units and remain
there until recharged”:

(:constraints (and (always-until (charged ?r) (at ?r rechargepoint))
(always-within 10 (< (charge ?r) 5) (at ?r rechargingpoint))))

Another modality that would be an useful extension of the expressive power is a complement for
within , such aspersist, with the semantics that a proposition once made true must persist for at least
some minimal period of time. Without nesting, a relatedalways-persist andsometime-persist would
allow expression of goals such as “I want to spend at least 2 days in each of the cities on my tour”, or
“every time the taxi goes to the station it must wait for at least 10 without a passenger”.
The formal semantics ofalways-persist andsometime-persist is

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(always-persist t φ) iff ∀i : 0 < i ≤ n · if Si |= φ andSi−1 |= ¬φ then

∃j : j − i ≥ t · ∀z : i ≤ z ≤ j · Sz |= φ and
if S0 |= φ then∀z : z ≤ t · Sz |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(always-persist t φ) iff ∃i : 0 < i ≤ n · if Si |= φ andSi−1 |= ¬φ then

∃j : j − i ≥ t · ∀z : i ≤ z ≤ j · Sz |= φ, or
if S0 |= φ then∀z : z ≤ t · Sz |= φ

A generalisation that would allowwithin andpersist to be combined would be to allow the time
specification to be associated with a comparison operator to indicate whether the bound is an upper or
lower bound.

We have deliberately not introduced the operatornext, which is common in modal temporal logics.
This is because concurrent fragments of a plan might cause a state change that is not relevant to the part
of the state in which thenext condition is intended to apply. Furthermore, the fact that PDDL plans
are embedded on a real time line means that the intention behindnext is less obviously relevant. We
realise thatnext has been particularly useful in expressing control rules for planners like TALPlanner and
TLPlan, but our intention in developing this extension is to focus on providing a language that is useful
for expressing constraints that govern plan quality, rather than for control knowledge. We believe that the
use ofalways-within captures a much more useful concept for plan quality that is actually a far more
realistic constraint in modelling planning problems.

Extensions to the use of soft constraints include the definition of more complex preferences, such
as conditional preferences, and a possible qualitative method for expressing priorities over preferences.
Moreover, the evaluation of the soft constraints could be extended by considering a degree of constraint
violation, such as the amount of time when analways constraint is violated, the delay that falsifies a
within constraint, or the number of times analways-after constraint is violated.

11

Acknowledgments

We would like to thank several people for some very useful discussions about the extensions to PDDL that
we have proposed in this paper, and in particular Yannis Dimopoulos, Carmel Domshlak, Stefan Edelkamp,
Maria Fox, Patrik Haslum, J̈org Hoffmann, Ari Jonsson, Drew McDermott, Alessandro Saetti, Len Schu-
bert, Ivan Serina, David Smith and Dan Weld.

References

[1] R. Brafman and Y. Chernyavsky. Planning with goal preferences and constraints. InProceedings of
the 15th International Conference on Automated Planning and Scheduling (ICAPS-05), Menlo Park,
CA, USA, 2005. AAAI Press.

[2] M. Briel, R. Sanchez, M. Do, and S Kambhampati. Effective approaches for partial satisfaction (over-
subscription) planning. InProceedings of the 19th National Conference on Artificial Intelligence
(AAAI-04), Menlo Park, CA, USA, 2004. AAAI Press.

[3] P. J. Delgrande, T. Schaub, and H. Tompits. A general framework for expressing preferences in causal
reasoning and planning. InProceedings of the7th International Symposium on Logical Formalizations
of Commonsense Reasoning, Corfu, Greece, 2005.

[4] I. Miguel, P. Jarvis, and Q. Shen. Efficient flexible planning via dynamic flexible constraint satisfaction.
Engineering Applications of Artificial Intelligence, 14(3):301–327, 2001.

[5] D. Smith. Choosing objectives in over-subscription planning. InProceedings of the 14th International
Conference on Automated Planning and Scheduling (ICAPS-04), Menlo Park, CA, USA, 2004. AAAI
Press.

[6] C. Son, T. and E. Pontelli. Planning with preferences using logic programming. InProceeding of
the 7th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR04),
Berlin, Heidelberg, New York, 2004. Springer-Verlag. Lecture Notes in Artificial Intelligence 2923.

12

